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Climate change increases the frequency of extreme climate events and impacts

the economy and the society in a negative way. As typical climate events,

temperature anomalies affect individual health and working conditions,

particularly for industries that depend heavily on temperatures. Using a

research setting of Chinese temperature-sensitive enterprises, we analyze

the impact of temperature on labor productivity. The findings indicate an

inverse U-shaped relationship between temperature and labor productivity,

with labor productivity peaking at 24.90°C on average. Further analysis shows

that labor productivity peaks in the eastern regions at a higher level (26.25°C)

than in the central and western regions (20°C). Moreover, we note that

technological innovation is crucial for enterprises to manage climate risks

and maintain effective labor productivity. This study provides empirical

evidence on the relationship between environmental risk and corporate

operations, shedding light on the significance of corporate sustainable

development against accelerating global climate change.
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1 Introduction

Climate change, which continues to have an effect on ecosystems and socioeconomic

systems, is one of the largest problems facing the globe today (Selvi et al., 2019; He et al., 2021;

Hong et al., 2021; Sebestyén et al., 2021; Yu et al., 2022; Zhang et al., 2022). Global warming,

environmental pollution, deforestation, soil degradation, and prolonged droughts are just a few

of the significant environmental problems that have frequently surfaced along with explosive

economic growth during the past few decades. These extreme events endangered human

survival and caused great economic losses (Marengo et al., 2021; Sohail et al., 2022). For

example, Typhoon Hagibis in 2019 brought more than 240mm of extreme rainfall in Japan,

leading to around 100 deaths and adding $4 billion to Japan’s economic losses (Wagner, 2022).

According to the Global Climate Risk Index 2020, Germany’s hot weather in 2018 caused 70%

of the soil to be affected by drought, resulting in a total of EUR 3 billion (US $3.54 billion) in

damage.
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Some scholars believe that human activities have caused

greenhouse gas emissions to increase annually, making climate

change often associated with temperature anomalies (Sakhel,

2017; Kouloukoui et al., 2019; Uzar, 2020; Chen et al., 2022;

Shi et al., 2022). A large body of research has empirically shown

that temperature anomalies can have a wide range of negative

impacts, including harm to people’s physical and mental health

(Deschenes, 2014; Carleton and Hsiang, 2016; Zhang et al., 2018;

Fishman et al., 2019). The body temperature increases and

physiological functions such as water and salt metabolism,

circulation, and respiration would be disrupted in an

environment with extremely high temperatures (Venugopal

et al., 2020). High temperatures affect productivity by

reducing human body load endurance and work efficiency

while increasing operation errors and accident rates (Li et al.,

2009; Somanathan et al., 2021). In an environment with

extremely low temperatures, human body temperature will

drop, triggering a series of protective or compensatory

physiological responses, such as increased metabolic rate and

accelerated heart rate and respiratory rate (McInnes et al., 2017).

Long-term exposure to low temperatures can lower tactile

discrimination and significantly reduce limb operating

flexibility, thus reducing labor productivity (Varghese et al.,

2019). In conclusion, temperature anomalies would interfere

with the body’s thermal equilibrium and lower labor

productivity.

According to the endogenous growth theory (Romer, 1990),

labor input determines the level of industrial development since

workforce productivity reflects the organization’s output

capacity. Based on this, the economic concept of labor

productivity-the ratio of total product output to labor input-is

adopted (Hanna et al., 2005). Therefore, depending on how labor

productivity is calculated, both high and low temperatures

negatively impact the level of labor input and labor

productivity. But Matsumoto (2019) demonstrated that labor

productivity in medium-temperature zones is higher. As

confirmed by Burke et al. (2015), economic productivity is

non-linear in temperature. So, because people prefer moderate

temperatures to extreme temperatures, there might be a non-

linear link between temperature and labor productivity.

Understanding how temperature affects industrial sector,

and in particular how it affects labor productivity, has become

an issue of economic significance. In this paper, we examine the

impact of temperature on labor productivity using construction

enterprises as the research setting, as building construction tasks

often take place outdoors, making labor productivity more

susceptible to temperature anomalies (Blaauw et al., 2022;

Feller and Vaseva, 2014; Yu et al., 2021). According to Tan

and Abdul-Samad (2022), extreme temperature events would

decrease labor force and hinder construction projects. The

workforce reduction will hinder progress, shut down

operations, reduce work efficiency, and decrease labor

productivity (Gasparrini et al., 2015; Morabito et al., 2017;

Dosio et al., 2018; Watts et al., 2019). So, temperature

anomalies can make the construction industry more

vulnerable to adverse circumstances.

We choose construction enterprises in 31 provinces in

mainland China as the research setting for two reasons. On

one hand, the geographic locations of provinces in mainland

China span from 73°40′ east longitude of Xinjiang Uygur

Autonomous Region to 135°2′30″ east longitude of

Heilongjiang province, and from 3°52′ north latitude of

Hainan province to 53°33′ north latitude of Heilongjiang

province. So, the country has a broad temperature range,

which satisfies our criteria for the variation of temperature

data. On the other hand, the development of building

procedures and mechanical equipment over the past few

decades has greatly increased the overall productivity of the

Chinese construction sector (Tian et al., 2020; Xue et al.,

2022), which is still highly labor-intensive. Construction

workers work outdoors and are more sensitive to temperature

changes. So, we analyze the effect of temperature on labor

productivity by using the data of construction enterprises

from 2006 to 2019 in 31 provinces of mainland China. The

results show an inverse U-shaped relationship between labor

productivity and temperature. The labor productivity of

construction enterprises is highest at an average temperature

of 24.9°C and will decrease when temperatures are too high or too

low Then, the optimum temperature for labor productivity is

higher in Eastern China (26.25°C) than in Central and Western

China (20°C). In addition, we conduct a test for heterogeneity in

technological innovation level and find that it significantly and

positively affects the relationship between temperature and labor

productivity.

The primary contributions of this paper are manifested in the

following two aspects. On one hand, we demonstrate an inverse

U-shaped relationship between temperature and labor productivity

by using a sample with a wide range of temperature spans. Scholars

have conducted numerous studies on how temperature affects

construction labor productivity, but the majority of them focused

on the effect of high temperatures on the human body (Chinnadurai

et al., 2016; Li et al., 2016). In the absence of research on the effect of

low temperatures, those findings could hardly reflect the changes in

construction labor productivity caused by temperature differences.

On the other hand, unlike studies where temperature and labor

productivity data were obtained from a small number of construction

contractors (Mohamed and Srinavin, 2005; Mathee et al., 2010;

Nasirzadeh and Nojedehi, 2013; Blaauw et al., 2022), we extend

our study from the site level to the construction company level. This

makes the findings generalizable and convincing. Therefore, this

research could help businesses develop better strategies to deal with

temperature fluctuations and increase labor productivity, which will

improve their competitiveness and maintain sustainable growth.

In the remainder of this paper, section 2 is the literature

review on the impact of temperature on labor productivity in the

construction enterprise. Section 3 introduces the methodology,
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including data collection and the spatial econometric model.

Section 4 presents the descriptive statistical analysis and the

regression results. The analysis includes baseline regression

analysis, heterogeneous regression analysis in terms of

geographical effects, and robustness checks. Section 5

discusses the findings and future research direction. Section 6

concludes this article.

2 Literature review

Climate change has been hastened by rapid industrialization

and urbanization (Tao et al., 2022). It has raised the risk for

companies operating throughout the world. (Liu et al., 2021;

Wan et al., 2021; Tian et al., 2022; Wagner, 2022). For example,

extreme weather events associated with flooding have a

significant impact on the operation of insurance enterprises

(Cremades et al., 2018), and severe drought raises a

company’s cost of equity capital (Huynh et al., 2020).

Understanding the impact of temperature changes on

enterprises is crucial because it is predicted that global

temperatures will continue to change drastically (Stern and

Kaufmann, 2014; Malhi et al., 2021). Especially for enterprises

whose core operations depend on natural conditions,

temperature changes can have a detrimental effect on an

enterprise’s financial performance, such as loss of physical

assets and increased labor costs (Sun et al., 2020).

The construction industry is vulnerable to climate change

risks because of its dependence on temperature and seasonal

conditions. Most construction work is conducted outdoors and is

labor-intensive, so workers’ health and productivity are directly

affected by temperature changes (Grifoni et al., 2021). Kim and

Hong’s (2020) thermal evaluation questionnaire results indicated

that humans function most efficiently and comfortably at 25°C.

But extreme temperatures affect workers’ health and working

conditions, which then lowers labour productivity in the

construction industry. These effects include high-temperature

and low-temperature effects.

Based on the relationship between environmental

temperature and human thermal balance, Zhu and Zhao

(2006) defined high-temperature environments as either a

residential environment above 35°C or a working environment

above 32°C. The human body responds to thermal stress in a

high-temperature environment by releasing heat to keep itself in

balance. However, agricultural and construction workers

frequently wear personal protective gear and clothes,

especially when engaging in outside tasks. This can

dramatically reduce body heat loss and increase heat stress

(Grifoni et al., 2021). When air temperature approaches or

exceeds skin temperature (31°C-32°C), it is almost ineffective

for the human body to dissipate heat through natural air

convection; instead, sweat evaporation takes over as the

primary method of heat dissipation (Hargreaves, 2008). If

water loss from sweat evaporation is not replenished in time,

it might cause dehydration, heatstroke, heat cramps,

cardiovascular disease, or even death (Venugopal et al., 2020).

In addition, uncomfortable outdoor working circumstances in

hot weather may affect construction workers’ willingness and

capacity to work (Somanathan et al., 2021). Li et al. (2016)

examined the relationship between working hours and

temperature using field data from a reinforced concrete

construction project in Beijing, China. The findings showed

that the percentage of real working hours drops by

0.57 percent on average for every 1°C increase in temperature.

Reduced nerve and muscle excitability in workers, as well as

irritability and anxiety, could increase accident rates and decrease

labor productivity (Li et al., 2009).

Recently, Adhvaryu et al. (2020) utilized energy-efficient

LED lighting to create temperature fluctuations in the

workplace and concluded that worker productivity would

increase when the temperature decreases moderately. It’s

noteworthy that extremely low temperatures are more harmful

to health than high temperatures (Gasparrini et al., 2015; King

et al., 2020). Low-temperature environment increases energy

consumption, decreases tactile sensitivity, and damages the

cardiovascular and cerebrovascular vessels (McInnes et al.,

2017). Research by Varghese et al. (2019) has shown that low

temperatures are mostly to blame for the nearly 5% of workplace

accidents in Australia that are caused by ambient temperature.

Especially, the outdoor work of construction enterprises is closely

related to the natural environment and climatic conditions.

Therefore, the reduction of ambient temperature usually

directly affects the occupational sector in a negative way

(Moda et al., 2019). Additionally, at low temperatures,

equipment performance degrades more rapidly (Fiorese et al.,

2015). All of these could reduce labor productivity and safety in

the construction enterprise.

Many scholars have analyzed the impact of temperature on

construction workers, in order to find the ideal temperature for

boosting labor productivity. Themajority of these studies focused

on the study of the effects of high temperatures. For example, Li

et al. (2016) measured and compared rebar workers’ performance

between 2:00 pm and 3:00 pm and 7:00 pm to 9:00 pm in the

summer (representing high ambient temperatures). By analyzing

data from four construction sites, Mohamed and Srinavin (2005)

confirmed the negative impact of high temperatures on

construction labor productivity. Similarly, Chinnadurai et al.

(2016) noted that working outdoors performing light and

heavy construction tasks in high ambient temperatures above

28°C resulted in an 18%–35% reduction in overall worker

productivity. At the same time, we find that many studies

take a city or even a construction site as the research setting.

For example, Mathee et al. (2010) found that sun-exposed

workers in Johannesburg and Upington experience work-

related discomfort and ill health in hot weather, and

Nasirzadeh and Nojedehi (2013) used on-site data from a real
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housing construction project to develop a quantitative model of

labor productivity.

Overall, researchers show that temperature conditions

impose substantial economic and social burdens on

enterprises. However, research on the quantitative effects of

temperature remains limited and flawed. The problem with

the aforementioned studies is that they only consider the

high-temperature data while ignoring the low-temperature

data, which can lead to biased results. Also, since the data

were primarily field data for a specific construction project or

city, there may have been representative errors in the choice of

construction contractors, possibly leading to big measuring

errors in labor productivity data. Therefore, this paper

attempts to contribute by examining the effects of both high

and low temperatures on labor productivity in the construction

sector. To ensure the generalizability of the results for the

construction industry, we select a temperature dataset with a

large temperature span and collect enterprise labor productivity

data from the provincial level.

3 Methodology

3.1 Data collection

We take atmospheric temperature as the key explanatory

variable. Li et al. (2016) used the QUESTemp°36 thermal

environment monitor to obtain on-site air temperature data.

But this method of gathering field data only records the high-

temperature environment for a set amount of time. By

collecting data on average temperature across provinces,

which includes both low and high temperatures, we could

measure the effect of a wider range of temperatures. Besides,

we take construction labor productivity as the dependent

variable. According to the International Labour

Organization, labor productivity is the gross domestic

product (or value-added) per worker (Kpognon et al.,

2022). This economic concept is also used to define

construction labor productivity. In this paper, we use the

construction labor productivity data from the National

Bureau of Statistics of China (NBS), which is calculated as

the ratio of the total output value of construction enterprises

to the number of laborers in enterprises. Labor productivity

changes at the micro level of firm and project activities make

up the overall construction industry productivity (Abdel-

Wahab and Vogl, 2011). Construction labor productivity

data reflects the average labor productivity level of

construction enterprises in a province, which can enhance

the generalizability of the model’s findings.

Economic situations and weather conditions are two driving

factors that could affect enterprise labor productivity (Durdyev

et al., 2018; Avotra et al., 2021; Somanathan et al., 2021; Xiao and

You, 2021). Therefore, we added seven economic and weather

attributes, including regional gross domestic product (GDP),

total output value of the construction industry, number of

construction practitioners, relative humidity, wind speed,

rainfall, and Sun exposure, as control variables. The sample

period is from 2006 to 2019, and the data frequency is

quarterly. The data are sourced from the published data of the

National Bureau of Statistics of China and the China

Meteorological Data Centre. The definition and measurement

of variables are shown in Table 1. To ensure that the data follow a

normal distribution, we took the logarithm of regional GDP and

sunshine hours.

3.2 Model settings

Compared to traditional econometric models, the spatial

econometric model takes into consideration the spatial

dependences among neighboring regions (Anselin, 2002). The

results generated by the spatial model are more precise when

spatial factors play a role in the focal causal relationship. To verify

the existence of spatial dependence between labor productivity

and its influencing factors in the construction industry, we first

conducted a spatial autocorrelation test on the residuals obtained

from the ordinary least squares (OLS) regression. The results

showed that the p-value of Moran’s I statistic is 0.000, rejecting

the null hypothesis of spatial autocorrelation. The results

indicated the existence of a spatial dependence; therefore,

spatial econometric model is more suitable to implement the

estimations. Following mainstream spatial econometrics

literature (e.g., Anselin, 2002, 2003), we chose the binary

geographical adjacent weight matrix with one representing

neighboring provinces and 0 otherwise. The spatial weight

matrix is defined as follows:

ωij � 1, region i is geographically adjecent to region j;
0, otherwise.

{
The spatial econometric model has two widely-used types:

the spatial lag model (SLM) and the spatial error model (SEM).

The model forms of SLM and SEM are:

Y � ρWY +Xβ + ε, ε ~ N 0, σ2I[ ] (1)
Y � Xβ + ε, ε � λWε + μ, μ ~ N 0, σ2I[ ] (2)

where Y denotes the dependent variable; X represents the

independent variables; W refers to the aforementioned spatial

weight matrix; β is the coefficients of X, reflecting the influence of

independent variables on dependent variable; ρ represents the

spatial correlation coefficient of Y; λ is the correlation coefficient

of the spatial error; and ε and μ are random errors following the

multivariate normal distribution. The selection of whether to use

SLM or SEM as the final regression model is determined by the

results of the Lagrange Multiplier and Robust Lagrange

Multiplier tests (Anselin, 2002).
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4 Results

4.1 Descriptive statistics

Descriptive statistics of all variables are reported in

Table 2. It indicates that the minimum quarterly Chinese

construction labor productivity over the period 2006–2019 in

the 31 provinces is 8,900 yuan/person, the maximum is

272,000 yuan/person, the mean value is 85,200 yuan/

person, and the standard deviation is 38,400 yuan/person.

And the minimum quarterly average temperature of the

31 provinces is −14.97°C, the maximum is 29.70°C, the

mean value is 14.28°C, and the standard deviation is

9.84°C. The last column in Table 2 displays the coefficient

of variation (Cov), which makes the variations of all variables

comparable by eliminating scale difference. It is calculated by

dividing standard deviation by mean. So compared to other

variables, the total output value of the construction industry,

the number of construction practitioners, and rainfall have

larger variations in terms of the Cov. There are also large

variations in average temperature and construction labor

productivity. However, the variations of sunshine hours,

regional GDP, relative humidity, and wind speed are

relatively small.

As reported in Figure 1, the highest quarterly average

temperature of the 31 provinces is in the third quarter over the

TABLE 1 Variable descriptions.

Variables Definition Measurement

Construction labor
productivity

The efficiency of the construction labor force in producing construction
products

Construction industrial product/Total construction labor
force

Average temperature The arithmetic mean of the observed atmospheric temperature values ∑Average of day’s high and low temperatures/number of
days in the quarter

Regional GDP The final result of production activities of all resident units in a region ∑Total output of all industries − ∑Intermediate input of all
industries

Total output value of the
construction industry

The sum of construction industry products and services produced by
construction enterprises in a certain period of time expressed in
monetary terms

Construction project output value + equipment installation
project output value + other output value

Number of construction
practitioners

People who work in social groups or enterprises or institutions in the
construction industry and get paid

–

Relative humidity (%) The arithmetic mean of the observed relative humidity ∑Average of day’s relative humidity/number of days in the
quarter

Wind speed (m/s) The arithmetic mean of the observed wind speed ∑Average of day’s wind speed/number of days in the quarter

Rainfall ≥ 0.1 mm (day) Number of days with rainfall ≥ 0.1 mm –

Sunshine hours (hour) The arithmetic mean of the observed sunshine duration ∑Average of day’s sunshine hours/number of days in the
quarter

TABLE 2 Descriptive statistics.

Variables Label Min Max Mean Std. Dev Cov (%)

Construction labor productivity (ten thousand yuan/person) Lp 0.89 27.20 8.52 3.84 45.07

Average temperature (°C) Atem −14.97 29.70 14.28 9.84 68.91

Regional GDP (hundred million yuan) Gdp 4.01 10.32 7.99 1.11 13.89

Total output value of the construction industry (hundred million yuan) Tov 0.91 12,421.40 1,142.90 1,417.26 124.01

Number of construction practitioners (ten thousand people) number 0.22 918.60 127.97 139.51 109.02

Relative humidity (%) humidity 24.33 91.30 65.32 13.52 20.70

Wind speed (m/s) Wind 0.30 5.10 2.09 0.68 32.54

Rainfall ≥ 0.1 mm (day) rainfall 0.60 71.00 25.08 14.83 59.13

Sunshine hours (hour) sunshine 3.03 14.51 5.96 0.69 11.58
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period 2006–2019, followed by the second quarter. And the

variations in these two-quarters are relatively small. The first

quarter has the lowest average temperature and the largest

variation. Construction labor productivity is also the lowest in

the first quarter, but the variation is the smallest. Compared

with the first quarter, the other three-quarters have higher

labor productivity, but the variations are larger.

4.2 Baseline regression results

We select the final regression model between SLM and SEM

using results of the Lagrange Multiplier (LM) and Robust LM

tests. The higher the test statistics, the better the model. The

results in Table 3 indicate that SEM passed both Lagrange

Multiplier and Robust LM tests (p-value <.001) and the test

statistics of SEM are much greater than that of SLM. Meanwhile,

according to untabulated Hausman test results and statistics

from LogLikelihood Ratio, AIC, and SC, this paper chose

SEM as the final model for empirical analyses.

Therefore, the spatial econometric model specification for

examining the impact of temperature on construction labor

productivity is:

lpit � β1atemit + β2atem
2
it + β3tovit + β4lngdpit + β5numberit

+ β6humidityit + β7windit + β8rainfallit + β9lnsunshineit

+ StateFE + TimeFE + εit

εit � λWεit + μ

where lpit refers to the construction labor productivity of province i

in time t; atemit is the average temperature of province i in time t;

tovit, lngdpit, numberit, humidityit, windit, rainfallit and lnsunshineit
represent control variables introduced in Table 2, respectively. We

also control for time-invariant attributes of the provinces (StateFE)

and time fixed effect (TimeFE). The other parameters follow the

same explanations of Eq. 2. As discussed in the theoretical analysis,

labor productivity is likely to follow an inverse U-shaped

relationship with temperature, i.e., the productivity raises when

temperature increases from extremely cold to the optimum

temperature where productivity reaches the highest and begins

to decrease when temperature is higher than the optimum

temperature and reaches the lowest when it is extremely hot.

Therefore, we introduced its squared term (atemit
2 ) in the

regression model to test the inverse U-shaped relationship. We

use Stata software to obtain the parameter estimates and the results

are reported in Table 4.

The coefficients of atem and atem2 are 0.2191 (p-value <
.001) and −.0044 (p-value < .001), indicating an inverse U-shaped

relationship between temperature and construction labor

productivity. The results also show that the spatial error

correlation coefficient λ) is greater than 0 and highly

significant (p-value < .001), indicating that other factors that

are not included in the model have spatial spillover effects on

construction labor productivity in neighboring regions. In

addition, among the control variables, the total output value

of the construction industry (tov) and regional GDP (lngdp) have

FIGURE 1
Heatmaps for average quarterly temperature (left) and construction labor productivity (right) in 31 provinces from 2006 to 2019.

TABLE 3 Model selection test statistical results.

Test Test statistic p-value

Lagrange Multiplier (SLM) 34.838 0.000

Robust LM (SLM) 3.950 0.047

Lagrange Multiplier (SEM) 422.240 0.000

Robust LM (SEM) 391.352 0.000
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significant and positive effects on construction labor

productivity. The number of construction practitioners

(number) has a significant but negative impact on

construction labor productivity; that is, excessive employment

in the construction industry reduces labor productivity.

As illustrated in Figure 1, there are notable temperature

differences between Eastern China and Central and Western

China, with the Eastern region generally having higher

temperatures. Therefore, the impact of temperature on labor

productivity may vary. Further, we investigate the variability of

the inverse U-shaped temperature-productivity nexus in Eastern

China and the rest of China (Central and Western China). The

regression results for Eastern China and Central and Western

China are reported in Table 4.

The results show that the inverse U-shaped relationship

between temperature and construction labor productivity is

observed in all parts of China. Specifically, in Eastern China,

the coefficients of atem and atem2 are 0.2100 (p-value < .001)

and −0.0040 (p-value < .001), respectively; while in the rest of

China, the respective coefficients are 0.2080 (p-value < .001)

and −0.0052 (p-value < .001). In addition, the spatial error

correlation coefficient λ) of eastern provinces is not significant,

but that of central and western provinces is positive (0.1660) and

highly significant (p-value < .001), indicating a positive spillover

effect from construction labor productivity of neighboring regions

to the focal region of central and western China. In terms of

control variables, the total output value of the construction

industry, the number of employees in the construction industry

and regional GDP all significantly impact labor productivity of the

construction industry. And regional GDP in eastern regions has a

much greater influence than that of central and western regions.

Except for humidity, weather variables have no significant impact

on construction labor productivity.

To calculate the optimum temperature that works best for

labor productivity in construction industry, we take the

derivative of the regression model with all control variables

equal to mean values. The derivative calculation shows that

when the average temperature is 24.90°C, construction labor

productivity reaches the highest. Following the same derivative

calculation process, we get the optimum temperature for

construction labor productivity in Eastern China is 26.25°C,

and 20°C in the rest of China. We thus draw the U-shaped

curve between temperature and predicted construction labor

productivity in Figure 2, where Figure (A) shows the inverted

U-shaped curve for all regions, Figures (B) and (C) show the

Eastern and Central and Western China, respectively.

4.3 Heterogeneity analysis of
technological innovation level

Construction labor productivity relies heavily on the level of

organizational technology (Ercan, 2019). Innovative technologies

improve the working and living conditions of workers, which

may have an important impact on the relationship between

temperature and labor productivity. Therefore, we collect

China’s regional innovation capability index (inno) as a proxy

variable for the regional technological innovation level and test

the significance of the level of technological innovation. The data

are sourced from the China Regional Innovation Capability

Evaluation Report, and the sample period is 2006–2019. After

that, we also took logarithms of the data.

TABLE 4 Results for spatial econometric regression.

Variables All areas Eastern China Central and western China

Atem 0.2191ppp (17.16) 0.2100ppp (8.53) 0.2080ppp (13.98)

atem2 −0.0044ppp (−9.27) −0.0040ppp (−3.38) −0.0052ppp (−9.41)

Tov 0.0025ppp (28.79) 0.0022ppp (18.60) 0.0031ppp (23.55)

Lngdp 1.9964ppp (9.52) 3.4100ppp (7.80) 1.3990ppp (5.76)

Number −0.0388ppp (−30.75) −0.0372ppp (−21.55) −0.0458ppp (−22.75)

humidity 0.0008 (0.16) 0.0217p (2.23) −0.0148p (−2.40)

Wind 0.1481 (1.85) 0.1970 (1.40) 0.1010 (1.04)

Rainfall 0.0003 (0.08) −0.0040 (−0.50) 0.0023 (0.47)

lnsunshine 0.1597 (2.04) 0.1970 (1.38) 0.1310 (1.47)

λ 0.1406ppp (4.31) −0.0019 (−0.04) 0.1660ppp (4.02)

N 1736 616 1,120

R2 0.6882 0.7617 0.6850

p p < .05; pp p < .01; ppp p < .001; t-values are provided in parentheses.
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Referring to Li et al. (2008), we add the interaction term of

technological innovation level (inno) with temperature (atem) and

the square of temperature (atem2) to the first model in Table 4 to

perform the heterogeneity analysis of regional technological

innovation level. The results are reported in Table 5. The results

show that the coefficient of the interaction term between atem2 and

inno is 0.0022, which is significant at the 10% level. This indicates that

the technological innovation level significantly affects the relationship

between temperature and labor productivity. So, higher level of

technological innovation leads to a flatter curve shape (Haans

et al., 2016).

4.4 Robustness checks

To check the robustness of our key findings, we use

alternative measures of independent variable and add control

variable to re-estimate the baseline regressions. Specifically, we

use the quarterly lowest temperature (MINT) and highest

temperature (MAXT), instead of average temperature, to re-

examine the relationship between temperature and

construction labor productivity. The results for robustness

tests are displayed in Table 6. It is apparent that both results

are consistent with the baseline finding, supporting the inverse

U-shaped relationship between temperature and construction

labor productivity. Therefore, our empirical evidence about the

inverse U-shaped temperature-productivity nexus in the

construction industry is robust and valid. The derivative

calculation results show that when minimum temperature is

21.45°C or maximum temperature is 28.27°C, construction labor

productivity reaches the highest. In addition, it has been shown

that the production scale affects labor productivity by increasing

the efficiency of using production tools and processing raw

materials (Bárány and Siegel, 2021). So, we add a proxy

variable for production size, construction completion value

per capita (completion) to the regression analysis to test

whether there are missing factors in the model. The results

show that this variable does not affect the fit of the model or

the significance of the independent variables. This suggests that

the relationship we obtain between temperature and labor

productivity is robust.

5 Discussion

Studies in the physiology and engineering literature have

discovered that temperature anomalies have a negative impact on

individual health and productivity, particularly for construction

workers engaged in outside projects (Kjellstrom et al., 2009). To

investigate the effect of temperature on labor productivity, we

FIGURE 2
The relationship between estimated construction labor productivity and temperature of all areas (A), Eastern China (B), and Central andWestern
China (C).

TABLE 5 Results for regression of technological innovation level,
temperature and labor productivity.

Variables Coefficient

Atem 0.3065pp (2.50)

atem2 −0.0122ppp (−2.97)

lninno 1.1747pp (2.47)

atemplninno −0.0263 (−0.68)

atem2plninno 0.0022p (1.71)

Tov 0.0025ppp (29.12)

Lngdp 1.8272ppp (8.22)

number −0.0394ppp (−31.34)

humidity −0.0011 (−0.21)

Wind 0.1594pp (2.02)

rainfall −0.0001 (−0.03)

lnsunshine 0.1642pp (2.13)

Λ 0.0405ppp (5.05)

N 1736

R2 0.4663

p p < .05; pp p < .01; ppp p < .001; t-values are provided in parentheses.
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analyze data on construction enterprises from 2006 to 2019 in

31 provinces across Mainland China and separately for

Eastern and Central and Western China. Further, we

explore the impact of technological innovation on the

temperature-labor productivity relationship. The findings are

robust and valid.

5.1 Discussion of baseline results

We propose and testify an inverse U-shaped link

between temperature and labor productivity. The

empirical analysis results show that, in the low-

temperature range, as the temperature rises, labor

productivity will rise; however, once the temperature

reaches the “ideal level”, further temperature rises will

cause a decline in labor productivity. The “ideal level” of

temperature, that is, the temperature corresponding to the

peak of labor productivity is 24.90°C. This is consistent with

Kim and Hong (2020)’s finding that employees are most

productive when the temperature is around 25°C.

Considering the different climates in China, we divide

the provinces into Eastern China and Central and

Western China before performing the model estimation.

The results show that the inverse U-shaped relationship

between temperature and labor productivity still exists in

different regions. But labor productivity peaks at 20°C in

Central and Western China and at 26.25°C in Eastern China.

The difference in optimum temperature may be due to the

fact that workers in areas with hotter temperatures (Eastern

China) are more accustomed to hot weather and are better

adapted to heat stress than workers in other areas (Zhu

et al., 2021). Therefore, workers in Eastern China are more

tolerant to high temperatures and they could reach peak

labor productivity at higher temperatures.

Temperature changes affect every construction worker,

and a large number of affected individuals could have a

substantial overall impact on construction output. An

uncomfortable temperature environment may exacerbate

enterprise labor productivity loss by reducing labor

intensity in construction activities and the amount of

labor available (Carleton and Hsiang, 2016). As climate

change poses serious risks to businesses, proactive and

appropriate measures are naturally required in response to

these risks (Xue et al., 2021; Han et al., 2022; Liu et al., 2022;

Wang, 2022). For example, by modifying work hours and

work shifts, construction contractors could reduce workers’

work time and intensity on high-temperature days in

summer and low-temperature days in winter. By regularly

educating construction workers on how to avoid accidents in

TABLE 6 Results for robustness checks.

Variables MINT MAXT Add completion

Atem 0.2225ppp (18.00)

atem2 −0.0044ppp (−9.37)

Mint 0.1630ppp (12.48)

mint2 −0.0038ppp (−9.20)

Maxt 0.2940ppp (18.15)

maxt2 −0.0052ppp (−9.79)

completion 0.3205ppp (8.70)

Tov 0.0025ppp (28.85) 0.0024ppp (28.74) 0.0024ppp (28.26)

Lngdp 1.9390ppp (9.19) 2.1110ppp (10.10) 1.8769ppp (9.13)

number −0.0389ppp (−30.69) −0.0387ppp (−30.70) −0.0372ppp (−29.69)

humidity −0.0052 (−0.98) 0.0064 (1.18) 0.0000 (0.01)

Wind 0.1490 (1.85) 0.1710p (2.14) 0.1720p (2.21)

rainfall −0.0013 (−0.30) 0.0013 (0.30) −0.0008 (−0.19)

lnsunshine 0.1680p (2.14) 0.1270 (1.63) 0.1422p (1.87)

Λ 0.139ppp (4.25) 0.150ppp (4.64) 0.0366ppp (4.57)

N 1736 1736 1736

R2 0.6953 0.7086 0.4955

p p < .05; pp p < .01; ppp p <.001; t-values are provided in parentheses.
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extreme temperatures, it is also beneficial in lowering the

detrimental effects of extreme temperatures on labor output.

5.2 Discussion of technological innovation
impact results

Considering the difference in regional levels of

technological innovation in China and its impact on

construction labor productivity, we further analyze

whether technological innovation level affects the

relationship between temperature and labor productivity.

The heterogeneity test result suggests that high levels of

technological innovation capability can make the inverse

U-shaped curve between temperature and labor productivity

smoother, reducing the volatility brought by temperature to

labor productivity.

There are significant regional differences in the level of

economic development and the rate of technological

progress in China (Su et al., 2020), which also leads to

differences in the level of technological innovation between

different regions. Innovative technologies can create more

advanced production machines and safer construction

equipment, improving the comfort and safety aspects of

the working environment (Du et al., 2022). By providing

advanced production tools, innovative technologies can

mitigate the negative effects of unfavorable conditions

and help enterprises maintain greater levels of labor

productivity when temperature changes dramatically. So,

businesses should strive to strengthen technological

innovation and integrate it into every aspect of

engineering management.

5.3 Future research direction

Our study is limited by data availability, so future studies

related to this paper could be improved in the following ways.

First, neuroscience and psychology theories indicate that

temperature affects labor productivity by influencing one’s

physical and mental state. This implies that the collection of

relevant physiological data on the human body allows the

study of medically mediated effects between temperature and

labor productivity. Second, the labor productivity of

enterprises may also be related to other personal

characteristics of construction workers, such as gender

difference and education level of workers. Future research

could try to obtain quarterly data on variables of construction

workers’ personal characteristics in each firm to expand the

control variables in this regard. Finally, considering the

different climates and temperatures in China, scholars

could also study the mechanisms of temperature effects on

workers from a climatological perspective.

6 Conclusion

Climate change often puts businesses under a considerable

amount of pressure. Nowadays, global temperatures fluctuate

frequently, which destroys the working environment and

physical conditions of workers and lowers labor productivity.

We take Chinese construction enterprises as the research setting

to examine the effect of temperature on labor productivity, and

divide provinces into Eastern and Central and Western to study

the temperature-productivity relationship separately. In terms of

variability in the level of technological innovation, we examine

the effect of technological innovation on the temperature-

productivity relationship. For validity and reliability, we also

implement robustness tests. The empirical results demonstrate

that: 1) There is an inverse U-shaped relationship between

temperature and labor productivity. The labor productivity in

construction enterprises reaches its highest when the average

temperature is 24.90°C, and corrodes when the temperature is

either too high or too low. 2) The optimum temperature for labor

productivity in Eastern China is 26.25°C, and 20°C in Central and

Western China. 3) Technological innovation may mitigate the

adverse effects of temperature fluctuations by providing

advanced equipment, thus helping enterprises maintain

greater levels of labor productivity. This paper confirms the

impact of temperature on labor productivity and offers

empirical support for subsequent steps to lessen the negative

impact of temperature on enterprise labor productivity. It also

offers a basis for policy-making related to the health issues of

laborers, especially outdoor workers.
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