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It is important to clarify the iron-copper interaction pattern to effectively extract

the characteristic bands and improve the inversion accuracy of copper content

in soil. In this study, based on experimental samples, spectral feature analysis

and analysis of variance (ANOVA) were used to deeply uncover the iron-copper

interaction pattern. And used natural samples to build a random forest model to

analyze the effect of interaction patterns on inversion accuracy. The results of

the study showed that the effect of iron content in soil on spectral reflectance

varied with copper content in soil, and similarly, the effect of copper content in

soil on spectral reflectance varied with iron content in soil. The effect of iron,

copper and their interaction on the spectral reflectance of soil varied with the

wavelength. In the wavelength from 400 to 2,500 nm, the effect of iron on the

spectral features wasmore than copper, and in the characteristic wavelength of

iron (600–700 nm), evenmore than 5 times that of copper, the effect of iron on

the spectral reflectance played amajor role, and the iron content in soil must be

considered in the inversion of copper content in soil. The Pearson correlation

coefficient method was used as the selected characteristic wavelength, the

selected wavelength was used as the independent variable, and the copper

content in the soil was the dependent variable. Inversion model was built by the

random forest algorithm, and the determination coefficient was 0.73. Under the

condition of considering the interaction, the coefficient of determination was

0.87. It was shown that the characteristic wavelength was selected by

considering the iron-copper interaction, which can better characterize the

response signal of copper in soil. This paper provided a new idea for the

accurate inversion of copper content in soil, which can provide technical

support for the rapid detection of copper content in soil.
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1 Introduction

Soil is an important resource for human survival and

agricultural production (Maitra et al., 2021) Along with the

rapid development of industrialization, heavy metal elements

continue to accumulate in the soil through sewage discharge,

atmospheric fallout and other means, resulting in soil heavy

metal pollution (Yang et al., 2021; Zhang et al., 2021), which even

have a serious impact on the growth of crops and easily enter the

human body through the food chain, posing a great threat to

human health (Qin et al., 2021). Therefore, extensive testing of

heavy metal content in soil is of great significance to safeguard

agricultural production, protect human health and ecosystem

security (Lin et al., 2022).

In recent years, hyperspectral remote sensing technology

with its advantages of dynamics and high efficiency has been

widely used in many fields such as agriculture, geology and food

detection (Lu et al., 2020; Ren et al., 2022), and there have been

many studies in heavy metal contamination of soils. Li et al.

(2021) used single spectral transformation index and multi-

spectral transformation index to invert the arsenic (As)

content in soil by different spectral transformation methods

and achieved good inversion results; Guo et al. (2021) used

principal components analysis (PCA) to reduce the

dimensionality of hyperspectral data, and Partial Least Square

Regression, Support Vector Machines, Artificial Neural Network

and Random Forest (RF) models were used to estimate the

Cadmium content in soil, and it was found that PCA-RF

outperformed other counterparts. Although the above-

mentioned studies have successfully used hyperspectral to

heavy metal content in soil estimate, most of the

improvement of estimate accuracy was through spectral

transformation and model improvement, the spectral features

of some heavy elements were easily masked by organic matter,

carbonate, hygroscopic moisture, iron and manganese oxides,

etc. Higher accuracy is often not achieved by direct estimation

(He et al., 2019). Some scholars had also conducted

corresponding studies for this kind of problems. Zhang et al.

(2020a) proposed a method for estimate based on the

characteristic spectra of iron oxide, this method reduced data

redundancy and improved the estimation accuracy of lead (Pb)

content in soil. Jiang et al. (2018) explored the response

regulation of soil cadmium (Cd) and spectral characteristics

through the preparation of class standardized samples, found

that estimation accuracy can be significantly improved based on

class standardized samples, which can provide a priori

knowledge for estimation of heavy metal in soil content in a

model of multi-element confounding pollution; Zhang et al.

(2020b) introduced water-salt interactions into the water-salt

theory model, the accuracy of spectral reflectance estimation is

significantly improved.

In summary, scholars have studied the influence of a single

heavy metal on spectral characteristics, however, there were few

reports on the interaction of different heavy metals on soil

spectral characteristics and their effect on estimation accuracy,

there was a symbiotic and aggregation relationship between iron

and copper elements in the soil (Chen et al., 2022), and the

correlations between soil Fe and soil Cu components were

significant (Gong et al., 2010), the 3d orbitals of soil Fe was

half-filled, it had a higher energy level response, and the 3d

orbitals of both soil Fe and soil Cu are unfilled and have a similar

energy level response to spectral reflectance (Cheng et al., 2018),

therefore, which can hide the spectral information of copper,

leading to low accuracy in direct estimate of copper content in

soil (Lin et al., 2021), Therefore, it was significant to clarify the

interaction of iron and copper and their on the spectral

reflectance of soil for the extraction of effective spectral

features of copper in soil. In this paper, spectral feature

analysis and analysis of variance (ANOVA) were used to

deeply reveal the interaction of iron and copper based on

experimental samples, and used natural samples to analyze

the effect of interaction to estimate of copper content in soil,

which can provide technical support for the direct estimation of

copper content in soil.

2 Materials and methods

2.1 Collection of soil samples

Soil collection included laboratory preparation of

standardized samples and natural soil sampling of the mine

site. Soil within the surface layer (0–15 cm) was collected at

the same location in the mine area for about 15 kg, mixed and

brought back in a special sealed bag for laboratory preparation of

standardized samples. Natural soil samples were collected by the

five-point sampling method, the collected soil samples were

brought back in special sealed bags. First, the soil sample was

dried naturally, then the impurities were removed, and finally the

soil sample was ground and sieved through 100 mesh sieve. Each

of the treated natural soil samples from the mine site was divided

into 2 parts, of which one of them was used to monitor heavy

metal content, soil iron content was determined by the atomic

absorption spectrophotometer (JC-17002) and soil copper

content was determined by flame atomic absorption

spectrophotometry, another one was used for laboratory

testing of its soil composition content and one was used for

soil spectral reflectance collection.

2.2 Preparation of standardized samples

The soil samples collected for the preparation of standardized

samples were passed through a 10 mesh sieve, removing grass

roots, stones and other debris, pass through 100 mesh nylon sieve

after natural dried and ground, the treated soil was mixed well to
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ensure consistent background values of the soil samples. Added a

small amount of distilled water to moisten the soil sample, soil

organic matter was removed by adding 30% H2O2 solution to

eliminate the effect of soil organic matter on the spectral

reflectance of the soil, the soil organic matter was

continuously monitored during the removal process to ensure

full removal. The removed soil sample was dried and placed in a

container, and added sodium citrate and sodium bicarbonate

solution, heated up to 80°C in a water bath, then added sodium

disulfite to remove iron in soil, and this operation was repeated

continuously, and iron content in soil was monitored

continuously during the repetition until all iron content in

soil was removed.

The iron content in soil gradient was set to 0, 2, 3.5, 5, 6.5,

and 10% according to the types of soil in China and the Chinese

soil database provided by the Institute of Soil Research, Chinese

Academy of Sciences, and the iron content in natural soil

samples. Reference to the actual situation in the study area

and the soil environmental quality soil pollution risk control

standards for agricultural land issued by the Ministry of

Ecology and Environment, the copper content in soil

gradient was set as 50 mg/kg, 70 mg/kg, 80 mg/kg, 90 mg/kg,

100 mg/kg, and 120 mg/kg; to facilitate the calculation of two-

factor ANOVA, the iron content in soil was divided into three

groups of 0%–3%, 3%–6% and 6%–10%, and the copper content

in soil was divided into three groups of 50–80 mg/kg,

80–100 mg/kg and 100–120 mg/kg, and a total of 9 was set

of experimental data with the same number of samples in each

group, and the spectral reflectance of all experimental samples

was obtained.

2.3 Soil sample spectral data acquisition
and data processing

2.3.1 Spectral data acquisition
Indoor soil spectral data were acquired using a FieldSpec

4 spectrometer from ASD, United States, which was equipped

with color RS3 software. The instrument has a wavelength range

of 350–2,500 nm, covering the full range from visible to near

infrared. Considered the susceptibility to external light in the

acquisition of spectra, indoor spectra were acquired in a dark

room without light, used a 12 V, 50 W tungsten bulb to provide a

stable light source and a 25° bare fiber optic lens for spectral data

acquisition. For indoor soil spectral data acquisition, the

spectrometer needed to be preheated for half an hour. For soil

spectral data acquisition, the soil sample needed to be laid flat in a

Petri dish with a black flannel under the Petri dish. The distance

of the light source from the Petri dish was 60 cm, and the angle

with the horizontal direction was 45°. The fiber optic lens was

positioned 7 cm directly above the Petri dish. To reduce the

interference of external factors, a whiteboard correction was

conducted after acquiring the spectra of 5 soil samples.

Twenty spectral curves were obtained for each soil sample,

and the average value was taken as the spectral data of the

soil sample after excluding the abnormal (noisy) curves.

2.3.2 Spectral data pre-processing
Spectral data acquisition process will be affected by many

factors, in addition to external environmental factors (such as

atmospheric humidity, temperature and components, etc.) and

the soil sample itself (such as soil color, mechanical composition,

microaggregates, soil formation conditions, surface roughness,

humidity, etc.), also influenced by the difference in response of

the spectrometer itself to different wavelengths, these make the

correlation between the original spectral reflectance and the

measured object is low and does not meet the demand of

spectral prediction. Therefore, the first order differential

(FDR) pre-processing transform is performed on the soil

spectral data (Luo, et al., 2022) Eq. 1.

R′(λi) � [R(λi + 1) − R(λi − 1)]
2Δλ (1)

In the formula, λ represented the position of wavelength in

the i nm, and R(λi+1) and R(λi−1) represented the original

spectral reflectance at the wavelength position of λi+1 and λi−1,
R′(λi) represented the first order differential spectral reflectance

at the wavelength position of λi, 2Δλ is the interval from the

wavelength λi−1to λi+1.

2.4.1 Pearson’s correlation coefficient
Pearson’s correlation coefficient (PCC) can better find the

sensitivity of soil heavy metals to spectral reflectance (Shu, et al.,

2021) The characteristic spectral bands were extracted by

correlation analysis for estimating content of heavy metal in

soil. The spectral reflectance was subjected to Pearson correlation

analysis with the heavy metal content, and the characteristic

bands were selected according to their significance levels.

2.4.2 Iron-copper interaction
According to the statistical definition of the interaction, the

Iron-Copper interaction can be explained by the fact that the

spectral reflectance of soil changes depending on the copper

content in soil when the iron content in soil is the same, and

similarly, the spectral reflectance of soil changes depending on

the iron content in soil when the copper content in soil is

the same.

2.5 Calculation of F-action values

ANOVA is a statistical method to analyze the effect of

explanatory variables on the explained variables (Hong and

Hyundoo, 2021). ANOVA can be divided into one-factor

ANOVA and two (multi) factor ANOVA according to the

categories, and the two-factor ANOVA that only considers
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the main effect without considering the interaction effect is the

non-repetitive two-factor ANOVA, the repeated two-factor

ANOVA that considers both main effects and interaction

effects is a repeated two-factor ANOVA; and the interaction

effect that considers both the effect of the explanatory variables

on the explanatory variables alone and the effect of the

combination of the explanatory variables on the explanatory

variables, which is the Iron-Copper interaction in this paper.

The F-test in ANOVA is a numerical representation which is

used to test the significance of the degree of influence of the

explanatory variables on the explained variables, and its

significance is concretely expressed by the F-value, a larger

F-value indicates a more significant effect of the explanatory

variable on the explained variable. Therefore, the repeated two-

factor ANOVA was used quantitatively analysis the effects of

iron, copper and their interactions on soil spectral reflectance,

that was, the effect of iron, copper and interaction on the

spectral reflectance was expressed numerically using the

F-value.

2.6Model building and accuracy validation

Random forest (RF) is a classifier that uses multiple trees to

train and predict samples, and is one of the most widely used

algorithms in Bagging integrated learning (Agrawal and

Petersen, 2021). Random forest constructs a large number of

decision trees and then averages them. The calibration of the

decision tree starts with a single node containing all the training

samples, then the heterogeneity measure in the resultant node is

minimized using predictive features and a threshold that splits

the node into two nodes until all the end nodes are isomorphic.

Since the partitioning of each node variable in the decision tree is

chosen randomly, there is almost no correlation between each

decision tree, which can better avoid overfitting (Tan et al., 2019).

The implementation process of the RF algorithm was done in

Matlab R2018b, and the accuracy of the algorithm was evaluated

using the coefficient of determination (R2) and root mean square

error (RMSE), the closer R2 is to 1, the more stable the algorithm

is, the smaller RMSE is, and the higher the algorithm accuracy is.

FIGURE 1
Variation curves of soil spectral characteristics with copper content for four identical iron content cases.
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3 Results and analysis

3.1 Effects of iron, copper and their
interactions on the spectral reflectance of
soil

3.1.1 Spectral reflectance at different iron and
copper contents in soil

Based on the data of iron content and copper content in soil

the experimental samples, the samples with the same iron

content but different copper content in soil were screened

and the corresponding spectral reflectance graphs were

plotted (Figure 1), so as to analyze the relationship between

different copper content and spectral reflectance at the same

iron content.

In general, the spectral reflectance and iron content in soil

were negatively correlated, that was, as the iron content in soil

increases, the spectral reflectance decreases (Peng et al., 2013).

As shown in Figure 1, the maximum reflectance gradually

decreased with increasing of iron content in soil, which was

consistent with the negative correlation between spectral

reflectance and soil content in soil, which indicated that

change of copper content in soil had a smaller effect on the

spectral characteristics than change of iron content in soil. The

pattern of the effect of the change of iron content in soil on the

spectral reflectance was different for different iron contents in

soil. When the content was 1.6 g/kg of iron in soil, the spectral

reflectance was the smallest when the copper content was the

smallest; the spectral reflectance rate was the largest when the

copper content was the largest. When the content was 4 g/kg of

iron in soil, the spectral reflectance was the smallest when the

copper content was the largest and the spectral reflectance was

the smallest when the copper content was the largest. The above

analysis showed that the relationship between spectral

reflectance and copper content in soil varies depending on

the iron content.

To analyze the relationship between different iron contents

and spectral reflectance at the same copper content, the spectral

FIGURE 2
Variation curves of soil spectral characteristics with iron content for four identical copper content cases.
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reflectance curves with different iron contents at the same copper

content were plotted (Figure 2).

As can be seen from Figure 2, the spectral reflectance was all

maximum when the iron content was the smallest and

minimum when the iron content was the largest, which

satisfied the negative correlation between the spectral

reflectance and iron content in soil, and the spectral

reflectance basically decreased strictly with the increase of

iron content in the case of different copper content in soil,

which indicated that the change of copper content in soil had

less effect on the spectral reflectance, which was consistent with

the study that the absorption coefficient of hydrated iron ions in

water on spectral reflectance was stronger than that of hydrated

copper ions in water on spectral reflectance (Deng et al., 2016;

Liang et al., 2016), and the conclusion of these two literatures

also proves that the greater effect of iron in soil on spectral

characteristics than copper is not due to the influence of content

(magnitude). The pattern of the effect of changing iron content

in soil on the spectral reflectance was different when the copper

content was different, and the maximum spectral reflectance

was different when the copper content was different, with the

maximum spectral reflectance at content 120 mg/kg of copper

in soil and the minimum spectral reflectance at content

100 mg/kg of copper in soil. The above analysis showed that

the relationship between spectral reflectance and iron content

in soil varies depending on the copper content.

It is also shown in Figure 2 that the spectral reflectance

decreased with increasing iron content in 400–1,000 nm when

the copper content in soil was 70 mg/kg, while the spectral

reflectance was lower in 1,000–2,450 nm at content 2.8 g/kg of

iron in soil than at content 4 g/kg of iron in soil, when the copper

content in soil was 90 mg/kg, 100 mg/kg and 120 mg/kg,

respectively. The spectral reflectance decreased strictly with

the increase of iron content, which indicated that the

variability of the relationship between spectral reflectance and

iron content in soil at different wavelengths also differs

depending on the copper content. Therefore, the inversion

accuracy of iron content in soil using the characteristic band

of iron may be affected under the condition that copper in soil

was not considered.

3.1.2 Characteristics of two-dimensional
correlation spectra at different iron contents and
copper contents in soil

One-dimensional spectra can only analyze the general

pattern of soil spectral reflectance changing with soil iron

content and copper content in soil, and cannot accurately

analyze the changes of fine features in the spectra, while two-

dimensional correlation spectra can extend the soil spectral

signal to the second dimension, and improve the spectral

resolution by analyzing the differences in vibrational

behaviors of molecules of different component groups,

separating overlapping peaks, and probing the interactions

between different functional groups (Yang et al., 2019),

making weak peaks and overlapping peaks in the one-

dimensional spectra are more obvious. The two-dimensional

correlation spectroscopy technique was used to resolve the

changes in the fine features of the spectra using the iron

content and copper content in soil as external perturbation

conditions, respectively, and finding the characteristic

information of the correlation spectra under micro

perturbation. The results are shown in Figure 3.

The two-dimensional correlation spectroscopy theory shown

that its two-dimensional correlation spectrogram is symmetric

about the diagonal, where the peaks located on the main diagonal

are called autocorrelation peaks, which are the autocorrelation of

group vibrations in response to external perturbations and

represent the autocorrelation intensity of reflectance intensity

changes in a specific band (Hou and Wu, 2022). These peaks,

which are generated due to spectral autocorrelation and are

usually positive, represent the sensitivity to external

perturbation factors (iron content and copper content in soil),

with a redder color indicating a higher sensitivity and a bluer

color indicating a lower sensitivity. Cross peaks, which can be

positive or negative, are also present in the two-dimensional

correlation spectrogram, usually symmetric about the main

diagonal, representing possible inter- or intra-molecular

interactions between the two functional groups, and these

interactions are usually closely related to the variation of the

external disturbance factors (iron content and copper content in

soil) (Liu et al., 2020).

From Figure 3, four more obvious autocorrelation peaks and

one cross peak appeared in both figures in the two-dimensional

correlation spectra, and the locations of the autocorrelation peaks

and cross peaks were basically the same. The autocorrelation

peaks correspond to the gene vibration peaks at 600–700 nm,

1,300–1,400 nm, 1,650–1850 nm, and 2,100–2,200 nm, which

were consistent with the absorption peaks of the original

spectra. From the intensity of the autocorrelation peaks, the

highest intensity of the autocorrelation peaks in both plots was

found near 2,200 nm, indicating that there was a strong

autocorrelation near 2,200 nm, and it was most sensitive to

the microturbulence of iron content and copper content in

soil. The microturbulence of both iron content and copper

content had a consistent effect on the intensity of changes in

the soil spectral signal when the iron content and copper content

were changed.

3.2 F-action values of iron, copper and
their interactions on spectral reflectance

The F-test in ANOVA is a numerical representation which is

used to test the significance of the degree of influence of the

explanatory variables on the explained variables, so the F-action

can quantitatively calculate the effect of iron content and copper
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content in soil on the spectral reflectance. The F values are shown

in Figure 4.

Figure 4 represented the contribution of iron, copper and

their interaction on the soil spectral reflectance by F-value. The

maximum value of the effect of iron on the soil spectral

reflectance in the band 600–700 nm was 171.44 and the

minimum value was 23.20, indicating that the effect of iron

on the soil spectral characteristics in the band 600–700 nm was

the largest and the minimum effect was more than 20 times the

value of the effect of copper and interaction, and the value of the

effect of copper on the soil spectral reflectance was similar to that

of the interaction, but greater than that of the interaction.

Therefore, in the 600–700 nm band, iron played a major role

in the spectral characteristics of soil, which was consistent with

the fact that the 600–700 nm band was the characteristic band of

iron. Therefore, when estimated the iron content in soil with this

characteristic band, it was not necessary to consider the effect of

copper content in soil and its interaction, and when estimated the

copper content in soil, the effect of iron content in soil on spectral

characteristics of copper must be considered. In the bands

1,300–1,400 nm, 1,650–1850 nm and 2,100–2,200 nm, the

values of iron and copper on spectral reflectance of soil were

similar, and the effect of iron on soil spectral reflectance had less

influence on the estimation of copper content in soil; in the bands

1,340–1,370 nm and 2,100–2,130 nm, the values of the effect of

copper on spectral reflectance of soil. Therefore, the effect of

interaction on the estimation of copper content in soil should be

considered when estimation of copper content in soil was

performed.

The overall analysis shown that in the 600–700 nm band, the

effect of iron on spectral reflectance of soil was the largest, which

was more than 20 times the effect of copper on spectral

characteristics of soil, indicating that this band is the

characteristic band of iron, which was consistent with the

study of Wang et al. (2021), therefore, the band in this range

should be excluded in the estimation of copper content in soil;

The effect of soil iron on the estimation of copper content in soil

can be disregarded in the bands with small values of soil iron, but

the effect of interaction on the inversion of copper content in soil

should be considered when the effect of interaction on the

spectral reflectance and the effect of soil copper are similar, so

the bands in which the effect of interaction on the spectral

reflectance was greater than the effect of copper should be

excluded. In summary, when estimation of copper content in

soil, characteristic bands of copper should be selected according

to the principle that copper had a greater effect on the spectral

reflectance and iron and interaction had a relatively smaller effect

on the spectral reflectance, so as to extract a more effective

characteristic band for copper content in soil estimation.

3.3 Feature band selection

The selection of the characteristic bands is the key to the

accuracy of the estimation of the prediction model (Chen

et al., 2022), and in this paper, Pearson’s correlation

coefficient (PCC) was first used to select the spectral

characteristic bands (p < 0.01), and the bands with highly

FIGURE 3
3D correlation synchronous and asynchronous spectrograms.
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significant correlation between copper content in soil and

spectral reflectance of soil were selected for the estimation of

copper content in soil, The results are shown in Figure 5.

As can be seen from Figure 5, the characteristic bands of

copper content in soil screened by using PCC algorithm were

distributed in the vicinity of 600 nm, 800–1,200 nm, 1,600 nm,

FIGURE 4
F-values in the full band and in the peak band of gene vibrations corresponding to the automatic peak.
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1800 nm and 1900–2000 nm, and the characteristic bands

were widely distributed, among which the vicinity of

600 nm and 800 nm were the characteristic bands of soil

iron. From the quantitative calculation results in Figure 4,

it can be obtained that the Within the characteristic band, the

influence of soil iron on the spectral characteristics was more

than 5 times than the influence of soil copper on the spectral

characteristics, which had a greater impact on the direct

estimation of copper content in soil and should be

excluded, while within 1900–2000 nm, in the bands

1950 nm, 1956 nm, 1963 nm, 1974 nm, and 1982 nm, the

influence of iron-copper interaction on the spectral

reflectance was greater than that of copper on the spectral

reflectance, so them should be excluded.

3.4 Modeling accuracy improvement
analysis

In this paper, the PCC algorithm and the feature bands

selected by the interaction were used as input variables to

estimate the copper content in soil with the RF model, and by

comparing the effects of the feature bands selected by PCC and

the interaction on the accuracy of the model, and then verified

the necessity of considering the interaction on the accuracy

improvement of copper content in soil. The results are shown

in Figure 6.

Figure 6 showed that the R2 of the model was 0.73 and the

RMSE was 13.8 mg/kg when using only the feature bands

selected by the PCC algorithm for soil Cu content estimation,

FIGURE 5
Characteristic variable of selection.

FIGURE 6
Scatter plots between observed values and predicted values of the content of copper in soil.
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and the R2 of the model was 0.87 and the RMSE was

9.73 mg/kg when considering the interaction. The accuracy

of the validation set was significantly improved, and the

coefficient of determination R2 increased by 19% and the

RMSE decreased by 32%, indicating that considering the

interaction can effectively improve the accuracy of the

inversion of copper content in soil when estimation of

copper content in soil.

4 Discussion

Soil spectral characteristics are a comprehensive reflection

of soil physicochemical properties, and different soil

components have different responses to different bands,

which is the basis for achieving quantitative estimation of

soil physicochemical properties. However, the characteristic

bands are not in one-to-one correspondence with soil

constituents, and some bands may be characteristic bands

of multiple elements, and substances with high response to

spectral characteristics can mask the spectral characteristics of

substances with low response, resulting in the characteristic

bands of low-response substances not being easily extracted.

Iron and copper in soil are companions, and they have similar

effects on the spectral characteristics through the response of

3d unfilled orbital energy levels (Cheng et al., 2018). The iron

content in soil is determined to affect the inversion of copper

content in soil based on spectral characteristic analysis and

ANOVA, which was similar to the results of Shen et al. (2019).

From the definition of interaction in statistics, the interaction

can be explained by the fact that the soil spectrum is altered by

the difference in copper content when the iron content in the

soil is constant, and similarly, the soil spectrum is altered by

the difference in iron content when the copper content is the

same, which indicated that the interaction is real. The extent

of iron on the spectrum in some bands is more than 7 times

greater than that of copper, for example, in the 620 nm band,

the extent of iron on the spectrum is more than 100 times

greater than that of copper, so the presence of these bands will

affect the estimation accuracy of copper when estimation of

copper content in soil; in the band 1930–2000 nm, the effect of

interaction on the spectrum is greater than that of copper on

the spectrum.

Accurate estimation of soil composition is essential for soil

testing, and hyperspectral can achieve rapid detection of soil

composition, but there are many hyperspectral bands, and

selection of effective spectral bands is the key to ensure the

estimation accuracy. Usually, the selection of characteristic bands

is performed by correlation analysis, but there are many material

components in soil, and only by correlation analysis, it can cause

duplication of information among hyperspectral bands, and for

some substances that have a greater influence on spectral

reflectance, such as water and organic matter (Ge, 2021; Sun

et al., 2022), the inversion accuracy is higher because they are less

influenced by other substances when estimation with

characteristic bands, but for spectral substances with relatively

small influence on the reflectance, such as copper, etc., some of

the characteristic bands selected by using only Pearson

correlation coefficients will overlap with those of substances

such as iron, and the influence of iron on the spectral

reflectance is greater than that of copper, resulting in lower

accuracy in the direct estimation of copper content. In this study,

the original feature band selection method and interaction were

combined to select the feature band with the greatest influence of

copper and the least influence of iron for the estimation, and the

accuracy of the estimation of copper content was better

improved.

This study focuses on the effect of iron content in soil on

the estimation of copper content in soil. Although it has been

established that iron content is a major factor affecting copper

content estimation, more research is needed to determine the

relationship between copper content and spectral reflectance,

and how it is affected by other intrinsic soil properties such as

soil type, soil color, and soil organic matter, for further

potential applications under field conditions. Nevertheless,

it is feasible to achieve high accuracy estimation of copper

content as long as the bands that are sensitive to copper

content but less influential to the collection of other factors

can be identified. With this, subsequent studies on the

influence of other influencing factors on copper content in

soil provide technical and theoretical support for the direct

estimation of copper content.

5 Conclusion

In this paper, based on the interaction law derived from

experimental samples, the random forest algorithm was used to

verify with natural samples, and the following conclusions were

drawn.

(1) The one-dimensional spectral feature analysis concludes

that the spectral reflectance and iron content in soil satisfy

a negative correlation, and the effect law of iron content in

soil change on soil spectral reflectance was different when

copper content in soil was different; similarly, the

relationship between copper content in soil and spectral

reflectance of soil can be different with iron content in

soil, the effect of iron content in soil on soil spectral

reflectance played a major role; the effect law of iron and

copper content in soil on soil spectral reflectance can

change with the ratio of iron and copper; The two-

dimensional correlation analysis yielded that the effects

of iron and copper on the soil spectral characteristics were

similar, and both formed four autocorrelation peaks and
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one cross peak, and the positions of the four

autocorrelation peaks and one cross peak were similar;

therefore, the mutual effect between iron and copper

needed to be considered when estimation of copper

content in soil.

(2) Quantitative analysis of the four autocorrelation peaks by

ANOVA can be concluded that the action value of iron

content in soil on spectral reflectance of soil within the four

autocorrelation peaks was the largest, and the F action value

of iron content in soil on spectral reflectance of soil in the

600–700 nm band was even 5 times higher than those of

copper content in soil, and the values of copper content in

soil and interaction on soil spectral reflectance were similar.

(3) The R2 of PCC-RF model was 0.73, and the R2 of the model

built under the condition of considering iron and the Iron-

Copper interaction was 0.87. The results shown that the

accuracy of the model for the spectral estimation of copper

content in soil can be effectively improved when considering

the interaction, and the R2 of its model reaches the standard

of a good model, which can be used for the quantitative

estimation of copper content in soil.
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