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The landscape of Pakistan is vulnerable to flood and periodically affected by floods of
different magnitudes. The aim of this study was aimed to assess the flash flood
susceptibility of district Jhelum, Punjab, Pakistan using geospatial model and
Frequency Ratio and Analytical Hierarchy Process. Also, the study considered
eight most influential flood-causing parameters are Digital Elevation Model, slop,
distance from the river, drainage density, Land use/Land cover, geology, soil
resistivity (soil consisting of different rocks and soil formation) and rainfall
deviation. The rainfall data was collected from weather stations in the vicinity of
the study area. Estimatedweight was allotted to each flood-inducing factors with the
help of AHP and FR. Through the use of the overlay analysis, each of the factors were
brought together, and the value of drainage density was awarded the maximum
possible score. According to the study several areas of the region based on the
parameters have been classified in flood zones viz, very high risk, high risk, moderate
risk, low risk, and very low risk. In the light of the results obtained, 4% of the study area
that accounts for 86.25 km2 is at high risk of flood. The areas like Bagham, Sohawa,
Domeli, Turkai, Jogi Tillas, ChangWala, Dandot Khewra were located at the very high
elevation. Whereas Potha, Samothi, Chaklana, Bagrian, Tilla Jogian, Nandna, Rawal
high-risk zones and have been damaged badly in the flood history of the area. This
study is the first of its kind conducted on the Jhelum District and provides guidelines
for disaster management authorities and response agencies, infrastructure planners,
watershed management, and climatologists.
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1 Introduction

Historically, flash floods have been more devastating to
agriculture, infrastructure, animal, and human life worldwide
(Relief, 2013; Braimah et al., 2014; Tariq et al., 2023). Different
countries of the world are still more prone to the hazards of flash
floods because of the changes in climatic conditions of the world (Das,
2019; Tariq et al., 2022e; Tariq and Mumtaz, 2022). The havoc of flash
floods has been greater in those parts of the world that have not
developed a system of forecast and flood effects mitigation
(Kheradmand et al., 2018; Basharat et al., 2022; da Silva Monteiro
et al., 2022). To avoid mass movement and reduce the aftermaths, it is
crucial to develop a mapping system based on different parameters of
cause and effects (Basin, 2021; Islam F. et al., 2022; Sharifi et al., 2022a;
Hussain et al., 2022b). One of the major reasons for floods is heavy
rainfall and the low discharge capacity of canals, rivers, and dams. To
make a successful assessment of flash floods it is pertinent to have
complete modeling of floods to manage the risk and mitigate the
effects (Khalil et al., 2022a; 2022b; Moazzam et al., 2022).

Human is the major manipulator of the ecosystem since their
origin on the surface of the earth. Land use methods and land
manipulation like agriculture use and deforestation are some of the
man-induced causes that affect recurrent floods (Bera et al., 2022; Fu
et al., 2022; Haq et al., 2022; Prasad et al., 2022; Ullah et al., 2022).
Therefore, awareness of the manipulations made by humans,
susceptibility, and risk analysis is pivotal and essential to be done
on an earlier basis (Costache et al., 2022; Tariq et al., 2022c;
Ghaderizadeh et al., 2022; Jalayer et al., 2022). Geographic
Information System (GIS) and remote sensing techniques are the
most widely used techniques to know the physical and biological
surface of the land and gather necessary data for flood modeling
(Nashwan et al., 2019; Tariq et al., 2022a; Sadiq Fareed et al., 2022;
Wahla et al., 2022). Nowadays, GIS and RS techniques have are crucial
tools to developmulti-criteria zoning decision analysis (Nyaupane and
Chhetri, 2009; Baqa et al., 2022; Tariq et al., 2022b). GIS techniques are
used to prepare flood mapping of an area. Through remote sensing,
zonation images are gathered to make a complete image with the help
of Landsat 5, Landsat 7, Landsat 8, and Satellite Pour Observation
Terre (SPOT) (Polychronaki et al., 2013). The Artificial Neural
Network (ANN) model for flood (Abdullahi and Pradhan, 2018),
imitation has widely been used for flood susceptibility andmodeling in
Malaysia and India. Additionally, the use of GIS has been more
frequent to evaluate the most vulnerable areas to flooding. In
different parts of the globe, GIS has more frequently been used to
obtain flood susceptibility analysis, GIS-based frequency ratios
models, and monitoring expected hazards (Waqas et al., 2021b;
Hussain et al., 2022a; Khan et al., 2022; Shah et al., 2022). It is
therefore apparent that amalgamation of the techniques of GIS and
RS are more beneficial to obtain data in flood-related studies.

Over the years, the Analytical Hierarchy Process (AHP) in
connection with GIS has got more popularity for mapping floods
(Pal and Ziaul, 2017; Aslam et al., 2022; Imran et al., 2022; Moazzam
et al., 2022). Also, the outcomes of GIS-based statistical calculations
showed more accuracy than using spatial data alone. In flood
susceptibility studies the use of logistic regression, decision tree,
Shannon’s entropy model, ANN, FRM, fuzzy logic, and AHP
models have frequently been used (Sharifi et al., 2022b; Felegari
et al., 2022; Zamani et al., 2022). AHP is the most widely used
model and is a more efficient and easily understandable model.

Other methods like bivariate statistical technique and frequency
ratio are the most effective methods used in the assessment of
natural calamities (Yerramilli, 2012; Abbas et al., 2021; Tariq et al.,
2021e).

Flood is one of themost life-threatening disasters in the world. The
occurrences of inundations have increased in the Global South during
the last few decades. An estimated 539,811 humans died,
361,974 sustained injuries, and over 2.8 billion were affected by
floods during the decade’s between 1980 and 2009. The period
between 1980 and 2016 observed a 1.6 trillion USD increase in
damages. South Asia is the most affected part of the globe and
accounts for more than half of the total death tolls of the world
(Eckstein et al., 2019; Baloch et al., 2021; Felegari et al., 2021; Sharifi
et al., 2021). Because of climate change, in the past few decades, a
significant increase in the frequency and magnitude of floods
(Moazzam et al., 2018) have been observed in the eastern rivers of
Pakistan including the Jhelum. Since the bifurcation of United India,
Pakistan has experienced devastating floods of history (Tariq et al.,
2021a; Baqa et al., 2021; Hu et al., 2021). The flood of 2010 was held
responsible for losses of 10 billion (USD). Keeping in view the
damages of the inundation of 2010, different hydrological modeling
were emphasized by the government of Pakistan. The Jhelum River
basin originates from the west of the Himalayas and is one of the
tributaries to the Upper Indus Basin (UIB) (Khalid et al., 2018; Ahmad
et al., 2021; Ghaderizadeh et al., 2021). The climate of the Jhelum River
basin receives two types of precipitations, namely the summer
monsoon from India and the precipitations from westerlies
circulations. Several studies suggest the Upper Indus Basin and the
Himalayas as a hotspot to climate change (Chohan et al., 2015), which
could significantly alter the water flow of the basin and ultimately the
Jhelum River.

Flood susceptibility modeling is one of the key components of
flood disaster studies (Dang et al., 2011; Siddayao et al., 2014;
Moazzam et al., 2018, 2020; Kundzewicz et al., 2019). Jhelum River
is the lower catchment of the Indus water basin and has experienced
flood calamities periodically. So far, no flood susceptibility modeling
has been performed for the Jhelum River. Flood risk modeling is a
crucial part of river management and encompasses many factors such
as topography, land use, slope, land cover, and rainfall intensity. Flood
modeling has a pivotal role in flood risk management and hence this
study is an attempt to meet the objective of floodmanagement and risk
mitigation. This study will provide a guideline to the National Disaster
Management Authority Pakistan (NDMA) to manage flood disasters
in Punjab and specifically in the Jhelum River of Pakistan. The main
objectives of this study are to identify the zones of higher and lower
risk Multi-Criteria Analysis-Analytic Hierarchy Process (MCA-AHP)
and FR application. This study will help to the amalgamation of GIS
and hydraulic model for the interpretation of recurrent flood hazards
and reduce risk strategies developed through multiple activities.

2 Materials and methods

2.1 Study area

In Pakistan, the district of Jhelum may be found to the western of
the Jhelum River. It is bounded on the north by Rawalpindi, on the
south by Sargodha and Gujrat, on the east by Azad Kashmir, and on
the west by the district of Chakwal. The climate of the area was
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characterized as being semi-arid and warmly subtropical, with very
warm summers and cold, snowy winters (Majeed et al., 2021b; 2022a;
2022c). The Jhelum District is a semi-mountainous range that receives
an average of 880 mm of precipitation per year and has an average
temperature of 23.6°C. The Jhelum River encompasses up to
247,102 acres of the surrounding plains on the mainland (Majeed
et al., 2021b) (Figure 1). The elevation of the Jhelum River basin ranges
from 235 to 6285 m above sea level (asl) and spreads over a drainage
area of 33,342 km2 (Majeed et al., 2022c). The second-largest reservoir
of Pakistan, the Mangla dam is fed by the Jhelum River basin and,
therefore, plays a key role in the hydrological system of Pakistan
(Majeed et al., 2022b). The slope of the basin undulates, ranging from 0}

to 79}. The lower plains of the basin near the Mangla dam and
northeastern parts reside on a gentle slope (0″–10″) (Majeed et al.,
2021a).

2.2 Collection, preparation and data
processing

2.2.1 Collection of previous flash flood data
To establish an accurate map of the flood susceptible areas, it is

imperative to collect precise data of the previously flood-affected areas
(Martinis et al., 2009). The accurate forecast of potential flash floods,

FIGURE 1
(A) Map of Pakistan, (B) Map of study area with testing and training points, (C) Location map of the study area (Jhelum), Punjab Pakistan.

FIGURE 2
Flood risk zones of Jhelum district, Punjab Pakistan.
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in an area is possible only if we have preserved previous records of
flash flood events. Some of the significant factors which determine the
occurrence of flash floods, and hence the potential damage are; rainfall
frequency, proximity to the stream, drainage, slope, density, soil type,
and land use activities (Chen et al., 2022). All these factors are essential

to be considered while planning and designing the inventory of flash
floods and ultimately correct forecast. In the current study, we have
taken data from 270 different zones which were previously affected
and some non-affected zones. The classification of the area into
different levels of potential risks is given in Figure 2.

FIGURE 3
Conditions for flash flooding weremapped onmaps: (A) Elevation, (B) slope, (C) soil resistivity, (D) rainfall, (E) drainage density, (F) distance from the River,
(G) geology infiltration and (H) LULC.
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2.2.2 Classification of conditioning factors of flash
floods

To conclude all the governing factors of a flood disaster, it is
pivotal to classify the study area into different zones and study all the
factors in different zones to draw guiding outcomes. In any area of
flood risk, there are multiple factors while some of those factors
operate in one zone and not in another zone (Sajjad et al., 2019).
Therefore, to set a reliable picture of flood risk, a comprehensive field
survey was conducted in different parts of the study area (Figure 3A).
The selection of effective variables is preliminary tomap flood-affected
zones in any catchment area. Researchers face challenges while
creating susceptibility maps (Majeed et al., 2021b; Tariq et al.,
2021f; Haq et al., 2022). Therefore, we conducted a field survey to
identify the potential flood-triggering variables. The most affected
areas were visited, and data was collected based on the personal
opinions of the residents (Table 1). We finally relied on a total of
eight parameters such as elevation, slope, drainage density, distance
from stream, geology, rainfall intensity, soil type, and LULC (Tariq
et al., 2021d).

2.2.2.1 Elevation
Water keeps the tendency of flow from higher to elevation to lower

elevation. The data on elevation shows the changes in the structure of
the ground over a catchment area (Waqas et al., 2021a). In our study,
the areas with lower elevation are more susceptible than higher
elevation. In lower plains, the drainage is insufficient to drain all
the water off. Therefore, the influx of water accumulates more in the
lower elevations and proves hazardous. The DEM was used to
differentiate several aspects (Tariq et al., 2021f). The relationship
between the elevation and flood and hence the most prone areas are
given in Figure 3A.

2.2.2.2 Slope
The hydrology of a catchment is always subjected to many

attributes, which eventually define the magnitude of the external
overflow. These factors govern the overland penetration,
movement, and subsurface and length of stream. The combination
of slope angles defines the shape of the slope. The slope is ultimately
related to the composition of the soil, lithology, the organic and
inorganic composition of the soil, and drainage (Sajjad et al.,
2019). With the help of arc GIS, a slope chart was prepared to give
different slope classes. The outcomes of the classification of the slope
and hence the classification is provided in the (Figure 3B).

2.2.2.3 Soil resistivity and structure
Soil structure, texture, and moisture contents are the essential

parameters to be considered during the flood assessment. Soil texture

can markedly affect floods (Khan et al., 2011) because in sandy soil
water is quickly drained and a little water is left for runoff. The clay
soils induce flood more and hence the probability of flood rises when
drainage of water decreases. We have designed the soil map based on
the infiltration capabilities. The soil of the Jhelum district in this study
has been classified into 3 classes; highly infiltrated, medium infiltrated,
and less infiltrated. To assign weightage to each soil class, the soil with
a high flood rate was ranked as 3 and the soil with a low rate was
ranked as 1 (Figure 3C).

2.2.2.4 Deviation of rainfall
High rainfall is the direct cause of the heavy flood. Most of the

flooding in Jhelum is recorded during summer ranging from July till
September (Table 2). It is mostly because of the monsoon rainfall
during the monsoon showers and high temperatures during the
summer. During summer it was observed that heavy rainfall
generates more runoff water (Moazzam et al., 2022). As a result,
the volume of water that runs off during a downpour is crucial. Since a
positive deviation in rainfall results in a flood and a negative departure
in rainfall results in a drought, the variance in rainfall was employed as
the starting point for the research of the flood. To mapping of the
rainfall deviation, 5-year rainfall data was taken from the
Meteorological department of Pakistan as. The following equation
was used to calculate rainfall deviation.

Q � (L − Z) × 100)/z (1)
In the above equation Q = Rainfall deviation, L = recorded

rainfalls, Z = the average rainfall. For mapping in this study, the
IDW interpolation was used in ArcGIS (Hussain et al., 2011), as shown
in the Figure 3D.

2.2.2.5 Drainage density
A measure of the river’s overall length relative to its total area

(Tariq et al., 2022b) is expressed by drainage density. In this work, the
Strahler has been followed to evaluate the stream order (Strahler,
1952). Higher weightage was given to lower drainage density areas,
while lower weightage was given to the areas with efficient drainage.
Based on drainage density layer the sub-groups have been divided into
six classes. The areas with low drainage density have been assigned a
score of 0–6, while those with a higher drainage thickness are provided
with 6 (Figure 3E).

2.2.2.6 Distance from river
The areas which are in closeness to the river have been inundated

much historically. The areas near the river are more vulnerable
whether it is a normal flood or flash flood. During heavy rainfall,
the areas of lower plains specifically fall prey to the deluge (Tariq et al.,

TABLE 1 The sources from which various data were gathered and their implementation purpose.

Primary data Spatila Resolution Data Sources Purposes of Maps

Optical remote sensing (sentinel-2 data) 10 m USGS (Accessed on 20 June 2018) LULC maps

DEM 12.5 m Sentinel HUB accessed on 12 August 2019 Distance from the river, elevation, slope, Drainage density

Geological data 1/100,000 https://gsp.gov.pk/ Geophysical characteristics map

Soil data 1/100,000 https://soil.punjab.gov.pk/ Soil resistivity and structure map

Rainfall data 1/100,000 https://www.pmd.gov.pk/en/ Rainfall map
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TABLE 2 Last 10-year monthly rainfall data from 2009 to 2018 in District Jhelum.

Average monthly rainfall per year from 2009 to 2018

Year January February March April May June July August September October November December

2009 56 34.4 21 31.2 22.8 49.5 130 164 22 0 11 −1

2010 2 75 18 13.2 51 76.7 259 198 60 23.4 −1 14.6

2011 −1 94.6 15.6 31.5 16.8 54.8 206.8 170 146 11.7 −1 0

2012 63.8 16.7 2 17.8 19.1 7.3 215.6 266 59 13 5.7 31.4

2013 11.8 100.5 9.5 45.5 14 83 269 242 88 1.8 32.6 .2

2014 2.2 27.6 148.8 84.1 73.5 25.1 123.3 158.4 240 54.8 1.5 0

2015 30.5 38.6 170.1 134.4 20.6 50.1 178.5 144.3 138 72.1 10.6 31.3

2016 22.3 33 117.8 10.8 25.5 143.6 280.1 197 54 5.3 1 −1

2017 105.7 8.6 16.6 85.6 31.7 87.4 261.8 311.9 66 0 6.7 16.3

2018 −1 40.7 8.5 63 35.9 44.3 206.2 251.0 34 10.4 5.4 15.6
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2021f). In this study, the areas less at a distance less than 200 m were
declared the most susceptible areas. The areas 3,000 m away are at
minimum risk or no risk at all (Figure 3F).

2.2.2.7 Geophysical characteristics
The hydrological response is dependent mainly on the

geology of a catchment (Siddiqui et al., 2018). The earth’s top
layer and the successive layers down the earth define the amount
of runoff. Comparatively, the impermeable layer offers more
runoff than the impermeable layer. Lower basin is being
composed of clay soil is highly vulnerable to flooding. This
research examined the role of different layers of rock and soil
in the occurrence of floods by measuring their permeability. Each
layer was assigned a weightage and finally, a susceptibility guide
was built up. The geological features of the basin are presented in
Figure 3G.

2.2.2.8 Land use and land cover
Flood mapping is a complex process and relies on a bunch of

variables. LULC is one of the variables to be considered during flood
mapping. Land cover is not uniform across a catchment area and is
subjected to both natural vegetation cover and man-made
manipulations. Land cover such as grassland, scrubby layer, tree
layer which cover the surface of the earth, play a key role in
determining flood impact and hence the outcomes. Different
vegetation cover has different retention capacity and therefore
control the runoff to varying extent presented in Figure 3H. Thus,

LULC utilization are critical variables during the flood analysis
(Mahmood et al., 2016).

3 Methodology

3.1 Analytical hierarchical process (AHP)

The technique centers on developing a matrix that depicts the
relative value of each candidate solution. Policymakers use it when
relevant to explain phenomena and make confident decisions. In the
AHP factors are evaluated, weightage is given to each variable and
factor that contributes to the flood. The AHP is one of the most
acceptable multi-criteria decision-making approaches (Waqas et al.,
2021a).

3.2 Frequency ratio (FR)

The frequency ratio method of analysis is widely used in
hydrological research. Statistics in FR are based on the correlation
between dependent and independent variables in space. The spatial
association between the dependent and independent variables makes
the basis of FR statistical studies (Rahman et al., 2021). In this study,
the flood-inducing factor like the rainfall, topography, slope, climatic
conditions, and local factors were taken as the independent factors.
The frequency ratio model has been used as a successful tool in several
other studies.

3.3 Data collection and preparation

The conditioned flood maps used in this analysis were created in a
raster format with a pixel size of 12 m. It was therefore possible to
calculate frequency ratios for each class of conditioning factors by
superimposing the inventory map on top of the maps of those factors
(Zhang et al., 2019). After that, we used the ratio from the frequency
table to determine the importance of each variable class. The major
components and their impact on the flash flood were validated and
chosen using the selection of correlation-based characteristics.

TABLE 3 Quantitative evaluation of the relative importance of several flood-
triggering elements.

S. No. Definition Importance/Intensity value

1 Extremely important 8 and 9

2 Very strongly important 6 and 7

3 Strongly important 4 and 5

4 Moderately important 2 and 3

5 Equally important 1

TABLE 4 The characteristics that contribute to floods and the component weights they were given in the flood susceptibility mapping (SFWVs).

Pairwise comparison of flood susceptibility factors

Factors DR DD SL E R S G LULC Weight (%)

Distance from the river (DR) 1 2 3 5 5 6 7 8 32.1721

Drainage density (DD) .5 1 2 4 3 5 6 7 21.7699

Slope (SL) .33 .5 1 4 5 6 7 8 20.1825

Elevation (E) .2 .25 .25 1 2 4 6 8 10.1752

Rainfall (R) .2 .33 .2 .5 1 2 4 6 6.8744

Soil (S) .17 .2 .17 .25 .5 1 2 5 4.3431

Geology (G) .14 .17 .14 .17 .25 .5 1 2 2.6377

Land use/cover (LULC) .13 .14 .13 .13 .17 .2 .5 1 1.8452

Consistency ratio = .0737

Frontiers in Environmental Science frontiersin.org07

Majeed et al. 10.3389/fenvs.2022.1037547

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1037547


3.4 Training and record set generation

The vulnerability of different areas in the district Jhelum was
classified into two sections of 30% and 70% ratios. Here, we sampled
the conditioning factors required to train the data set weight with
70% of the susceptibility data. The remaining 30% of the data on
susceptibility was used to draw samples of the conditioning factors
used to determine the weight of evaluation. A model’s effectiveness
with respect to the training subset and the test set might be affected
by the ratio’s collection. In this simulation, we chose a 70/30 split. All
these steps were carried out using Arc GIS 10.8 (Moazzam et al.,
2020).

3.5 AHPmodelling and selected factor weight
value

In our analysis, specifically, we employed AHP modeling to
compare and contrast a few key flood-causing factors and get
their respective Selected Factor Weight Values (SFWVs) (Waqas
et al., 2021a). A survey was made in the Jhelum district to evaluate
the relative implication of diverse flood factors and their position on
given preferences. It is always a challenging task to determine which
factor is more potential cause of flood in a certain region as resulted
in Table 3. A numerical value was determined for one of these
factors.

Keeping in view the meanings and importance values of the flood
variables a pairwise contrast matrix was constructed. Values were

assigned to all the variables starting from 1–9 to all the flood causing
variables. The weights and values were given because of the relative
significance of all the flood causing variables (IslamM. M. et al., 2022).
The weights given to each possibility mirrored each other’s opposites
(Table 4).

The AHP method was used to get the hierarchical structure of all
the components that lead to a flood, and the eigenvector of the selected
weight factor was examined and adjusted by determining the CR
(Mondal and Maiti, 2013; Khosravi et al., 2016; Ali et al., 2019). The
accuracy and importance of the resulting rankings can be evaluated by
comparing the factor weight value of various factors. As a result, the
following Eq. (2) was used to get the eigenvector:

Ax � λmaxX (2)
where λ stands for eigenvalue, x stands for eigenvector of n criteria,
and a stands for comparison matrix of n criteria. A stable reciprocal
matrix has a maximum eigenvalue (λ max) = total number of
comparisons. For this reason, calculating the ratio of consistency is
crucial. When the CR hits 0.1, the judgment collection is deemed
inconsistent and must be repeated. Equally, if the CR number is close
to 0, the judgment is totally consistent, and a value between 0 and 0.1 is
frequently referred to as consistent. The following Eq. (3) can be used
to calculate the consistency quotient:

CR � CI/RI (3)
In above Eq. (3) CR = consistency ratio, CI = consistency index, RI

= random index. The calculation of RI was made based on. However,
the following equation was used to calculate CI:

FIGURE 4
This study’s approach is depicted as a flowchart.
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CI � λmax − N
N − 1

(4)

Where λmax = cumulative number, and N represents the cumulative
number of sub factors. When multiple variables contribute to an
event’s final outcome, like in the case of ecotourism evaluations, AHP
can be used on a variety of scales (Alexakis and Sarris, 2014), for the
collection of land and development of postharvest technology, for the
assessment of transmission of an infectious disease. Overall
methodology of used in current research is given as Figure 4.

3.6 FR model and the SCWV

We used the following equation to calculate the Frequency Ratio
(FR) for every class of selected factors;

FR �
PpixE
PpixT
ΣpixE
ΣpixT

(5)

PpixE = number of pixels, p = flood class, PpixT = count number of
pixels. ΣpixE = all pixels for the flood class, ΣpixT = overall number of
pixels in the research area. In cases where the resulting FR value was greater
than 1.0, it was determined that a strong and equitable correlation existed
between the flood training locations and the pertinent factors and high-risk
class. If the value of FR is less than 1, then the significance offlood risk is low
and the relationship is negative. In this investigation, we anticipated that

each category’s FR value would serve as the class weight (SCWV). In the
present AHP and FR model research, the Flood Vulnerability Index (FVI)
was also computed to show the widened flood susceptibility relevance from
very high to very low flood risk zones. The SCWVrepresenting each class of
the variables chosen and the SFWV chosen for flood events were factored
into the FVI calculation using the following Eq. 6:

FSI � ∑
n

n�1 ωi × FR( ) (6)

Where n = cumulative number of variables chosen (n = 7), ωi =
weight of variables and FR = frequency ratio of each class.

4 Results and discussion

4.1 Relative importance of the FR method’s
flood susceptibility variable classes

Flood susceptibility mapping is one of the approaches that help
policymakers to devise a plan to decrease a risk factor. Being fed by the
river Jhelum, the District of Jhelum is always prone to flooding, especially
during themonsoon showers. Historically, the area hasmany catastrophic
events. There are many independent flood-inducing conditions and have
played important roles during the flood history of the region. A statistical
dataset was prepared for all the eight conditioning factors as given in
Figure 5. The spatial relationship of all these eight factors with flood risk is
given below. Weight values were assigned to each factor. Weight value

FIGURE 5
Factors that increase the likelihood of flooding, used to create a flood risk map based on class frequency ratios.
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shows the relative importance based on each class and provides detail for
understanding the role in the generation of the flood (Tariq et al., 2022d).

A quantitative analysis was made to establish a relationship
between the historic site of flooding and the geographical and
geological variables that influence the flash flood events as shown
in Figure 5. According to the results, the altitude class vector was
heavily skewed toward the 170–700 m elevation range. In terms of soil
slope angle, the highest value was found in the 45° and higher category.
A greater amount of emphasis is placed on the northwest slope. There
was a much larger effect of the weights in the 400–400 m vector
distance from the fault class than there was in any other group.
Following an investigation into the river’s length, it was determined
that the greatest load that the soil could support given its inclination
was 2500 meters class. The second highest weight was taken by the
rainfall layer as given in Table 4. Given these results, it was clear that
the critical frequency of flash floods (Zhang et al., 2021) belonged to
the rainfall class. In addition to the other factors, rainfall amounts
above this threshold may potentially induce floods, depending on the
duration. When comparing different land uses, vegetation and
residential land uses along the river and on moderate slopes were
given greater weighting factors. The geology of this area had more
weight than any other factor.

4.2 Effects of risk factors on the probability of
flooding

The purpose of our research was to establish a connection between
flood-prone areas and the causes of flooding. After taking into account
all of the data, it was determined that precipitation levels are a strong
predictor of both drought and flooding (Zhang et al., 2019). More
precipitation than usual is represented by a higher range, whereas a

lower range implies drier-than-usual conditions. Each factor’s weight
in the AHP reflects its relative importance based on the others. The
value of the class weight demonstrates the relative significance of the
various classes for each element and offers insightful particulars that
can be used to investigate the function of flood generation, as
described in (Figure 5). The rainfall was considered to identify the
risk of flood. Figures 3, 5 indicate that there was a deviation of rainfall
ranging 18–137 mm, which gives an FR value of less than 1, indicating
these areas to be more vulnerable to flood as compared to less
precipitation region. Having FR values below 1 indicates a
protective relationship between flood hazard and elevations
between 2.5 and 5.0. Estimated FR values varied from 2.077 to
4.911 on slopes steeper than 45 degrees and 5–40 degrees,
respectively, showing that this region of the research area is more
prone to flooding. The corresponding slope angles ranged from 3.73
degrees to 46.88 degrees. There were more severe floods in some areas
along the riverbanks than in others, and vice versa. According to the
river distance analysis, a distance of 2,500 m from the river had values
of FR ranging from .54 to .56, 1.21 to 1.26, and .48 to .54, indicating
that places further away from the river had a lower F value and, as a
result, less risk was involved.

4.3 Flood vulnerability mapping and
demarcation of risk area

Final susceptibility zones were constructed using the factor weight
and the class values obtained from the FR and AHP studies based on
the volume of the weight and using the GIS environment. Similar to
what is done in, the SCWV of all selected subsets of the same variable
was employed (Figure 5). In order to determine a region’s sensitivity to
flooding, we added up the FR values for all of the potential causes
(Siddiqui et al., 2020a; 2020b; Tariq et al., 2020; Tariq and Shu, 2020).
The flood susceptibility index was calculated by the summation of all
the flood-inducing factors identified. A higher flood susceptibility
index shows a greater possibility of flood events. On the contrary, the
lower FSI value suggests that chance of a flood event is less. To identify
and recognize the flood risk zones, the FSI database was organized into
5 susceptibility areas (Mousa et al., 2020; Freeshah et al., 2021; Tariq
et al., 2021f; Zainab et al., 2021). The zones were categorized into very
low, low, moderate, high, and very high-risk zones, covering an area of
2,458.26, 361.87, 496.11, 239.81, and 86.25 km2, respectively (Table 5).
During the visit to affected areas (Mattalia et al., 2021), some severely
damaged areas were identified. The following areas were damaged
mostly in the past flood history.

TABLE 5 Flood estimated risk zones in km2.

S. No. Name Risk zone (Km2) Risk zone (%)

1 Very low risk 2,458.26 67

2 Low risk 361.87 9

3 Moderate risk 496.11 13

4 High risk 239.81 7

5 Very high risk 86.25 4

Total area 3,642.30 100

TABLE 6 Accuracy and success rate of flood prediction are estimated using a susceptibility mapping approach.

Susceptible
class

Flood testing
points (30%)

Accurate points
in class

Prediction
accuracy (%)

Flood training
points (70%)

Accurate points
in class

Success
rate (%)

Very low risk 6 66 80 13 188 84

Low risk 8 19

Moderate risk 20 20

High risk 25 82

Very high risk 30 75

Total 89 209
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4.4 Validation

Assessment and confirmation of accuracy are key procedures in
flood risk management and vulnerability studies (Mohammadi et al.,
2021; Mumtaz et al., 2021; Rahman et al., 2021; Shah et al., 2021). In
order to verify the validity of the performed analysis and model, an
accuracy evaluation is conducted. Several metrics, such as area under
the curve, prediction of accuracy, and success rate, can be used to
assess the precision and validity of a measurement. Accuracy was
evaluated in this work by measuring PA and SR at flood training and
test sites using the following Eqs 7, 8.

PA � Σap

Σtp
(7)

SR � Σsp

Σtnp
(8)

Where ap is the number of times that an item was accurately tested for
food safety, tp is the number of times that any item was tested for safety,
sp is the number of times that an item was successfully trained, and tnp
is the number of times that any item was trained. Prediction accuracy
(PA) and success rates (SR) are two measures of how well a forecast
really turns out. Using the preceding formulae, an accuracy value of 1.0
indicates that the model has been handled without bias, whereas a value
of less than 0.75 is considered to be the norm. The success rate was
calculated using a sample of 210 (70%) of the locations utilized in the FR
simulation, while the forecast accuracy was calculated using 90 (30%) of
the flood locations observed throughout the simulation (Hamza et al.,
2021; Tariq et al., 2021c; 2021g; 2021b). Also, areas that are at low,
medium, high, or extremely high risk of experiencing flooding in the
future have been designated as such. It was calculated that the forecast's
accuracy was 0.81 (or 81%) and its success rate was 0.84 (or 84%)
(Table 6). It was concluded that the frequency ratio model should be
employed for the flood analysis of the Jhelum district in Punjab because
it has a forecast accuracy of more than 80%.

5 Conclusion

The role of susceptibility maps can’t be negated in the flood
management system of Jhelum District by the management
departments of the government. This flood analysis was performed
to establish a map of all the susceptible areas of the Jhelum District.
The main goal of this research was to increase understanding of
emergency management among citizens, local governments, and other
government agencies. Past flood dangers and incidents that occurred
regularly over a period were analyzed using a frequency ratio
calculated from flood and non-flood based data. In this study, we
used geographical data from a variety of sources to provide a complete
picture. The study relied on a restricted version of the publically
available ALOS-PALSER DEM, which had a resolution of 12.5 m.
More precise flood mapping can be achieved with increased DEM
resolution. According to the results, the most important elements that
contributed to the occurrence of a flood were the following: distance
from the river (0.245), rainfall variance (0.315), land use/cover (0.256),
and soil clay content (0.521). The SFWV for slope angle was 0.1235
and the SFWV for elevation was 0.325; both of these factors
contributed to the floods. Since the Jhelum area is rather flat close
to the river Jhelum, the study shows that climatic (rainfall) and locally-
based factors have a much more substantial effect than topographic

(elevation and slope) considerations. The prediction accuracy was 81%
and the success rate was 84%, as determined by validation results
based on flood position data.
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