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Reasonable and effective allocation of carbon emission permits is one of the

important tasks to achieve the goal of carbon neutrality. Based on the difference

in carbon emission reduction contribution and capability of the industries, this

paper proposes a carbon emission permits allocation and optimization scheme

that take into account fairness and efficiency. First, based on fairness principle,

establish a carbon emission quota systemof the six industries and determine the

index weights, and use the comprehensive index method to realize the initial

allocation of carbon emission permits. Then, on the basis of evaluating the initial

carbon emission permits allocation efficiency, based on efficiency principle, the

zero sum gains data envelopment analysis (ZSG-DEA) model is used to

iteratively obtain the optimal allocation scheme of carbon emission permits.

Example analysis shows that the carbon permit allocation and optimization

model based on fairness and efficiency principles proposed can realize the

optimal allocation of industrial carbon emission permits, ensure the optimal

efficiency of industrial carbon permit allocation, and provide adequate support

for the carbon emission reduction decisions of the six industries.
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1 Introduction

With the acceleration of economic development and industrialization, China’s energy

demand is constantly increasing, and energy consumption and carbon emissions remain

high. In 2021, China’s energy consumption was 157.65 EJ, accounting for 26.5% of the

total global energy consumption. At the same time, China’s carbon emissions were

10.52 billion tons, accounting for 31.1% of the world’s carbon emissions. China’s energy

consumption and carbon emissions are ranked first in the world (BP, 2022). On the one

hand, the massive emission of carbon dioxide causes global warming, which seriously

threatens the living environment of human beings. On the other hand, high energy

intensity and carbon emission intensity do not meet the requirements of high-quality
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economic development in China (Shi and Wu, 2018). China

pledged at the Paris Climate Conference in 2015 to reduce its

carbon emission intensity by 60%–65% by 2030 compared with

2005 and proposed the “dual carbon” goal at the UN General

Assembly in 2020, namely carbon peaking and carbon neutrality.

China divides all industries into six categories, namely

“agriculture, forestry, animal husbandry, fishery and water

conservancy”, “the processing and manufacturing industry”,

construction, “transportation, warehousing and postal service

", “wholesale, retail, accommodation and catering” and other

industries. According to China Statistical Yearbook (National

Bureau of Statistics of China, 2021), the six pillar industries

account for more than 85% of energy consumption, and are the

primary source of carbon emissions in China. In order to fulfill

the Chinese commitment to protect the ecological environment

and achieve sustainable development, China should take

measures to encourage the six pillar industries to actively

undertake carbon emission reduction responsibilities and

fulfill carbon emission reduction obligations. To achieve this,

we need to determine the total carbon emissions of the six pillar

industries and allocate them to each industry, urging each

industry to use its own carbon emission permits as the

baseline to reduce emissions. The key to realizing the rational

allocation of carbon emission permits is to fully consider the

utilization efficiency of carbon emission permits of all industries

under the premise of ensuring fairness. Therefore, it is necessary

to predict and allocate the carbon emissions based on the

characteristics of the six industries, evaluate the distribution

efficiency of carbon emission permits of the industries and

put forward the optimization scheme of carbon permit

allocation considering the carbon emission efficiency.

2 Literature review

At present, scholars worldwide have conducted much

research on carbon permit allocation from different

perspectives and using different methods. Kai et al. (2019)

adopted the non-radial ZSG-DEA model to allocate carbon

emission permits of different provinces in China from the

technical efficiency level. On this basis, Zhuang et al. (2016)

changed carbon emissions as an input indicator to an undesirable

output indicator for research, and the optimized model better

reflected the macro production process. Yu et al. (2014) proposed

an allocation method of carbon emission reduction based on

particle swarm optimization, fuzzy C-means clustering, and

Shapley decomposition. According to KAYA identity, the

method decomposed the total carbon emissions into the

interaction results of 4 components composed of 13 macro

influencing factors and divided 30 provinces in China into

four categories according to the influencing factors. To

determine the burden-sharing of carbon emission reduction

among provinces in China, Chu et al. (2012) used the SBM

model to estimate the carbon emission reduction potential and

marginal emission reduction cost of 29 provinces in China, and

the capacity index of carbon emission reduction was constructed

based on weighted equity and efficiency indicators. On the

premise of historical transfer of carbon emissions, Zhou et al.

(2021) calculated the cumulative net carbon emissions of Chinese

provinces based on the principle of consumer responsibility and

preliminarily allocated the carbon emission permit of Chinese

provinces in 2020 according to the principles of fairness,

efficiency, and sustainability, and evaluated the carbon

emission efficiency of each province under the preliminary

allocation scheme. Considering the unbalanced development

of different cities, Li et al. (2018) adopted the maximum

deviation method to allocate the carbon emission permits in

the Pearl River Delta region based on fairness, efficiency, and

feasibility principles. In order to solve the problem that most

current allocation methods only focused on a single performance

goal, which led to conflicts between participants at different

levels, Li et al. (2018) proposed a dual-objective programming

model that contained two sub-objective functions of emission

reduction cost and carbon asset. For evaluating the impact of

energy consumption structure on carbon emission performance

of Bohai Rim economic Circle, Chang et al. (2020) constructed a

directional distance function and assumed two scenarios, and

finally established a two-stage allocation model of carbon

emission permits.

Most of the above literature focused on the inter-provincial

assessment of carbon emission efficiency and allocation of

carbon emission permits, and few considered the allocation

efficiency of carbon emission permits from the perspective of

industries. However, the study on the allocation of carbon

emission permits between industries can help enterprises in

various industries to clarify their responsibility for emission

reduction. Meanwhile, by comparing the efficiency of carbon

permit allocation between industries, national and local

governments can reasonably guide the adjustment of

industrial structure, which is conducive to the realization of

carbon peak and carbon neutrality. Rong et al. (2018) and Ru

et al. (2020) allocated carbon emission permits from the

industry level based on the GDP of six pillar industries, and

used the ZSG-DEA model to optimize and adjust the allocation

of the carbon permits. However, those studies focused on the

optimal secondary allocation of carbon emission permits. They

did not consider constructing the index system of the initial

allocation of carbon emission permits from multiple

perspectives, which could not reasonably reflect the vital role

of the fairness principle in the carbon permit allocation. At the

same time, in order to study the impact of different scenarios on

the carbon permit allocation, most studies used scenario

analysis. However, this method has static limitations and

cannot measure the probability of the predicted value of the

total amount of carbon emission rights, so it is not easy to

analyze the most likely scenario.
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On account of the above considerations, this paper constructs

a carbon emission allocation and optimization scheme based on

the principles of fairness and efficiency. First, based on the

principle of fairness and considering the emission reduction

responsibility of industries, we build a carbon emission

indicator system to measure emission reduction capacity,

responsibility, and potential. Secondly, the index weights of

the carbon permit allocation are determined by the entropy

weight method, and the carbon emission permit is initially

allocated to each industry under three different scenarios.

Finally, we use the ZSG-DEA model to evaluate the efficiency

of carbon permit allocation in six industries under three

scenarios and then adjust to get the optimal allocation scheme

of carbon emission permits. The Monte-Carlo simulation is used

to realize the dynamic evaluation of the total amount of carbon

emission permits based on scenario analysis.

3 Materials and methods

3.1 Primary allocation

3.1.1 Indicator system
As the carbon emission contribution and emission reduction

capacity of different industries are different, the emission

reduction responsibilities of different industries are different

based on the fairness principle (Wan and Yu, 2020). We

adopt the comprehensive index method to realize the primary

allocation of carbon emissions between the six industries based

on the fairness principle. Therefore, we need to select appropriate

indicators to measure the six industries’ emission reduction

ability, responsibility, and potential.

The higher the economic development level of industry is, the

more capable it is to reduce carbon emissions so that GDP can be

a good indicator of the industry’s emission reduction capacity

(Kai and Hao, 2016). The industries emit different amounts of

carbon dioxide during their development, and according to the

polluter pays principle, the industries that have historically

emitted more should be more responsible for reducing

emissions (Martin et al., 2019). Meanwhile, energy intensity is

an effective indicator to measure energy utilization efficiency.

The higher the energy intensity of an industry, the greater the

carbon reduction potential of the industry (Shahiduzzaman and

Alam, 2013). To sum up, based on the principle of fairness, we

select GDP, historical carbon emissions, and energy intensity

from 2005 to 2019 as indicators to construct an indicator system

of carbon permit allocation containing capacity, responsibility,

and potential, as shown in Table 1.

3.1.2 Index weight
We used the comprehensive index method to allocate the

initial carbon emission permits for six industries, and the index’s

weight needed to be calculated. Entropy can be used to quantify

the importance of an indicator. The smaller the entropy value of

an indicator is, the more information it contains, and the more

significant its proportion in the comprehensive evaluation is

(Yan et al., 2019). Therefore, the entropy method can be used to

calculate the index weight of the comprehensive index method,

and the calculation steps are as follows:

Firstly, the dimensionless method is carried out for index

data because the types and dimensions of each index are

different. The processing Eqs. 1, 2.

amn �
a′mn −min {a′mn}

max {a′mn} −min {a′mn} (1)

amn �
max {a′mn} − a′mn

max {a′mn} −min {a′mn} (2)

Where Eq. 1 is the dimensionless processing formula for high-

quality indicators; Eq. 2 is the dimensionless processing

formula for low optimal indicators; amn
′ represents the

indicator n of industry m ; amn represents the element

corresponding to m row and n column in a normative

matrix; max {amn
′} represents the maximum value of the

indicator n in 6 industries; min {amn
′} represents the

minimum value of the indicator n in 6 industries.

Then the normative matrix can be expressed as Eq. 3:

M � ⎛⎜⎜⎜⎜⎜⎜⎜⎝
a1,1 a1,2 a1,3
..
. ..

. ..
.

a6,1 a6,2 a6,3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3)

Next, according to (4), we calculate the proportion of amn all

industries in the indicator, denoted as Pmn.

Pmn � amn

∑6
m�1

amn

(4)

Finally, the information entropy Hn of the indicator n is

obtained, as shown in Eq. 5.

TABLE 1 The index system of carbon permit allocation based on the fairness principle.

Name Type Principle

GDP Carbon reduction capacity Vertical fairness

Historical carbon emissions Carbon reduction responsibility Historical fairness

Energy intensity Carbon reduction potential Efficient fairness
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Hn � − 1
ln 6

∑6
m�1

Pmn ln(Pmn) (5)

Based on the above calculation, the weight of the evaluation

indicator n is defined as Eq. 6.

Wn � (1 −Hn)/∑3
n�1

(1 −Hn) (6)

3.1.3 Carbon permit allocation
We construct a composite index to allocate carbon emission

permits for 2030 based on emission reduction capacity, emission

reduction responsibility, and emission reduction potential,

represented by industry gross domestic product, historical

carbon emissions, and energy intensity. If Tm represents the

composite index, it can be expressed as Eq. 7.

Tm � W1Am +W2Bm +W3Cm (7)

Where m represents six pillar industries; Am represents the

proportion of the gross product of industry m in the gross

product of all industries from 2005 to 2019; Cm represents the

proportion of the energy intensity of industry m in total energy

intensity from 2005 to 2019.

In order to make a direct comparative analysis of the industry

composite index, we standardize the data and get Eq. 8.

QRm � Tm

∑6
m�1

Tm

(8)

At the 2015 climate conference in Paris, China promised to

reduce its carbon emission intensity between 60% and 65% by

2030 compared with 2005, which means that China’s six

industries’ carbon emission reduction target in 2030 is 60%–

65% on average the basis of 2005. The study uses a 60% reduction

in carbon intensity as a reference point, so we get carbon intensity

in 2030 at 40% of the 2005 level. The carbon emission intensity in

2030 can be defined as Eq. 9.

I2030 � 0.4 × I2005 (9)
Where I2030 represents total carbon intensity of six industries in

2030; I2005 represents total carbon intensity of six industries

in 2005.

According to the relationship of carbon emission intensity

between 2030 and 2005, the carbon emission intensity of the

industries can be obtained as follows:

Im2030 � cm × Im2005 (10)

Where Im2030 represents carbon intensity of industry m in 2030;

Im2005 represents carbon intensity of industry m in 2005; cm
represents ratio coefficient between carbon intensity of industry

m in 2030 and carbon intensity of industry m in 2005.

The larger QRm is, the more outstanding industry

contribution m to emission reduction is, and the less carbon

emission quota is. Therefore, cm can be expressed as Eq. 11.

cm � α × (1 − QRm) (11)

Where α represents an estimated parameter.

According to GDP forecast and carbon emission permit

forecast, the distributable carbon emission amount of six

industries in 2030 can be obtained, and the calculation

function is

E2030 � TP2030 × I2030 (12)
Where E2030 represents the total amount of carbon emission

permits that can be allocated for six industries in 2030; TP2030

represents the gross product of six industries in 2030.

At the same time, E2030 can be obtained:

E2030 � ∑6
m�1

Em2030 � ∑6
m�1

TPm2030 × Im2005 × cm (13)

Where TPm2030 represents the gross product of industry; Em2030

represents the initial carbon emission quota of industry m in

2030 based on fairness principle.

Combining Eqs. 11–13, α can be obtained:

α � TP2030 × I2030

∑6
m�1

TPm2030 × Im2005 × (1 − QRm)
(14)

Finally, the carbon emission quota of industry m is obtained

according to the comprehensive index method, and the

function is

Em2030 � TPm2030 × α × (1 − QRm) × Im2005 (15)

3.2 Optimal allocation

After completing the initial allocation of industrial carbon

emission permits based on the principle of fairness, the efficiency

of the allocation should be further evaluated. If the allocation

scheme is not optimal, it needs to be optimized and adjusted.

Since the total amount of carbon emission permits is fixed, the

increase and decrease of carbon emission permits in one industry

will inevitably lead to the decrease and increase of carbon

emission permits in other industries (Guo et al., 2021). ZSG-

DEA is a method to evaluate the efficiency of Multiple Input

Multiple Output decision-making problems, and the input can be

optimized and adjusted to achieve optimal efficiency on the

premise that the total amount remains unchanged (Mian

et al., 2020).

We use the input-oriented ZSG-DEA to evaluate the initial

allocation efficiency of carbon emission permits and conduct
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optimization iterations to obtain the optimal allocation scheme

of carbon emission permits. Referring to Gomes and Lins. (2008)

and Cui et al. (2021), the unexpected output (carbon emission

permit of six industries) is taken as the input variable, and the

GDP and energy consumption of six industries are taken as the

output variables.

EZSG � min θ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑6
m�1

λmy
TP
m ≥yTP

G

∑6
m�1

λmy
EC
m ≥yEC

G

∑6
m�1

λmxm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 +
xG(1 − θ)∑6
m�1,m ≠ Gxm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≤ θxG

∑6
m�1

λm � 1

λm ≥ 0, m � 1,/, 6

(16)

Where θ represents allocation efficiency under the limitation

of the fixed total amount of carbon emission permits; EZSG

represents average weighted efficiency of all decision-making

units; λm represents the contribution of industry m to the

prediction efficiency; xm represents input(carbon emission

permit) of industry m ; yTP
m represents production value of

industry m ; yEC
m represents energy consumption of industry

m ; xG represents input(carbon emission permit) of

ineffectual decision-making unit; yTP
G represents

production value of ineffectual decision-making unit; yEC
G

represents energy consumption of ineffectual decision-

making unit.

In this model, DMUG is an ineffectual decision-making

unit. In order to improve its efficiency, it is necessary to

reduce the input of carbon emission permits, and the

reduction of the allocation of carbon emission permits is

(1 − θ)xG. The reduction of carbon emission permits are

distributed proportionally to the other five decision-

making units, and each decision-making unit increases the

carbon emission permits by (1 − θ)xG · xi/∑6
m�1,m ≠ Gxm. After

the carbon emission permits of all ineffectual decision-

making units are adjusted as above, the carbon emission

permits of each decision-making unit have been

redistributed.

x′
m � ∑

G≠m

(1 − θ)xG · xm

∑6
m�1,m ≠ G

xm

+ θmxm (17)

3.3 Data

3.3.1 Carbon emission
There are four methods to measure carbon emissions: field

measurement method, life cycle assessment method, carbon

emission coefficient method, and input-output method

(Fenner et al., 2018; Thomas et al., 2018; Yin et al., 2020;

Zhao, 2020). The field measurement method and life cycle

assessment method, which mainly measure carbon emissions

from a project perspective, depend highly on project data, but

these data are often not fully or accurately obtained. The input-

output method has high accuracy, but a massive amount of data

leads calculation to be error-prone. Meanwhile, the carbon

emission coefficient method is convenient for obtaining data,

and its calculation process is simple. Therefore, the carbon

emission coefficient method is adopted to calculate the total

carbon emission.

3.3.2 Indicator data
First, we should note that the data of six industries’ GDP and

energy consumption come from China Statistical Yearbook.

Taking 2005 as the base period, the constant prices of GDP in

each year are obtained. According to the energy consumption

and the carbon emission coefficient method, the carbon

emissions of the six industries from 2005 to 2019 are

calculated respectively. Then we sum the carbon emissions of

the same industry from 2005 to 2019 to obtain the industry’s total

carbon emissions. The six industries’ energy intensity is

calculated by dividing the six industries’ energy consumption

by the six industries’ GDP. The data of each indicator are shown

in Table 2.

In all the tables, A represents “agriculture, forestry, animal

husbandry, fishing and water conservancy”; B represents the

processing and manufacturing industry; C represents

construction; D represents “transportation, storage, and postal

service”; E represents “wholesale, retail, accommodation, and

catering”; F represents other industries; TCE represents ton of

standard coal equivalent.

3.3.3 Carbon intensity
The calculation formula for carbon emission intensity of the

six industries is Eq. 18.

It � COt
2/TPt (18)

Where It represents total carbon intensity of six industries in

year; COt
2 represents carbon emissions of six industries in year ;

TPt represents GDP of six industries in year t.

The carbon intensity of the six industries in 2005 is shown in

Table 3. According to Eq. 9, the total carbon intensity of the six

industries is expected to be 1.269 tons/10,000 RMB in 2030.
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4 Empirical analysis

4.1 Scenario setting

In order to better predict the carbon permit allocation of six

industries in 2030, we adopt scenario analysis to analyze the

carbon permit allocation of six industries and set up three

different scenarios. As GDP and energy consumption are the

main influencing factors of carbon emissions (Meng et al., 2018),

the scenario analysis indicator system is established based on

GDP and energy consumption.

In the basic scenario, the six industries’ GDP in 2030 is

predicted based on the GDP data from 2005 to 2020. The

GDP growth rate is determined by combining the actual

GDP in 2020 and the projected GDP in 2030 of the six

industries.

In the basic scenario, the energy consumption prediction

formula of the six industries in 2030 is Eq. 19.

ECm2030 � EIm2030 × TPm2030 � EIm2019(1 + ηm)11TPm2030 (19)

Where ECm2030 represents energy consumption of industry m in

2030; EIm2030 represents energy intensity of industry m in 2030;

ηm represents average annual rate of change in energy intensity of

industry m from 2020 to 2030.

Based on the basic scenario, the growth rate of GDP and

change rate of energy intensity fluctuate 1% and 0.5%,

respectively, to set scenario 1 and scenario 2. The indicators’

values of each scenario are shown in Table 4.

4.2 Initial allocation of carbon emission
permits

In order to meet Chinese commitment, carbon emission

permits need to be distributed among six industries. The

comprehensive index method is used to make the initial

allocation of carbon emission permits for six industries in

2030, and DEAP 2.1 is used to calculate the initial allocation

efficiency of carbon emission permits. It can be seen from Table 5

that the initial allocation efficiency of carbon emission permits

varies greatly in all industries under the three scenarios. Only the

efficiency of other industries reaches 1, which is an effective

decision-making unit. The efficiency of the remaining five

industries is relatively low, and the allocation efficiency of the

processing and manufacturing industry is only 0.28, which is

seriously low. Therefore, it is necessary to optimize the allocation

of carbon emission permits for six industries and improve the

efficiency of carbon permit allocation.

4.3 Optimal allocation of carbon emission
permits

In order to achieve an effective allocation of carbon emission

permits, we adopt the ZSG-DEAmodel to optimize the allocation

of carbon emission permits for each industry and improve the

allocation efficiency of carbon emission permits. As shown in

Table 6, the average efficiency of carbon permit allocation shows

an upward trend in the iterative process and reaches 1, which

means that the efficiency is optimal. It is important to note that

the efficiency of carbon permit allocation except the processing

and manufacturing industry seriously declines in the first

optimization iteration results because many industrial carbon

emission permits are transferred from the processing and

manufacturing industry to the other industries, resulting in

TABLE 2 Indicator data of carbon permit allocation.

Industry Total GDP from
2005 to 2019/(100 million RMB)

Total carbon emissions
from 2005 to 2019/(million
tons)

Energy intensity from
2005 to 2019/(TCE/10,000 RMB)

A 459,904.92 1,435.15 0.25

B 2,438,857.06 114,136.26 1.55

C 381,373.56 604.89 0.25

D 286,363.68 8,388.04 1.63

E 564,258.38 1,083.12 0.24

F 979,671.42 2,112.10 0.27

TABLE 3 Carbon intensity of six industries in 2005.

Industry Carbon intensity/(ton/10,000 RMB)

Total 3.17

A 0.49

B 6.06

C 0.29

D 2.91

E 0.33

F 0.25
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excess carbon emission permits for the other industries.

However, in subsequent iterations, the efficiency of all

industries continues to rise and reaches optimum.

It can be seen from Table 7 that, in the three scenarios, the

industry where carbon emission permit needs to transfer from

are the processing andmanufacturing industry, and the other five

industries are industries where carbon emission permit needs to

transfer into. This is because, compared with the other five

industries, the efficiency of the processing and manufacturing

industry is seriously low, and the processing and manufacturing

industry has tremendous carbon reduction potential.

It should be pointed out that the industries where carbon

emission permit needs to transfer do not necessarily need to use

increased carbon permit by themselves. They can sell carbon

emission permits to the industries that need to purchase carbon

emission permits in the carbon trading market and make profits

TABLE 4 Parameters of scenario analysis.

Scenario Scenario 1 Basic scenario Scenario 2

Industry The growth
rate of
GDP/(%)

The change
rate of
energy intensity/(%)

The growth
rate of
GDP/(%)

The change
rate of
energy intensity/(%)

The growth
rate of
GDP/(%)

The change
rate of
energy intensity/(%)

A 4.31 −2.63 3.31 −3.13 2.31 −3.63

B 5.15 −2.70 4.15 −3.20 3.15 −3.70

C 5.33 −2.12 4.33 −2.62 3.33 −3.12

D 6.69 0.05 5.69 −0.45 4.69 −0.95

E 6.23 −3.06 5.23 −3.56 4.23 −4.06

F 8.21 −0.45 7.21 −0.95 6.21 −1.45

Scenario Scenario 1 Basic scenario Scenario 2

Industry GDP in 2030/
(100 million
RMB)

energy
consumption in
2030/(million tons
of TCE)

GDP in 2030/
(100 million
RMB)

energy
consumption in
2030/(million tons
of TCE)

GDP in 2030/
(100 million
RMB)

energy
consumption in
2030/(million tons
of TCE)

A 62,935.65 106.99 56,607.80 90.93 50,863.73 77.18

B 435,514.55 4,145.99 392,059.00 3,526.66 352,581.67 2,995.94

C 71,646.10 127.88 64,509.30 108.83 58,024.74 92.50

D 61,090.17 900.06 55,078.90 767.98 49,610.27 654.46

E 122,376.55 188.21 110,285.00 160.23 99,289.49 136.24

F 271,369.14 625.28 245,024.00 534.16 221,024.88 455.75

TABLE 5 Initial carbon permit allocation of six industries.

Scenario Scenario 1 Basic scenario Scenario 2

Industry Initial carbon
permit allocation/
(million tons)

Efficiency Initial carbon
permit allocation/
(million tons)

Efficiency Initial carbon
permit allocation/
(million tons)

Efficiency

A 213.48 0.50 192.16 0.50 172.79 0.50

B 10,939.27 0.28 9,855.06 0.28 8,869.45 0.28

C 143.41 0.85 129.22 0.85 116.32 0.85

D 973.43 0.68 878.30 0.68 791.70 0.68

E 276.14 0.75 249.04 0.75 224.38 0.75

F 460.63 1 416.22 1 375.73 1

Total 13,006.36 — 11,720.00 — 10,550.38 —

Average efficiency — 0.68 — 0.68 — 0.68
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as a reward for efficiently utilizing carbon emission permits. At

the same time, the efficiency of carbon emission permits is

relative. If the carbon emission intensity of an industry

remains unchanged, the efficiency will decrease with the

continuous reduction of the carbon intensity of the other

industries, and the carbon emission permit will decrease

accordingly. Therefore, in addition to the processing and

manufacturing industry, the other five industries should also

continuously reduce carbon intensity and prevent themselves

from becoming the industries where carbon emission permits

must transfer from.

4.4 Monte-carlo simulation

Due to the static limitations of scenario analysis, it is

impossible to predict various possible scenarios of the total

amount of carbon emission rights in 2030, which is not

conducive to targeted analysis. In this part, the Monte-Carlo

simulation is used to dynamically predict the total amount of

carbon emission rights in 2030, and the interval distribution of

total carbon emissions is obtained.

Since the carbon intensity in 2030 has been assumed, the

dynamic prediction of the total carbon emission permit can be

realized by the GDP prediction six industries in 2030. The

probability distribution of each variable is shown in Table 8. The

value of each variable is based on the scenario analysis method

mentioned above. The highest probability value is the same as the

basic scenario, and the two values of lowest probability are the same

as scenario 1 and scenario 2, respectively.

According to the GDP increase rate and probability

distribution of six industries listed in Table 8, 100,000 Monte-

Carlo simulations about carbon emissions are run, and ten equal

length intervals are divided for data statistics of simulative

results. The statistical result is shown in Figure 1, where all

the possible scenarios of total carbon permit in 2030 can be seen.

Among 100,000 simulations, the times of simulative results fall in

the range [11,532.77:11,778.37] are the most. In other words, the

total carbon emission permit of six industries is most likely to fall

between 11,532.77 million tons and 11,783.37 million tons under

the condition of expected economic growth. It should be pointed

out that the total carbon emission permit may fall in other small

probability range under some exceptional circumstances. For

example, the government may reduce the total carbon emission

permit to ensure that the industries continue to reduce carbon

intensity because slump of economic growth rate, the smooth

realization of energy structure adjustment, and technological

progress result in substantial reduction of carbon emissions.

On the contrary, if the energy structure adjustment is blocked,

the severe shortage of carbon emission permits will lead to

abnormal development of the industry. The government will

increase the total carbon emission permit to maintain the regular

operation of the industries.

TABLE 6 Optimization of carbon permit allocation in the basic scenario.

Industry Energy
consumption
(million tons
of TCE)

GDP
(100 million
RMB)

Initial carbon
permit
allocation
(million tons)

Efficiency Optimized
carbon
permit
allocation

Initial Iterations

1 2 3 4 5

A 90.93 56,607.80 192.16 0.500 0.546 0.812 1.000 0.998 1.000 694.37

B 3,526.66 392,059.00 9,855.06 0.279 1.000 1.000 1.000 1.000 1.000 4,870.86

C 108.83 64,509.30 129.22 0.848 0.855 0.953 0.992 0.998 1.000 791.09

D 767.98 55,078.90 878.30 0.681 0.174 1.000 1.000 1.000 1.000 1,005.92

E 160.23 110,285.00 249.04 0.752 0.775 0.931 0.997 0.998 1.000 1,352.06

F 534.16 245,024.00 416.22 1.000 0.977 0.995 0.992 1.000 1.000 3,005.70

Total 5,188.80 923,564.00 11,720.00 — — — — — — 11,720.00

Average
efficiency

— — — 0.677 0.721 0.949 0.997 0.999 1.000 —

TABLE 7 Transfer amount of carbon emission permit in the three
scenarios (unit: million tons).

Industry Scenario 1 Basic scenario Scenario 2

A 558.33 502.22 450.23

B −5,525.83 −4,984.20 −4,488.35

C 735.19 661.87 595.11

D 141.50 127.62 116.41

E 1,223.94 1,103.01 992.30

F 2,866.88 2,589.48 2,334.31
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5 Conclusion

This paper discusses the distribution of carbon emission

permits in China at the industry level. Based on the principle

of fairness, we establish a distribution system of carbon emission

permits for six industries, use the entropy weight method to

calculate the weight of evaluation indicators, and use the

comprehensive index method to realize the initial distribution

of carbon emission permits to the industries. The ZSG-DEA

model is used to evaluate the initial efficiency of carbon emission

permit allocation, and the optimal scheme of carbon permit

allocation is obtained through optimization iteration. Numerical

analysis of three different scenarios verifies the model’s validity,

practicability, and operability. It draws the following conclusions:

TABLE 8 Parameters of Monte-Carlo simulation.

A B C

GDP increase
rate/(%)

Probability/(%) GDP increase
rate/(%)

Probability/(%) GDP increase
rate/(%)

Probability/(%)

4.31 5 5.15 5 5.33 5

3.81 20 4.65 20 4.83 20

3.31 50 4.15 50 4.33 50

2.81 20 3.65 20 3.83 20

2.31 5 3.15 5 3.33 5

D E F

GDP increase rate/(%) Probability/(%) GDP increase rate/(%) Probability/(%) GDP increase rate/(%) Probability/(%)

6.69 5 6.23 5 8.21 5

6.19 20 5.73 20 7.71 20

5.69 50 5.23 50 7.21 50

5.19 20 4.73 20 6.71 20

4.69 5 4.23 5 6.21 5

FIGURE 1
Monte-Carlo simulation about carbon emission permits in 2030.
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(1) Based on the principle of fairness, the initial allocation of

carbon emission permits in the six industries is low, and the

scheme of carbon permit allocation is required to be optimized.

(2) Based on the principle of efficiency, we can optimize the

initial allocation of carbon emission permits. After optimization

and iteration, the efficiency is optimal. At the same time, it is

concluded that the processing and manufacturing industry is the

industry with the most emission reduction potential among the

six major industries. (3) According to the results of the Monte

Carlo simulation experiment, the carbon emissions of the six

major industries in China in 2030 are most likely to be between

11,532.77 million tons and 11,778.37 million tons.

Based on the research conclusions, the following suggestions

are put forward:

(1) The processing and manufacturing industry has the largest

carbon emission volume and the highest carbon emission reduction

potential among the six pillar industries, and the government should

focus on promoting the implementation of carbon emission

reduction in the processing and manufacturing industry. At the

same time, the implementation of carbon emission reduction work

in the other five industries should be taken into account to prevent

the carbon emissions of the other five industries from increasing

instead of decreasing. (2) The government should strengthen the

responsibility for carbon emission reduction targets in the six pillar

industries in light of the various situations that may occur in the

carbon emissions of the six pillar industries. According to the

different characteristics of the six pillar industries, differentiated

emission reduction targets are set, and corresponding industry

policies are formulated to promote the optimization and

upgrading of the industrial structure and reduce the industry’s

energy intensity and carbon emission intensity. (3) The

government should speed up the construction of the carbon

trading market and establish a scientific and perfect mechanism

for the use and trading of carbon emission permits. By increasing

carbon costs in production and operation, we will gradually

eliminate backward industries with high energy consumption and

high carbon emissions, promote industrial restructuring, and

improve the efficiency of energy and carbon emission permit

utilization.
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