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Energy consumption has become a necessity in today’s world, and economies in

developing nations cannot thrive without it. Countries with less developed

economies face the same challenges of achieving sustained economic growth as

those with more advanced economies. Herein, we examine the environmental

Kuznets curve (EKC) hypothesis by looking at the interplay between GDP growth,

energy use, agricultural output, and the effects of carbon dioxide (CO2) emissions.

From 1991 to 2016, we used panel and quantile regression analyses to compare

emissions inninedeveloping countrieswith those in 13developedcountries. There is

the beginning of a reverse U-shaped relationship between agricultural energy use

andgreenhouse gas emissions. As a result, the verifiedEKChypothesis paves theway

for a watershed moment in the progress of industrialized nations’ economies. The

estimated results of agriculture have a favorable impact on CO2 emissions by

15.16 percent but a negative influence of 2.92 percent on CO2 emissions from

using liquid fuels, leading tomore severe environmental deterioration. Additionally, in

developing countries, feed cropping, deforestation, biomass burning, and deep soil

and cropping all have detrimental consequences on the ecosystem. There is a

negative correlation between CO2 emissions and economic growth in developing

countries and their energy consumption. Although the EKC hypothesis for CO2

emissions was rejected at lower quantiles, it was validated for Qatar, Canada, China,

and other high-emitting economies according to the empirical estimation of

quantile regression. The findings of this study have important policy implications

for reducing carbon dioxide emissions, suggesting that policymakers account for the

stage of economic growth currently being experiencedwhen formulatingmeasures

to cut energy use and protect the environment. Possible solutions to mitigate

environmental degradation include enactment of policies to reduce energy

consumption.
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Introduction

Both in developing and developed nations, the link between

economic growth and CO2 emissions remains debatable and

doubtful. Economies can use this correlation to develop policies

for managing energy consumption and advancing their secure

energy resources (Gnangoin et al., 2022; Shahbaz et al., 2022;

Tutak and Brodny, 2022; Xia et al., 2022). This study measures

countries’ economic growth based on their agricultural sector,

cereal yield, renewable energy, manufacturing, and commerce.

Quantile regression techniques with panel data have not been

studied in this field, despite the fact that a number of recent

studies have performed in-depth analyses of the relationship

between economic growth and CO2 emissions (Liu H. et al., 2022;

Raghutla et al., 2022). The current environmental Kuznets curve

(EKC) theory suggests that economic growth is associated with a

decline in environmental effectiveness (Bradley, 2021; Liu Z.

et al., 2022). Consequently, there is less concern for the profound

exhaustion of oil or magnesium and more concern for air quality,

global warming, and the divine emanations of mechanical and

industrial production.

Greenhouse gas emissions are a problem in many countries,

and modern agriculture is a major contributor. In many

developing countries, agriculture is now the leading source of

CO2 emissions. In particular, unsustainable agricultural

practices—such as bush burning, deforestation, and the

burning of biomass fuel—account for 21% of the world’s

greenhouse gas emissions and are responsible for the

oxidation of organic compounds in soil. Soil organic

compounds from cultivated land can mitigate environmental

CO2 emissions from agricultural production andmodification. In

this light, both developing and developed nations need to

investigate the connection between rising agricultural output

and increasing carbon dioxide emissions (Han et al., 2022).

Quantile regression and the EKC hypothesis examined how

economic growth impacts agricultural output and energy

consumption. However, agriculture is essential for several

other reasons, including non-oil exports, food security, and

foreign exchange. It plays an important part in a growing

economy, as evidenced by its share of total energy

consumption as measured by gross national product per

capita and its presence in the manufacturing and commercial

sectors (Koondhar et al., 2021; Pakrooh et al., 2021). By

expanding and improving its spending on sustainable

development, the country can lessen its carbon footprint and

make its infrastructure more resilient to climate change (Kocak

and Alnour, 2022). Several concepts related to CO2 emissions

have been investigated using the environmental Kuznets curve

(EKC). The EKC, which promotes rapid economic expansion at

the price of environmental sustainability, is not the best growth

path for developing countries (Balsalobre-Lorente et al., 2021;

Beyene, 2022). The U-shaped environmental Kuznets curve

(EKC) shows that environmental degradation is proportional

to income, rising as income rises due to agricultural output and

falling once income is no longer a constraint (Liu and Lai, 2021),

but if trade policies and economic growth are coordinated, the

energy sector will benefit. Keeping the economy growing at its

current rate is not conducive to protecting the environment (Leal

and Marques, 2020). A large amount of production in emerging

economies travels to fulfill consumption in wealthy countries,

contributing to the renowned carbon leakage problem and the

embedded carbon emissions in exports not mentioned in the

production-based emission accounting.

Agriculture accounted for 16.5 billion tons of the world’s

total agri-food production in 2019, making it a substantial

contributor to greenhouse gas emissions and carbon dioxide

emissions in developed economies due to its reliance on fossil

fuels for its energy demands (UN, 2021). Although agricultural

output fell by 2% a decade ago, GHG emissions from farms

increased to 582 million metric tons in 2017. Nonetheless,

farmers help with CO2 emission confiscation efforts through

reforestation, wetland restoration, grassland preservation, and

eliminating greenhouse gases (Aguilera et al., 2021). The most

important takeaway from this research was identifying issues

and CO2 emissions associated with using liquid fuels in

developing and developed nations’ agricultural, industrial,

and commercial sectors. In addition, the existing hypothesis

and economic factors in the 22 countries influence the income-

induced EKC emissions from agriculture. This study

hypothesized that agriculture production in developing

countries would be more integrated than in developed

countries. In addition, the liquid consumption of developing

(Brazil, Argentina, Mexico, and Malaysia) countries is growing

due to agricultural and industrial production, while the

intensity level of CO2 emissions in developed (the

Netherlands, Germany, and Canada) and developing (Russia,

Qatar, and Malaysia) countries is higher. Agricultural goods’

production and consumption trends in developing and

developed countries are compared, as are the inputs required

to produce these goods. Agricultural output was evaluated

across a wide range of cereals, including wheat, rice, maize,

and more. From a global perspective, nine developing countries

and 13 developed countries are analyzed for their CO2

emissions and liquid fuel consumption in the agriculture

sector, with maize being the most intensively studied crop

and grain being the least.

Produced and consumed agricultural goods in developing

and developed countries are compared in terms of output and
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input patterns. It was a gauge of grain production in the

agricultural sector overall. Carbon dioxide emissions are

measured in terms of agricultural output in both developing

and developed countries (see Figure 1). There was a noticeable

decrease in the expected results across all commodities, with the

cereal output growth rate being the most noticeable. CO2

emissions associated with farming and grain harvesting are

shown in Figure 2. Using the estimated values for agriculture

(AGR) and cereal (CY), we first calculated the sum of ARG and

CY for whole years, and then we divided that number by the total

number of developing and developed countries’ sum of ARG and

CY values. This allowed us to determine the actual percentage of

individual countries in Figure 2 and Figure 3, and it allowed us to

examine the highest influence of explanatory variables with

percentages. The highest combined AGR and CY growth rate

is %. China has the highest cereal yield (in kilograms per hectare)

among developing countries due to its high value-added

agriculture, forestry, and fishing. In addition, 45 percent of

agricultural output is the root of 23 percent of C-LF.

Furthermore, Turkey has the highest AGR production at 6%,

including 2% each of C-LF and C-EM (Yu et al., 2020; Yang et al.,

2021b; Le, 2022).

There has been conflicting evidence from previous research

on the EKC’s effect on agricultural output. No clear distinction

can be made between the CO2 emissions emitted by agriculture

production and the emissions stimulated by the various methods

of cultivation practice and new mechanical strategies because not

enough research has been carried out to identify and examine the

FIGURE 1
Agriculture productions. Source: http://www.fao.org/3/x9447e07.htm#Notep.

FIGURE 2
Carbon emissions with agriculture and cereal production.
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impact of environmental degradation on agriculture, industries,

and trade (Xu D. et al., 2022; Gaies et al., 2022; Jiang et al., 2022).

The EKC development method was refined on the back of a

wealth of clean data, an abundance of serious resources, and a

massive natural windfall; as a result, it is a model that other

developing countries should emulate (Wang et al., 2021a; Chen

et al., 2022). The peak energy of intensity theory states that

energy rises during industrialization, reaches a peak, and then

declines, as borne out by CO2 emissions and the EKC. According

to the Sun, a carbon emission EKC peak occurred due to

abnormal economic and development growth only in

developing countries (Mardani et al., 2019; Yang et al., 2021a;

Yirong, 2022).

A portion of the literature investigates the relationship

between the EKC and national income and greater

environmental quality and their effects on developed and

developing nations (Balado-Naves et al., 2018; Balsalobre-

Lorente et al., 2021). The EKC starting point revealed an

inverted U-shaped relationship between per capita income

and energy intensity in developing countries, and the error

correction model identified CO2 emissions (Rashid Gill et al.,

2018; Ben Cheikh et al., 2021). By looking at the data and using

the existing EKC hypothesis, it was found that developed

countries have less inequality than developing countries

(Farooq et al., 2022). The evidence of the inverted U

hypothesis, concerning the relationship between economic

growth and inequality, contradicts the hypothesis. It indicates

that income inequality was greater in developing nations than in

developed nations, but after a certain point, economic growth

will reduce environmental pressure (Akram et al., 2020; Liu and

Lai, 2021; Tenaw and Beyene, 2021). We examine how

agricultural output affects the EKC, GDP growth, CO2

emissions, and energy consumption. CEM (C-EM and C-LF)

is depicted in Figure 3; as a developing country, the highest

carbon emission is recorded in Qatar, which accounts for 28% of

C-EM and 15% of C-LF, while a developed country such as

Canada accounts for 9% of C-EM and 10% of C-LF (Xu G. et al.,

2019). The lowest C-EM and C-LF are recorded in Nigeria and

Turkey in developing and developed countries (Billig et al., 2019;

Hao et al., 2020; Shabani et al., 2021). Due to CO2 spillage issues

and the need to enclose CO2 emissions, a sizable portion of the

developing world’s economic output is met by the generation

sector (Amin et al., 2020; Jiang et al., 2021). In this study, we

looked at 22 different nations and disentangled the growth in

CO2 emissions from the expansion of agricultural production

and the use of machinery in the field. This implication will aid in

shifting the focus of governments and private organizations in

developing and developed nations toward effective measures to

curb carbon dioxide (CO2) emissions (Lee et al., 2023).

Earlier research has shown a growing interest in the

intersection of agricultural products, industrial output, trade,

and energy efficiency for both the developed and developing

worlds. Three distinct categories may be drawn from the

literature on economic growth as affected by agricultural

output, commercial activity, industrial output, and ecological

factors. The first set of studies examined how economic

expansion affects environmental quality using the well-

established EKC hypothesis of an inverse U-shaped link

between economic expansion and environmental degradation.

At first (Rashid Gill et al., 2018), we considered the “grow now

and clean later” idea while discussing the significance of the EKC

hypothesis to the global environmental crisis. Governments

should create a unique policy for renewable energy by taxing

fossil fuels and subsidizing green alternatives to reduce pollution

levels. Growing first and cleaning up later was an idea explored by

Rashid Gill et al. (2018) as a solution to the world’s

environmental problems. Since energy is the single most

influential factor in determining environmental impact,

FIGURE 3
CEM of developing and developed countries.
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policymakers should provide incentives for renewable energy by

heavily taxing fossil fuels (Leal and Marques, 2020; Munir et al.,

2020; Wang and Yan, 2022). Expenditures on manufacturing and

overall economic growth were the subjects of the second body of

work (Odedokun, 1999). The monitoring sector’s impact on

economic growth was discussed in this literature (Hamilton

and Kelly, 2017; Du et al., 2022; Duan et al., 2022). Lastly, the

third group of researchers examined how agricultural practices

and carbon dioxide emissions interact (Li and Zheng, 2021; Deng

et al., 2022; Wang, 2022). Most of the research looked at how

CO2 emissions affected things such as agricultural output, GDP

growth, and industrialization; however, very few looked at how

developing and developed countries affected CO2 emissions.

To the best of our information, we found no previous

research that used panel data to examine the effects of the

EKC hypothesis on agricultural output across 22 countries

(nine developing and 13 developed). In light of those, as

mentioned earlier, this study contributes to our understanding

of the prior study by critiquing a subset of the EKC hypothesis

that proposes an inverted U-shaped relationship between

national income (while controlling for agriculture production

effects) and environmental quality in developing and developed

countries (Ridzuan et al., 2020; Jiang et al., 2021). In light of the

EKC hypothesis, this research seeks to identify important

implications for economic and environmental mitigation

policies by analyzing the connections between economic

growth, agriculture, cereal yield, renewable energy

consumption, industries and trade, and CO2 emissions in

both developing and developed nations. Additionally, this

study uses two distinct technical models to determine the

EKC effects, one of which (total CO2 emissions, C-EM) is an

endogenous variable and the other (CO2 emission, C-LF) is by

liquid sources.

The contribution of this study to the field of literature is

significant. Adopting the panel and quantile regression models is

the main advantage of these investigations as a robust answer to

the problems of agricultural goods, industrial production,

industries and trade, and energy efficiency. Second, most of

these studies emphasize the smart grid system and renewable

energy, while fossil energy is the main fuel in economic sectors.

There has been a lack of focus on agriculture products, industries,

and trade with energy consumption and CO2 emissions as well as

adjusting prices by using panel quantile regression models by

percentile. Third, the present study is similar to the previous

research in that it uses a panel quantile regression approach to

identify a correlation between energy consumption and

economic expansion. Fourth, there are fewer gaps in the

literature than in other studies. While it has already been

mentioned that transportation accounts for a significant

portion of total CO2 emissions, we also considered

agricultural activities an important source. In addition, the

current study is distinct because of its emphasis on energy

consumption, its use of a more expansive time frame for

precise analysis, and its evaluation of the disparity between

CO2 emissions from developing and developed countries’

energy consumption. A panel quantile regression method is

recommended for CO2 emissions from different countries

with non-additive fixed effects (FE) and random effects (RE).

The study confirms agriculture productivity through the use of

policy frameworks that are based on panel estimation (cross-

sectional dependence) techniques and focus on keeping and

altering the CLAD environment in countries. This study’s

panel quantile regression is novel and essential for foreseeing

the development of the agricultural energy market in both

developing and developed nations. Fossil energy consumption

and economic growth, particularly in the agricultural sector, may

be explored further in this study. Furthermore, it aids

policymakers in understanding the energy and climate

challenges they face. It organizes the structure of this study as

follows: Introduction provides a summary of the relevant

literature; Introduction demonstrates the procedure for

collecting data; Introduction provides an overview of the

study’s findings; and Introduction draws conclusions and

makes recommendations.

Data and methodology

Data specification

In estimations, panel data for 22 developing and developed

countries for the period 1991–2010 are used. Data availability also

affected the length of the extracted database’s data. Due to a

shortage of data, we only examined nine developing and

13 developed countries over the 25-year period. The data

definition and source are depicted in Table 1; twenty-five

countries’ varying degrees of social and economic development

are mapped out by the human development index (HDI). The

higher the HDI, the more advanced a country is, and developed

nations have an HDI of 0.8 or higher in terms of education, life

expectancy, and standard of living. As a result of data availability,

this investigation contacted 22 national economic datasets (Boyle,

2022). Analyzing environmental pollution (C-EM and C-LF),

energy consumption (REN), and economic growth (GNI, GNI2,

IDC, and TRD) across nine developing (Argentina, Brazil, China,

Mexico, Malaysia, Nigeria, the Philippines, Qatar, and the Russian

Federation) and thirteen developed (Australia, Canada, Chile,

Germany, France, Greece, Israel, Italy, the Netherlands,

Norway, Spain, Sweden, and Switzerland) countries at varying

income levels and within the context of the existing hypothesis of

the EKC. To provide a visual inspection of the variables, the

relevant line graphs of the panel variables are presented

(Appendix A).

The response variables are measured in metric tons per capita

(C-EM) is equivalent to metric tons per capita (C-LF), but C-LF

also considers liquid consumption in various economies. C-EM
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regressors have been selected and analyzed based on previous

research with similar aims (Kong and Khan, 2019; Chen X. et al.,

2020; Khan, 2021; Usman and Makhdum, 2021; Adekoya et al.,

2022; Shah et al., 2022). Consistent with previous findings, the

factors of C-EM-retained explanatory indicators are reliable.

Furthermore, concluding that there is a link between

CO2 emissions and economic growth that has been the

subject of numerous research studies, but the results have

been contradictory because both developing and developed

countries’ economic growth is examined when aspects such as

agriculture, trade, industry, and renewable energy are considered.

(Nwaka et al., 2020; Beyene, 2022; Farooq et al., 2022; Rehman

et al., 2022). On the other hand, the explanatory indicators such

as AGR, CY, REN, GNI, GNI2, IDC, and TRD can be studied in

detail in panels A and B. Table 1. Each residual in the set has its

descriptive statistics calculated. According to Table 2, the

experimental indicators of AGR, CY, REN, GNI, GNI2, IDC,

and TRD are inconsistent with the normal distribution

hypothesis, as determined by the Jarque–Bera statistics.

Moreover, given that the experimental indicators have been

log-transformed, the exponents’ regression coefficient can

be understood intuitively. The log-transformed version of

the data is altered to make it more roughly normal.

Explanatory variables of the CEM allow for greater

specificity, and the change in descriptive value over time

can be tracked. Across both developing and developed

countries, all CEM predictors are used, with C-LF having

the most impact on the average ARG value. Covariance is

used to examine the relationship between countries. The

explanatory factors are split into two panels (A and B) that

each focus on one of the two primary regressors (C-EM

and C-LF). Based on the data in Table 3, both C-EM

and AGR have negative covariance, with -0.124, and

C-LF and ARG have negative covariance, with -3.377.

These data suggest that both of these associations are

negative. Similarly, we find positive coefficients in the

covariance between C-EM and C-LF and CY, GNI, GNI2,

IDC, and TRD.

Methodology

In the first step, we calculated the descriptive statistics,

covariance, and unit root test of overall developing and

developed countries, and then in the second step, we

separately computed C-EM and C-LF in two panels. Next,

FMOLS, RE, FE, and quantile regression (QR) (QR (25), QR

(50), and QR (75)) for both developing and developed countries

overall were calculated (Table 4). We worked on the computation

for both groups so that the C-EM and C-LF results would be

more illustrative of developing and developed countries,

respectively (Table 5). The description of the model is shown

as follows:

TABLE 1 Panel variables.

Indicator Definition

Per capita CO2

emissions (C-EM)
Metric tons of CO2/population

Per capita CO2 emissions from
liquid fuel consumption (C-LF)

Agriculture, forestry, and fishing,
value added (AGR)

Agriculture comprises forestry, hunting,
fishing, and crop and animal production. The
added value is a value added to a sector’s net
output after deducting intermediate inputs
(constant 2010 US$)

Cereal yield (CY) Cereal yield, measured as kilograms per
hectare of harvested land (kg per hectare)

Renewable energy
consumption (REN)

Renewable energy consumption is the share of
renewable energy in total final energy
consumption (% of total final energy
consumption)

GNI per capita (GNI) GNI per capita is the gross national income/
midyear population (constant 2010 US$)

Squared GNI per capita
(GNI2)

Squared GNI per capita is the gross national
income/midyear population (constant
2010 US$)

Industry (including
construction), value added (IDC)

Industry and manufacturing. Value added is
the net output of a sector after adding up all
results and subtracting intermediate inputs (%
of GDP)

Trade (TRD) Trade is the sum of exports and imports of
goods and services measured as a share of the
gross domestic product (% of GDP)

All data are obtained from the World Bank Development Indicator (2020). https://

datatopics.worldbank.org/world-development-indicators/

TABLE 2 Summary of descriptive statistics.

Des C-EM C-LF AGR CY REN GNI GNI2 IDC TRD

Mean 0.937 0.534 10.692 3.598 1.312 4.415 9.041 1.462 1.805

Median 0.808 0.491 10.415 3.557 1.043 4.369 8.710 1.433 1.751

Std. deviation 1.026 0.451 10.998 3.246 1.325 4.329 9.207 0.924 1.537

Skewness 0.577 0.499 0.652 -0.180 0.206 -0.045 0.409 0.184 0.304

Jarque–Bera 3.835*** 3.889*** 4.062*** 1.629*** 2.529*** 1.900*** 3.310*** 2.806*** 3.006***

Observations 572 572 535 571 550 556 572 534 569

Table 1 shows the definition of the indicator. Des: descriptive statistics. Sources: author’s estimates based on the dataset.
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According to the Environmental Kuznets Curve (EKC)

model,

Cit � f(AGRit, CYit, RENit, GNIit, GNI2itIDCit, TRDit). (1)

For the two dependent indicators (C-EM and C-LF), we use

the notation Cit for carbon dioxide emissions. AGR’s calculation of

agricultural value added includes forestry, fishing, hunting, livestock

farming, and crop farming. In CY, we see the harvest of cereal crops

such as wheat, maize, and rice expressed as a percentage of the total

acreage. Use of eco-friendly power sources ismeasured in REN.GNI2

indicates the country’s total annual income divided by its midyear

population; this metric captures the way in which income has a non-

linear effect on environmental quality. The International Standard

Industrial Classification (ISIC) of All Economic Activities is reflected

in IDC’s value-added industry classifications. TRD refers to the

proportion of GDP that is generated through trade (exports and

imports).

CEMit � βo + β1AGRit + β2CYit + β3RENit + β4GNIit

+ β5GNI2it + β6IDCit + β7TRDit+θi + μit. (2)

The estimators suggest that β4 and β5 will have positive and

negative values, respectively. The coefficients of βs in Eq. 2

capture the effect of covariates on the response indicators

(CEMit), where θi and μit are the fixed effects of the state and

s is the stochastic error term with a mean of zero and a variance of

one. Unbiased distributed coefficient estimates were calculated

using panel data estimated with random effects (RE), fixed effects

(FE), and fully modified ordinary least squares (FMOLS)

estimators. Constraints require a model with impact in both

(cross section and period) dimensions, implying fixed and

random effects from the cross section. The relationship

between environmental quality and output follows an EKC

and an inverted U-shape.

Panel quantile regression

This model is predicated on examining the conditional

means of analysis (C-EM and C-LF) indicators across

countries, particularly emphasizing the condition determinants

of CO2 emissions. A linear link exists between the repressors in

panels A and B, thanks to the increasing approach of this model

to quantiles. Quantile regression (QR) was utilized to generate

objective estimates in the presence of probable outliers. Since

environmental deterioration is more severe in developing

nations, the QR technique (first, second, and third quantiles)

captures CEM elements that are extremely important to both of

these economic sectors. More income and secure economics

from expansion are more conscientious, and this effect grows

with the size of the economy. As a result, there might be

variations in how industrialized and emerging economies react

to environmental degradation. Agriculture is vital to the

environment’s health in many regions and plays a big role in

developing economies. This research departs from the standard

QR in favor of a panel data framework characterized by non-

additive fixed effects and the notion of an inseparable

disturbance. Accordingly, the repressors can interact with the

fixed effects of both developing and developed countries in this

research specification. As a result, the following equation is the

quantile specification for the panel:

Qτ (CEMit) � AGRitατ(μit) + Yitβτ(μit). (3)

Eq 3 revealed Qτ to be the conditional quantile of CEM such

that τ � (0.25, 0.50, and 0.75). Consequently, country-specific
heterogeneous effects μit � f(Øi, zit) are inextricable from the

indicators in the panel, and AGR is as stated, whereas Y captures

additional co-variables such as AGR, CY, REN, GNI, GNI2, IDC,

and TR.

TABLE 3 Covariance analysis.

Correlation C-EM C-LF AGR CY REN GNI GNI2 IDC TRD

C-EM 1.000

C-LF 0.566 1.000

AGR −0.124 −3.377 1.000

CY 0.293 0.255 0.092 1.000

REN −0.440 −0.308 0.014 −0.311 1.000

GNI 0.534 -0.813 −0.292 0.399 −0.020 1.000

GNI2 0.432 0.668 −0.215 0.259 0.186 0.934 1.00

IDC 0.243 −0.252 0.363 −0.122 0.048 −0.206 −0.01 1.000

TRD 0.251 0.171 −0.170 0.264 −0.221 0.135 0.13 0.322 1.000

Table 1 shows the definition of the indicators. Sources: author’s estimates.
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TABLE 4 FMOLS, random effect (RE), fixed effect (FE), and quantile regression across countries.

Variable FMOLS Fixed effect (FE) Random effect (RE) Quantile regression

Coefficient covariance matrix Residual
diagnostic

Coefficient
diagnostic

1st quantile 2nd quantile 3rd quantile

Default
(Hom-V)

Sandwich
(Het-V)

AC Wald
test

Ordinary White CS Ordinary White CS QR (25) QR (50) QR (75)

Panel A: Carbon emission (C-EM)

AGR 5.686*** 25.537*** 0.620 5.686*** 15.166*** 17.628*** 6.745*** 11.508*** 0.740** 2.216*** 4.863***

CY -3.289** -6.657*** 0.372 -3.289** 0.040** 0.437** -0.809** -0.0867** -1.053** 1.181** −4.441***

REN −10.224*** −27.249*** 0.180 −10.224*** −26.158*** −28.377*** −13.539*** −16.623*** −6.686*** −8.855*** −6.199***

GNI 5.801*** 10.798*** 0.141 5.801*** 7.555*** 8.895*** 7.068*** 6.840*** 7.659*** 11.018*** 5.879***

GNI2 −4.141*** −7.744*** 0.136 −4.141*** −4.602*** −6.204*** −4.873*** −4.216*** −2.440*** −4.165*** −4.296***

IDC 4.373*** 11.002*** 0.076 4.373*** 9.847*** 9.520*** 7.136*** 3.989*** 1.787** 1.461** 3.105***

TRD −3.525*** −6.325*** 0.034 −3.525*** −7.631*** −7.558*** −4.844*** −3.573*** 0.902** 3.744*** 2.096**

Constant - - - - −20.819*** 19.808** 6.050*** 5.143*** 1.062** 2.611*** 1.035**

Panel B: Carbon emission from liquid (C-LF)

AGR −0.158** −0.516** 0.530 −0.158** −2.926*** −4.409*** −1.637*** −2.374*** −1.521** −5.063*** −5.995***

CY −1.086** −1.863** 0.350 −1.086** −1.760*** −1.985** −4.463** −3.929*** −7.133*** −7.149*** −4.389***

REN −7.202*** −13.694*** 0.254 −7.202*** −13.806*** −14.313*** -9.597*** -9.327*** -14.469*** -12.440*** -7.906***

GNI 0.617** 1.172** 0.132 0.617** 0.570** 0.788** -2.293** -1.811** -3.140** -5.997*** -4.553***

GNI2 0.482** 0.936** 0.199 0.482** 1.118** 1.366** 5.247*** 4.136*** 10.260*** 13.909*** 8.658***

IDC 3.956*** 7.787*** 0.069 3.956*** 5.795*** 6.407*** 5.873*** 3.821*** 0.268** 3.158*** 2.193**

TRD -3.061*** -7.111** 0.006 -3.061*** -6.086*** -5.932*** -4.413*** -4.221*** 1.053*** 0.0274** -0.132**

Constant - - - - 11.502*** 15.214*** 6.510*** 5.329*** 9.216*** 3.398*** 3.481***

To clarify, the indicators are defined in Table 1. The difference between homogenous (Hom-V) and heterogeneous (Het-V) variance: author’s projections. Values of R-square for FE (0.990) and RE (0.515) have been calculated using panel A weighted

statistics. Durbin–Watson test probabilities are 0.616 and 0.926. Observations (n = 497) in 22 cross sections yielded R-square values of 0.970 and 0.294 for FE and RE, respectively, in panel B, while the Durbin–Watson statistic was 0.519 and 0.542,

respectively. White’s cross-section and Swamy–Arora’s weighting have been used to calculate the coefficient covariance method of random effects. It uses the correlogram test and the AC (6-lag specification) to derive the residual diagnostic indicators. The

notation *** indicates a 1% significance level, ** a 5% level, and * a 10% level. Same as in Table 5, both panel A (P.A) and panel B (P.B) are abbreviated as (P.B). Var denotes a set of variables. Using the aforementioned method, the countries of the world are

divided between panels A and B, with developing countries in A and developed countries in B.
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TABLE 5 FMOLS, random effect (RE), fixed effect (FE), and quantile regression of developing and developed countries.

Country Panel Var FMOLS Fixed effect (FE) Random effect (RE) Quantile
regression

Coefficient covariance
matrix

Residual
diagnostic

Coefficient
diagnostic

1st quantile 2nd quantile 3rd quantile

Default Sandwich AC Wald
test

Ordinary White CS Ordinary White CS QR (25) QR (50) QR (75)

Developing P.A (C-EM) AGR 8.354*** 19.610*** 0.555 8.354*** 6.871*** 11.297*** 5.558*** 13.628*** 4.312*** 3.799*** 9.443***

CY -10.291*** -26.993*** 0.348 -10.291*** -2.736** -3.078** -2.673** -3.916** -2.172** -2.343** -22.845***

REN -8.014*** -25.940*** 0.211 -8.014*** -4.358*** -2.591*** -4.202*** -5.866*** -4.932*** -2.514*** -13.265***

GNI -6.272*** -13.200*** 0.099 -6.272*** 3.101*** 3.287*** 6.216*** 6.367*** 4.445*** 3.957*** 5.685***

GNI2 8.486*** 19.080*** 0.058 8.486*** -0.512*** -0.572*** 2.868*** -1.684*** 5.325*** 3.505*** -1.809***

IDC 0.981** 2.667** 0.017 0.981** 3.792*** 4.383*** 3.099*** 2.717*** -0.356** 0.325** 0.648**

TRD -1.789* -3.128* -0.001 -1.789* 1.070*** 1.115** 0.261** 0.181** 3.714*** 1.977** 0.553**

Constant - - - - 5.492*** 4.518** 1.786*** 1.957*** 2.133** 1.757** 6.179**

P.B (C-LF) AGR -22.996*** -49.768*** 0.766 -22.996*** 3.711*** 3.674*** -1.903** -2.576*** -1.208** -2.868*** -2.793***

CY 17.617*** 40.899*** 0.540 17.617*** -3.517*** -3.831** -4.729** -5.865*** -4.887*** -5.958*** -6.124***

REN 21.078*** 53.304*** 0.372 21.078*** 0.059** 0.063*** -5.656*** -3.771*** -8.484*** -7.230*** -3.804***

GNI 32.876*** 61.964** 0.222 32.876*** -0.738** -0.791** 9.080*** 6.995*** 17.686*** 9.331*** 6.805***

GNI2 -33.940*** 66.998*** 0.082 -33.940*** 2.494** 2.441** -7.717** -4.258** -12.314** -6.868*** -5.061***

IDC 3.343*** 6.843*** -0.045 3.343*** 0.060** 0.771** 3.675** 2.026** 3.526** 3.594*** 3.156**

TRD 6.527** 11.198** -0.130 6.527** 4.024*** 4.117*** 1.884** 1.558** 0.528*** 0.172** 1.052**

Constant - - - - 3.460*** 4.781*** 1.621*** 0.862*** -0.425*** 0.269*** 0.159***

Developed P.A (C-EM) AGR -0.740** -1.616*** 0.573 -0.740** -0.635*** -0.672*** -1.145** -1.831*** -4.245*** -8.646*** -8.268***

CY -1.618** -2.337*** 0.228 -1.618** -0.235** -0.235** -1.273** -1.135** -3.573*** -1.736** -0.818**

REN -12.036*** -22.088*** 0.002 -12.036*** -22.602*** -26.723*** -14.577*** -27.556*** -19.310*** -20.140*** -15.436***

GNI 3.756*** 5.657*** -0.018 3.756*** 6.405*** 8.694*** 4.590*** 4.837*** 1.210** 2.470*** 2.536***

GNI2 -2.566*** -3.979*** 0.031 -2.566*** -4.068*** -5.165*** -2.877*** -2.969*** 2.416*** 3.393*** 1.517***

IDC 5.447*** 11.186*** -0.011 5.447*** 10.536*** 9.943*** 6.429*** 4.807*** 1.236** 2.425** 3.600**

TRD -0.365*** -0.590** -0.052 -0.365*** -4.101*** -5.231** -0.886** -0.921** 4.770*** 2.598** 0.277**

Constant - - - - 10.791*** 11.966** 5.670*** 5.951*** 2.727** 8.184** 10.564**

P.B (C-LF) AGR -3.233** -5.671*** 0.364 -3.233** -7.866*** -11.975*** -4.951** -7.227*** -12.458** -13.899*** -15.788***

CY -2.384** -3.240*** 0.127 -2.384** 1.077** 1.117** -2.137*** -1.573** -4.174*** -3.623*** -3.842***

REN -9.445*** -14.919*** 0.052 -9.445*** -16.102*** -18.620*** -10.132*** -8.916*** -9.923*** -8.617*** -5.413***

(Continued on following page)
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Quantile decomposition

Given that previous research (Koenker and Bassett, 1978;

Koenker, 2004; Siriopoulos and Pomonis, 2009; Nwaka et al.,

2020) on regression analysis suggests that the ordinary least

square (OLS) regression method’s predictions do not qualify as

effective predictions when their assumption is not met, this study

uses the quantile regression technique to further investigate the

conditional determinants of CEM in developing and developed

countries (JW, 2000). It is important to note that if the variance

has a heterogeneous structure, the OLS analysis may not provide

an accurate estimate of the B vector. Quantile regression models,

which consider the heterogeneity structure and quantile structure

of the data, are one alternative regression model we need in this

situation (Katchova, 2013; John and Nduka, 2009). Due to the

fact that no assumptions are made about the distribution of the

error term it predicts (John OO, 2009; A K., 2013), quantitative

regression model estimates are more robust and versatile than

those from the OLS model (Belaïd et al., 2020; Raghutla et al.,

2022; Sun et al., 2022). The conditional mean (anticipated mean

value) of the response of the dependent variable to the

independent variable is used to make predictions in the OLS

technique. Quantile regression (Ike et al., 2020; Sun et al., 2022),

on the other hand, seeks to estimate not only the median but also

the 25th, 75th, and 90th quantiles of the response variable,

among others (Xu and Lin, 2018; Iddrisu and Alagidede, 2021).

The sequence of economic variables is not assumed to be

normally distributed in the quantile regression first proposed by

Koenker and Bassett (1978) and refined by Koenker and Hallock

(2001). Models for the selected quantities in the conditional

distribution of the dependent variable are established via quantile

regression (Xu X. et al., 2019; Akram et al., 2021; Cheng et al.,

2021). Herein, quantile regression approaches are used in both

panels A and B to compare and contrast the perceptions of

various income groups in developing and developed countries

with respect to environmental degradation (as measured by

AGR, CY, REN, GNI, GNI2, IDC, and TRD). At last, Eq 4

depicts the panel quantile regression model.

Qτ(CEMLIG
it ) − Qτ(CEMHIG

it ) � [Qτ(CEMcHIG
it )

− Qτ(CEMHIG
it )]

+ [Qτ(CEMLIG
it )

− Qτ(CEMcLIG
it )] (4)

In Eq 4, t represents the year, and i stands for either a

developing nation or a developed nation. The regressors,

CEMLIG
it and CEMHIG

it , reflect the carbon emissions of low-

and high-income nations, respectively; the regressor of CEM

also displays the distributions of counterfactuals for LIG and

HIG. Since agriculture is the LIG in these developing

countries, a comparison of environmental quality and

economic features is necessary. Regression by quantiles is

captured by Qτ (first, second, and third quantiles).T
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Consistent with earlier research, various economic and

agricultural factors cause varying degrees of income

capture in developing and developed countries.

Findings and results

Panel cointegration test

Unit root tests and cointegration tests, which take cross-

sectional dependence into account, must be run before

estimations can be performed to determine whether or not

the variables are cointegrated and to determine whether the

variables follow an I (0), I (1), or higher order integration

process. In light of this, we then conduct panel stationary and

cointegration tests while considering cross-sectional dependency.

Over time, statistical evidence leads to the conclusion that the

variables are I (1) and cointegrated, indicating that the variables

have a long-run relationship. Estimations can be made using

Fully Modified Ordinary Least Squares (FMOLS), fixed effects

(FE), random effects (RE), and quantile regressions based on the

outcomes of unit root and cointegration tests (QR). More

instruments can be included with the first-difference

assumption in the explanatory variables, making the method

more effective and efficient. CEM’s effect on various explanatory

variables is to be examined under the directive (Wu et al., 2018;

Hung et al., 2022; Mirziyoyeva and Salahodjaev, 2022). When

conducting a test for a unit root on an estimate of a residual, it is

important to account for differences in methodology by location

and over time. Developed and developing nations have

contributed to contemporary analyses examining long-run

cointegration relationships. Individual intercept, trend, and the

absence of cointegration are all statistically rejected by the

Padroni panel test in panel ADF. Unit root tests for single

countries in both the developed and developing nations yield

the same statistically mean value for the individual autoregressive

coefficient (Iranmanesh and Jalaee, 2021; Xu L. et al., 2022).

Whether the panel data processes are stationary or not

specifies in the selection of the regression model; if the panel

data process is non-stationary, the conformist OLS estimation

method would lead and solve a spurious problem in regression.

Therefore, it is essential to examine each variable and indicate the

stationary level via the unit root test (Liddle, 2012). There are

four sorts of determined panel unit root tests that guarantee the

accuracy, of results. Thus, according to first-generation tests such

as common root-Levin, Lin, and Chu (LLC), Breitung,

individual Im, Pesaran, and Shin (IPS), augmented

Dickey–Fuller (ADF), and individual root-Fisher-PP and

Hadri have been computed individually from all

explanatory variables (Kao C, 1995; Pedroni, 2001;

Apergis and Payne, 2009). The Padroni panel test by a

statistical technique (Kao) was investigated, where the

panel’s cointegration was used with ADF, PP, and rho

statistics, and the test results showed the dynamic residual

value. A study of the Padroni panel test for cointegration is

presented for CEM in developing and developed countries.

Calculating an autoregressive coefficient for the estimated

residual and running a unit root test are possible when we

account for variability across nations and over time, as in the

dimensional approach to statistics.

After that, we calculated the cointegration test using the

individual unit root tests of Pedroni and Kao based on the

Engle–Granger method and Fisher (combined Johansen) with

a lag of one period and a residual to adjust for errors. Testing for

cointegration using the Padroni panel is investigated (Appendix

B). Fisher’s panel cointegration test is another dynamical

approach that has been used for Johansen’s causal method

(Appendix C). Together, the p values of the Johansen trace

statistics and the eigenvalues are used to reject the null

hypothesis of no cointegration in this panel cointegration test

(Ai et al., 2021; Koç and Gülmez, 2021). Furthermore, developed

and developing nations have contributed to the modern series

analysis of long-run cointegration relationships. Non-stationary

indicators increased the likelihood that panel A and B models

contained false data estimation of cointegration regression using

fully modified ordinary least squares (FMOLS), with an emphasis

on the maximum likelihood approach (Choi, 2001; Wang et al.,

2021b). Due to the linear trend specification by trend variable

assumption, a non-stationary estimate necessitates a triangular

system of equations. The trend coefficient in each cross section

was analyzed separately for developing and developed countries.

Panel regression

Panels A and B of Tables 4 and 5 display the FMOLS

regression and the results for each dependent indicator (C-EM

and C-LF, respectively) under both fixed and random influences.

The effect of FE and RE regressions is analyzed and compared

using standard error, and the results are stable against the

occurrence of cross-sectional influences (Bui et al., 2021; Dong

et al., 2022). For the FE estimator, we utilize fully modified OLS to

control for random intercepts. The non-parametric method of

analyzing panel data for properties of heterogeneous serial

correlation is enhanced by this method. Both the FE and the

RE demonstrate the FE’s usefulness in relation to the other

model. As a result, the FMOLS will be the basis for the

analysis as estimated and reported by the FE. The middle of

the output is where you can access the estimated panel

coefficients (A and B). The expected cointegrating vector (CV)

for C-EM and AGR, CY, REN, GNI, GNI2, IDC, and TRD is

defined by the coefficients on these variables. C-EM and C-LF

had their standard errors and t-statistics (p values) tested. First,

instead of using the FMOLS transformation, we analyze all of the

fit statistics with the raw data. After removing the deterministic

components from the experimental indicator and the regressor,
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the non-stationary model performs standard FMOLS on the

pooled sample. According to default (homogenous variance)

and a sandwich (heterogeneous variance) in the coefficient

covariance matrix with d. f., the long-run covariance is

calculated for pooled FMOLS estimation. The indicators in

both panels A and B are statistically significant, and their

results are not affected by the estimators used.

The results estimated using C-EM and C-LF for both

equations in panels A and B reveal some latent pragmatic

dynamics. The results of the EKC hypothesis are valid in

22 countries (nine developing and 13 developed countries).

However, C-LF is more prevalent in developing nations and is

utilized in all robust results. The GNI has a positive correlation

with the coefficient of the covariance matrix in panel A, which is

5.801. In panel B, however, the GNI results revealed a positive

correlation of 0.617. A 1% change in AGR is associated with a

-4.409% increase in environmental degradation, indicating that

AGR has a positive and significant influence on C-LF. In

developing nations, environmental issues are influenced by

agricultural activity; likewise, deforestation for feed crops,

burning of biomass, and deep soil agriculture (Abdurrahman

et al., 2020; Hao et al., 2020; Dong et al., 2022). The AGR

indicator shows a negative association, as shown by the

countervailing impact of the C-EM measure of environmental

degradation. That means a change of just one percent in AGR can

result in a 15.16 percent drop in total emissions of carbon

dioxide. The results indicate that it does not imply a

reduction in overall carbon emissions in developing and

developed nations but rather a reduction in mechanization-

induced emissions from agriculture (Rabnawaz, 2021).

Agriculture exports may also imply that the industrial sector

(IDC) in developing and developed economies is fuel-intensive

(Shahzad et al., 2020). Across developing and developed

economies, an inverted U-shape is observed. Nonetheless, this

may imply that developing economies focus on economic growth

rather than ecological quality in the short-term and long-term

effects of sustainable environmental techniques. Adopting

renewable energy (REN) mitigates environmental degradation

using both CEM and industrial revolution indicators. However,

the high consumption in developing countries degrades

environmental safeguards by increasing the C-LF. In both

panels, the TRD openness decreased. Also, emerging nations

(Brazil, Mexico, and Russia) have high trade values, whereas

developed nations (Spain and Canada) have low IDC. C-EM fell

by -7.631 percent and C-LF by -6.089 percent for every

percentage point change in trade openness. These outcomes

revealed the economic structure and nature of international

trade in developing and developed economies (Jiao et al.,

2020; Kicińska and Wikar, 2021; Zhou et al., 2022).

Despite the fit that Durbin–Watson FE (0.616) and RE

coefficient restriction (CR)/the Wald test estimated output

results with a CV of (1,-1) and coefficient restrictions (CR)

with “C (1) = 0,” t-statistics (p value) estimates suggest that

we do not accept the null hypothesis of the panels A and B that

the coefficient value of the cointegrating regressor is equal to

1 under linear restriction. The estimated result of the t-statistics

(p value) is around 0.000, indicating that we rejected the null

hypothesis of the panels (A and B) that the coefficient value of the

cointegrating regressor is equal to 1 with linear restriction. At lag

6, d. f. = 6, and the residual diagnostic value of Akaike AC’s (-2 (l/

T)+2k/T) is estimated (reporting the correlogram Q-statistics).

Panels A and B both have p values below 0.05 (at 0.034 for the

TRD and 0.006), indicating that the residuals are random noise

and permitting us to reject the null hypothesis; this holds true for

lags 1 through 6. Fixed effects (FE) and random effects (RE)

models were used to estimate the pool equation. Regressors

(AGR, CY, REN, GNI, IDC, and TRD) and only cross-

sectional identifiers (for the FE) are used to analyze a

regressing model (panels A and B) in both the FE and RE.

We investigate the coefficient of covariance for the default and

white cross sections in accordance with Tables 4 and 5.

Additionally, the default and white cross sections are used to

evaluate the coefficient standard errors (CSEs) and robust

coefficient covariance (RCC). The cross section, period, and

idiosyncratic error components of S.D. and rho in FE and RE

are used to measure the effect specification (ES). The fraction of

regressor variation is shown by the intra-class correlation or rho.

Quantile regression

When it comes to estimating the median response, the least

absolute deviation (LAD) estimator that best fits the bill is the

quantile regression (QR) estimator. Compared to conditional

mean analysis, conditional distribution analysis is a more in-

depth method. The first, second, and third quantiles are

displayed in panels A and B. The regressors affect the model’s

25th, 50th, and 75th percentile response indicators. By using

quantile regressions, this study not only looks at the effects of

emissions across different groups but also highlights the most

significant period. Hence, the model describes the 25th percentile

(0.25 quantile), 50th percentile (0.50 quantile), and 75th

percentile (0.75 quantile) in terms of carbon emissions. A

strong distributional assumption is not necessitated by the QR

method. The focus here is on a robust method (RM) for creating

such connections. Panels A and B contain the results of the

explanatory indicators, and their findings are discussed here. In

Tables 4 and 5, we also show the 25th, 50th, and 75th percentile

values for the diverse factors contributing to environmental

degradation. This variation in quantiles between developing

and developed countries’ determinants of environmental

degradation is reflected in the conditional determinant

estimates of panels A and B’s equations. The effect of AGR

on C-EM and C-LF is highly variable and statistically significant

at the QR (25), QR (50), and QR (75) quantiles in the total

equations presented in panels A and B.
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The estimation results from the panel FMOLS, FE, RE, and

quantile regression (QR) analyses are presented in Table 4. The

estimated AGR in terms of C-EM from FMOLS, FE, RE, QR (25),

QR (50), and QR (75), respectively, is 5.686, 15.166, 6.745, 0.740,

2.216, and 4.863. All of them are significant at the 1% level.

However, the effects of AGR on C-LF as determined by

FMOLS, FE, RE, QR (25), QR (50), and QR (75) are,

respectively, -0.158, -2.926, -1.637, -1.521, 5.063, and -5.993.

According to a hypothetical expectation, the AGR has a

negative impact on C-LF, and all coefficients are

determined to be significant at the 1% level (Bilgili et al.,

2021). As a result, utilizing the QR (25), QR (50), and QR

(75) of real income in terms of C-EM and C-LF, AGR is

linked to environmental degradation. We calculated

expected outcomes for CY, REN, GNI, GNI2, IDC, and

TRD in terms of C-EM and C-LF in the same manner.

According to a hypothetical scenario, CY, REN, GNI, and

TRD have a detrimental impact on C-EM and C-LF. Herein,

Table 5 also showed that CY, REN, GNI, and TRD negatively

impacted C-EM, whereas AGR and GNI2 negatively

impacted C-LF in developing nations. In the case of

developed nations, the anticipated outcomes of AGR, CY,

and REN reveal a detrimental impact on both C-EM and

C-LF (Awan et al., 2022). As per the EKC, it worked

particularly well at QR (50) and QR (75) but only

moderately well at QR (50), proving its validity. Figure 3

indicates that both Canada and Qatar are among the top

carbon emitters among both developed and developing

nations. Nigeria, the Philippines, Brazil, Chile, and

Argentina all had results that supported the EKC theory.

Furthermore, Canada, Qatar, Russia, and the Netherlands are

among the top QR (50) countries in terms of per capita carbon

emissions, and the effect of real income in these developing and

developed economies is consistent with the inverted U-shaped

pattern Kuznets curve (EKC) hypothesis (Mehmood Mirza et al.,

2022). The quantile results for C-LF consumption show that

despite the greatest influence and having a significant pollution

abatement effect, all indicators, with the exception of CY and

IDC in QR (50), where the cereal yield and industry association

have a little low effect, are presented in Figure 3. This includes

countries such as France, Italy, Norway, and Germany. As

quantile-based mean estimators, AGR, REN, and TRD all

show nearly identical influences. The CEM intensity level is

shown in Tables 4 and 5, in panels A and B, per the

prevailing EKC hypothesis. From 1991 through 2016, the

developing and developed countries changed over time. The

largest AGR was anticipated to occur in China in 2016, with

C-EM and C-LF levels forecast to be -0.3 and -0.6, respectively.

Because China is a developing nation, it has modified its

agricultural technology and decreased its intensity. With the

exception of China, all other developing countries (including

Qatar, Malaysia, Nigeria, and the Russian Federation) exhibit a

high intensity level in AGR, CY, TRD, and especially IDC.

Similar to Qatar, 2003 saw the highest intensity, estimated at

7.7, while 2016 saw the lowest, at 0.3, for C-LF. The highest C-EM

value was also recorded in 2002. However, the developed

countries have a significantly lower level of intensity in AGR,

TRD, CY, and REN than developing nations such as Turkey,

Sweden, and Norway.

Discussion

The quantile decomposition analysis for CEM emissions

reveals that unidentified factors outside the research model

contribute to the carbon emission gap between LIG and HIG

due to different developing and developed economic

structures and environmental policy frameworks.

Nonetheless, C-LF and C-EM are disproportionately high

compared to observed economic factors and agriculture.

Table 4 shows the results of an FMOLS, FE, RE, and cross-

country quantile regression (QR (25), QR (50), and QR (75))

analysis for all 22 countries, including nine developing and

13 developed nations, with panels A and B providing separate

elaborations on the existence of the EKC hypothesis in terms

of CEM. Panel A shows a positive effect for AGR, GNI, and

IDC, while panel B shows a favorable effect for GNI, GNI2, and

IDC. Based on the projected results, a one percent shift in an

explanatory indicator seems to have a far larger impact on

C-EM than on C-LF. Results for nine developing nations and

13 developed countries are shown in Table 5. Estimates imply

that developing countries have a greater degree of similarity in

their growth plans and C-EM shifts (Farooq et al., 2022).

Assumptions used in the EKCmodel of CEM are valid for low-

income nations, but their predicted outcomes fall short of the

achievements of high-income countries. Further explanation

of the empirical investigation of environmental degradation

caused by agricultural output, economic growth, trade

openness, renewable energy, industry, and trade

implications is as follows.

Research by the United Nations Food and Agriculture

Organization (FAO) shows that emissions from forestry,

agriculture, and fisheries have increased in the last 50 years

and are projected to increase by 30% by 2050. As developing and

developed countries increase their energy demands, CO2

emissions continue to rise and have reached a record high for

the fourth consecutive year (Rapier, 2020). Consider that Asia is

home to only 4.3 billion people or 60% of the world’s population.

Table 5 reveals that the current EKC hypothesis predicts that

AGR and GNI2 have the greatest impact on attitudes in panel A,

whereas the least optimistic estimates are seen in panel B, which

represents emerging countries. In addition, the CEM emissions

per capita in developing countries are currently greater than

double those in developed nations due to the 1 percent

population growth in these regions. Concerning AGR, Brazil

and Malaysia for panel A and China and Qatar for panel B had
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the highest CO2 emissions intensity. To be more ecologically

sound, CEM must strike a balance between mechanization and

inappropriate cultivation practices that call for greater additives

and accuracy (Chen J. et al., 2020; Munir et al., 2020). The EKC-

high effect of AGR output is positive for all QR (25), QR (50), and

QR (75) in China, Qatar, and Malaysia in panels A and B. High

intensity is shown in Turkey, Germany, and Greece (all

developed countries) in panel A and France, Italy, and Turkey

(all developed countries) in panel B. Low- and high-income rural

and urban farmers are still needed, especially in developing and

developed nations. This inference may explain why agriculture

has a range of impacts on CO2 emissions.

It is predicted, however, that developing nations like those

that rely heavily on agricultural exports and primary sector

exports would have the same growth and development in

agriculture and trade as developed countries (Li et al., 2020;

Zubair et al., 2020). In addition, the coefficients for various

economic activities reveal that the effects of agriculture and

international trade are supported by more robust statistical

evidence than those involving any particular economic sector

(Nasir et al., 2021). Table 5 shows that the REN, GNI, and GNI2

of developing nations such as Argentina, Mexico, China, and

Nigeria and developed countries such as Germany, France, Italy,

and the Netherlands, have a significant impact on the EKC

hypothesis for C-EM. Comparing the developed nations such

as Germany, Italy, and Sweden to the developing nations such as

Brazil, Qatar, and Nigeria, C-LF reveals the existence of the EKC

hypothesis in all six countries. By comparing the emission rates

of developing and developed countries, we find that the EKC

hypothesis for C-EM and C-LF holds true for higher emissions,

with the EKC hypothesis verified for Qatar, Italy, and China (Xu

and Lin, 2020). Moreover, it shows that environmental policy

formulation has occurred in both high and low economies, and

the heterogeneity of gaseous and solid fuel use between countries

can substantially impact emissions (Wada et al., 2021).

The EKC hypothesis for C-EM is profoundly affected by the

IDC and TRD practices of both developing nations such as

Argentina, Mexico, Brazil, and Malaysia and industrialized

nations such as Greece, Turkey, and Spain. C-LF shows that

the EKC hypothesis holds true in all five countries when

comparing developed nations such as Germany, Greece, and

Turkey to developing nations such as Qatar and Malaysia.

Estimated results of quantile regression have a distinct non-

standard and favorable pattern in both panels, even though

renewable energy is consistently negative in developing and

developed nations. Long-term economic growth in developing

countries positively correlates with renewable energy, while

renewable energy costs negatively correlate with C-EM and

C-LF. As a result, renewable energy interacts with carbon

emissions from the use of liquid fuel to boost economic

growth and social progress in both developing and developed

nations. In developing countries, it is more consistent because it

detects a negative dynamic in CO2 emissions and holds up well

across different means of estimation (Omri and Belaïd, 2021). In

last, it is possible that developing economies’ industrial sectors

are weaker than those of developed economies according to these

estimates. When looking at QR (25), the effect of C-LF becomes

more significant (p < 1), and this indicates that developing

countries’ energy consumption rises along with technological

advancement (Hu et al., 2021). The industrial revolution has been

crucial to the expansion of the global economy. It has a positive

and statistically significant impact on both panels. C-LF impacts

economies, as shown by the negative effect of trade in QR (25)–

QR (75) in developing countries.

Conclusion and recommendation

Impacts on agriculture (AGR), cereal yield (CY), renewable

energy consumption (REN), gross national product (GNP),

industrial output (IDC), and international trade (TRD) are

analyzed for both developing and developed nations. Using

sinusoidal data from 22 to nine developing and 13 developed

countries, it examines environmental degradation from two

CEM (C-EM and C-LF) sources from 1991 to 2016. This

research used panel quantile decomposition methods with

FMOLS to examine the gap in CO2 emissions between low

(LIG) and high (HIG) economies and the relationship

between AGR and economic factors at varying income and

CO2 emitter levels. As shown in the estimated results, a wide

range of factors contribute to environmental quality across both

developing and developed countries, from those with high to

those with low levels of CO2 emissions. These recommendations

are presented as an expected result of the aforementioned. To

begin, the developed (France, Italy, and Spain) and selected

(China, Brazil, and Nigeria) countries must eliminate crude

agricultural practices caused by land fragmentation. In

addition, the increased production of agricultural goods and

the widespread practice of burning brush have debilitating

ecological consequences. More farming needs to be carried

out in developing nations, both in terms of cultivating

techniques and applying new sustainable methods.

Second, the government in developing countries should be

given the authority and the means to implement strategies to

prevent and reduce the risk of CO2 emissions in urban areas. In

addition, the ongoing evolutions of eco-friendly practices that

safeguard soil, cut greenhouse gas emissions, and lessen the energy

use. Third, the Agricare conservative agriculture approach, based

on strip cropping and no-till farming, needs to be introduced to

developing countries along with improved precision agriculture

techniques. In addition, expanding populations and booming

economies are major contributors to rising atmospheric carbon

dioxide levels. In this scenario, the effects of widespread

technological adoption on carbon emission reduction are

outweighed by population and economic growth. In this study,

we find that the developed world is cutting back on carbon
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emissions, thanks to the countervailing effects of technology and

nuclear power plants on their use of oil and other energy sources,

while the impact of alternative energy sources on the consumption

patterns of developing nations is significant but in flux. Human

activity cannot be discounted as a significant contributor to global

warming’s onset at an earlier stage in the industrial revolution and

economic development. Nonrenewable fossil fuels are the primary

source of carbon emissions; depending on their abundance

characteristics, oil, gas, coal, and nuclear sources all contribute

differently to the temperature rise in industrialized nations.

More importantly, both the private and public sectors are

committed to fostering positive change in agriculture via natural

methods and advancing more sustainable economic models. In

fourth place, it is important to promote the adaptation of

renewable energy innovations in underdeveloped nations and

the use of energy-saving practices and all-natural strategies for

preventing and reversing environmental degradation. It would

make the switch to a cleaner industrial economy in developing

countries possible. To solve the fundamental issues of low

industrial capacity, food shortages, and unsustainable

manufacturing practices, agricultural and industrial products

in both developing and developed countries should be stable.

Furthermore, 22 countries, both developed and developing, may

gain social stability and employment opportunities as a result of

modernized technologies. As a final goal of our research, we hope

to encourage developed countries to take environmental

protection measures by using environmental performance as a

test case for the EKC hypothesis in future studies.
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Appendix A: All data are obtained from the World Bank Development Indicator
(2020). https://datatopics.worldbank.org/world-development-indicators/

Appendix B: Padroni (Engle–Granger based) test.

Appendix C: Johansen–Fisher panel cointegration test.

Panel A: Within dimension

Panel cointegration
test

Carbon emission (C-EM) equation Carbon emission from liquid (C-LF) equation

Common AR Individual intercept Individual intercept and
trend

Individual intercept Individual intercept and
trend

Statistic Weighted
statistic

Statistic Weighted
statistic

Statistic Weighted
statistic

Statistic Weighted
statistic

Panel v-statistic −0.346** −0.876** −0.064** −1.658** −1.248** −2.367** −3.416** −4.269*

Panel rho-statistic 2.65** 1.324** 3.28* 2.540** 1.831** 1.567** 5.176* 3.729**

Panel PP-statistic −0.419** −1.630** 2.087** −3.257** −3.809*** −6.348*** 0.272** -8.118***

Panel ADF-statistic −0.120** −0.200** 1.054** 0.348** 1.057** -1.659*** 4.258** -2.371***

Panel B: Between dimension

Individual AR Statistic of individual AR coefficients

Individual intercept Individual intercept and trend Individual intercept Individual intercept and trend

Group rho-statistic 3.067* 5.024** 4.162* 5.854*

Group PP-statistic −1.936*** −3.149*** −7.329*** −10.688***

Group ADF-statistic 0.268** 1.559** −1.010** −1.110**

To clarify, the indicators are defined in Table 1. Sources: author’s estimates. A criterion developed by Info Schwarz was used to determine the lag length. *** stipulate at the level of 1%, **

stipulate at the level of 5%, and * stipulate at the level of 10%.

Hypothesized
no. of CE(s)

Carbon emission (C-EM) equation Carbon emission from liquid (C-LF) equation

Fisher stat.* (from
the trace test)

Fisher stat.* (from
the max-eigen test)

Fisher stat.* (from
the trace test)

Fisher stat.* (from
the max-eigen test)

None 890.5*** 670.2*** 807.5*** 689.9***

At most 1 468.9*** 338.9*** 541.5*** 329.1***

At most 2 248.7*** 130.4*** 397.2*** 211.9***

At most 3 366.7*** 274.1*** 131.5*** 263.0***

At most 4 126.8*** 81.66*** 115.1*** 45.21***

At most 5 124.0*** 75.12*** 95.51*** 64.91***

At most 6 80.34*** 81.35*** 62.32*** 61.32***

To clarify, the indicators are defined in Table 1. Sources: author’s estimates. The asymptotic Chi-square distribution was used to calculate the selected probabilities based on the lag (11) and

the criterion of Info Schwarz standard. ***Stipulate at the level of 1%, **stipulate at the level of 5%, and *stipulate at the level of 10%.
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