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The increased climate change is having a huge impact on the world, with the

climatic change sensitive and vulnerable regions at significant risk particularly.

Effective understanding and integration of climate information are essential. It

helps to reduce the risks associated with adverse weather conditions and to

better adapt to the impacts of climate variability and change. Using the hindcast

data from Japan Meteorological Agency/Meteorological Research Institute

(JMA/MRI) coupled prediction system version 2 (JMA/MRI-CPS2), National

Centers for Environmental Prediction (NCEP) Climate Forecast System

model version 2 (CFSv2), and Canadian Centre for Climate Modeling and

Analysis (CCCma) Coupled Climate Model, versions 3 (CanCM3) seasonal

prediction model systems, the performance of seasonal prediction for global

surface temperature in boreal summer andwinter is comprehensively evaluated

and compared for 1982–2011 from the perspective of deterministic and

probabilistic forecast skills in this study, and a partial regression correction

(PRC) method is introduced to correct seasonal predictions. The results show

high prediction skills in the tropics, particularly in the equatorial Pacific, while

poor skills on land. In general, JMA/MRI-CPS2 has slightly better prediction

performance than CFSv2 and CanCM3 in the tropics. CFSv2 is generally superior

to JMA/MRI-CPS2 and CanCM3 in the extratropical northern hemisphere and

East Asia, especially for the abnormal low winter temperature prediction in East

Asia. CanCM3 shows good deterministic forecast skills in extra-tropics but

performs slightly worse in probabilistic forecasting. Based on the respective

strengths of each seasonal prediction model, an ensemble forecast correction

with observational constraint is implemented by partial regression, and the

improvement of skills in ensemble predicting has been analyzed. Compared to

the simple multi-model ensemble (MME), the correction improved the global-

average temporal correlation coefficient and multi-year mean anomaly

correlation coefficient by about 0.1 and 0.13, respectively. The validation

tests indicate that the corrected ensemble forecast has higher ranked

probability skill scores than that of the MME, which is improved by more

than 0.06 in the tropics. Meanwhile, when the training period is sufficiently

long, it may have the potential for future seasonal temperature predictions from

the perspective of stable zonal partial regression coefficients.
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1 Introduction

Surface temperature is one of the most important variables of

climate change, which can directly affect climate, ecosystems,

food security, and human health (IPCC, 2013; Ye et al., 2013).

The studies show that the strengthening of the zonal gradient of

tropical sea surface temperature (SST) or temperature gradient

between Eurasia and the tropical ocean has led to significant

changes in the Asian monsoon system and regional precipitation

in different time scales (D’Arrigo et al., 2006; Sheng et al., 2021;

Yun et al., 2014). In addition, increased temperature is also the

main cause of the increase of evaporation trend (Helfer et al.,

2012; Mahyavanshi et al., 2021), which would affect the global

hydrological cycle and energy balance through thermal forcing

(Caloiero, 2017). Therefore, accurate temperature prediction can

help to provide effective predictions of atmospheric circulation,

runoff, evaporation and energy changes. This can also make a

positive contribution to hydrological risk assessment, planning,

and prevention of meteorological disasters (Mishra et al., 2019;

Shukla et al., 2019; Hu et al., 2022), and provide reliable climate

information for corresponding climate decision-making and

services to further improve the adaptability to climate change.

With the background of global warming, the anomalous

change of climate is occurring frequently and has caused great

losses to the society and economy. The numerical models have

gradually become an important means of weather and climate

prediction (Palmer et al., 2004; Raftery et al., 2005; Kumar et al.,

2012; IPCC, 2013). Seasonal prediction model systems have been

developed as useful tools for short-term climate prediction

research. However, the predictability of the model is still

limited by such factors as the systematic error of the models,

the imperfection of the physical parameterization scheme, and

the uncertainty of the initial conditions (Charney et al., 1950;

Lorenz, 1963, 1965; Leith, 1974; Mu et al., 2010; Kalnay, 2019).

Therefore, various methods have been proposed to reduce model

prediction errors or improve prediction skills. On the one side,

adding assimilation data or model coupling, increasing model

resolution, and advancing physical parameterization are used to

improve the capability of the model prediction (Barkmeijer et al.,

1999; Qiu et al., 2007; Deshpande et al., 2010; Kirtman et al.,

2012; Rubin et al., 2017; Meehl et al., 2019). On the other side, the

prediction accuracy can also be improved by providing multiple

ensemble members with different initial perturbations or initial

times (Toth and Kalnay, 1997; Fritsch et al., 2000; Gneiting and

Raftery, 2005; Kalnay, 2019). Therefore, multi-model ensemble

(MME) methods are widely used to reduce prediction error, and

numerous studies have shown that the MME is more reliable

than the individual model, and the prediction skills are

significantly improved (Fritsch et al., 2000; Goerss, 2000; Peng

et al., 2002; Palmer et al., 2004; Raftery et al., 2005; Wang et al.,

2008; Lee et al., 2010; Kumar et al., 2012; Yang et al., 2016).

Several methods are currently available for MME. One is

linear, such as the simple composite method with equal weight

(SCM), linear regression, and multiple linear regression with

different weights (Fraedrich and Smith, 1989; Krishnamurti et al.,

1999; Fritsch et al., 2000; Yun et al., 2003; Palmer et al., 2004;

Doblas-Reyes et al., 2005; Min et al., 2014). Prediction skills can

also be achieved by choosing the relatively good models in MME

and then performing calculations with these better models. Lee

et al. (2011) proposed the concept of “climate filter”, which

graded the individual model based on the reproduction of the

strong association between Walker circulation and the tropical

Pacific rainfall; Devineni and Sankarasubramanian (2010)

classified and detected the performance of multi-model

predictions based on the accuracy of the forecasted

Nino3.4 index, which is a strategy for adjusting the model

weight according to the predictability of important climate

predictors. Moreover, the MME can be improved using

dynamic statistical downscaling methods (Shukla and

Lettenmaier, 2013; Kang et al., 2014; Tang et al., 2016), like

the stepwise pattern projection method (Kug et al., 2008; Min

et al., 2014), and the synthetic superensemble method combining

multiple regression and empirical orthogonal function method

(Yun et al., 2005). These methods are intended to promote the

usage of models with better dynamic diagnostic performance

rather than a composite of all available models. Post-processing

of MME based on probability distributions to calibrate ensemble

predictions is also available (Raftery et al., 2005; Tebaldi et al.,

2005; Greene et al., 2006; Sloughter et al., 2007; Liu and Xie, 2014;

Scheuerer, 2014; Khajehei et al., 2018; Li et al., 2021). In addition,

non-linear methods have been introduced into model ensembles

due to the non-linear characteristics of the climate system and

physical processes. For example, Ahn and Lee (2016) applied the

genetic algorithm to the multi-model ensemble method to

effectively improve the forecasting skills of winter temperature

and precipitation in high latitudes, and reduce errors in model

members and ensemble results; and Kumar et al. (2012) used

neural networks for multi-model ensemble predictions of Indian

monsoon seasonal rainfall.

Generally, the prediction skills of MME are enhanced by

offsetting the systematic deviation of each climate model (Yang

et al., 2016), but this improvement comes at the cost of

overestimating the fractional variance of the main mode

(Wang et al., 2008). Some studies have pointed out that MME

methods still have some shortcomings: for example, SCM is only

available when all individual models are similar and reasonable

(Ahn and Lee, 2016); the multiple regression method may lack

robustness to obtain stable weighted estimates when the time
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series are short (Peng et al., 2002; Doblas-Reyes et al., 2005), and

it fails to address the problem of collinearity among multiple

variables. However, the partial least squares regression (PLSR)

method could solve the above problems more effectively (Li,

2020; Hu et al., 2021; Qian et al., 2021). Consequently, based on a

systematic assessment of seasonal temperature predictions from

different model systems, this study uses the PLSR as a correction

method with observational constraints to correct model hindcast

results and improve seasonal predictabilities. The paper is

organized as follows: Section 2 introduces model hindcast data

and the reanalysis data used for verification, evaluation metrics,

and the PLSR method. Section 3 describes the systematic

evaluation of the 1-month lead forecast for JMA/MRI-CPS2,

CFSv2, and CanCM3, and the comparison of deterministic

forecast performance for the SCM (namely MME) and the

ensemble corrected with the partial regression (PRC) method.

In addition, the validation tests of the PRC method for the

probabilistic forecast, and the predictability potential of the

PLSR equation are involved in this section. Finally, Section

4 provides a discussion and summary.

2 Data and methods

2.1 Data

JMA/MRI-CPS2 is an atmosphere-land-ocean-sea ice

coupled prediction system version 2 developed by the Japan

Meteorological Agency/Meteorological Research Institute (JMA/

MRI). It consists of the JMA Global Spectral Model with the

horizontal resolution TL159, and the oceanic component MRI

community ocean model version 3 at the horizontal resolution of

1° in the longitudinal direction and 0.3°–0.5° in the meridional

direction. JMA/MRI-CPS2 is initialed every month, with an

integration period of 11 months, and covers the period from

January 1979 to June 2015. 10 members are carried out every

initial month, comprising two groups of five members starting

from two initial dates (15 days apart). The five sets of initial

conditions on each initial date include two perturbations in the

tropics, and two perturbations in the northern extratropics

(Takaya et al., 2017; Takaya et al., 2018).

CFSv2 is the National Centers for Environmental

Prediction’s (NCEP’s) Climate Forecast System, version 2, a

fully coupled atmosphere-ocean-sea ice-land model for

seasonal prediction. CFSv2 uses the atmospheric model

NCEP’s Global Forecast System at T126 in the horizontal, the

Modular Ocean Model version 4 coupled with an interactive

three-layer sea ice model, and the four-level Noah land surface

model. CFSv2’s seasonal prediction is out to 9 months, with

initial conditions of the 0000, 0600, 1,200, and 1800 UTC cycles

for every fifth day, over the retrospective forecast period

1982–2010 and the operational forecast 2010–2018. There is

an ensemble size of 24 forecasts for each month with different

initial conditions, except November, which has 28 forecasts (Saha

et al., 2014).

CanCM3 is the Canadian Centre for Climate Modeling and

Analysis (CCCma) Coupled Climate Model, version 3, which

combines version 4 to form the Canadian Seasonal to Interannual

Prediction System (CanSIPS). In CanCM3, the atmospheric

component is CCCma’s third-generation atmospheric general

circulation model CanAM3 (T63/L31), and the ocean

component is CanOM4. It includes 10 ensemble members of

different forecast initial conditions and is initialed at 0000 UTC

on the first of every month over the period 1981–2011, with an

integration period of 12 months (Merryfield et al., 2013).

The monthly mean surface air temperature reanalysis data

used for verification is from the fifth generation European Centre

for Medium-Range Weather Forecasts (ECMWF) atmospheric

reanalysis of the global climate (ERA5), with a resolution of 0.5°

latitude ×0.5° longitude, and back extension from 1950 to 1978

(preliminary version) and from 1979 onwards (hereafter referred

to as observation). ERA5 uses ECMWF Integrated Forecasting

System Cy41r2, which is significantly improved (temporal,

horizontal, and vertical) compared with Cy31r2 used by its

predecessor ERA-Interim. And it improves the data

assimilation system, now it is based on a hybrid increment

4D-Var system, which can provide the background-error

estimates through one control and nine perturbed members,

and can provide more output variables (Hersbach et al., 2020;

Bell et al., 2021). The comparison shows that ERA5 better

characterizes global surface temperature change than other

reanalysis data since 1958 (Yang et al., 2022). Although

different reanalysis data may have some uncertainties for

prediction skills in model evaluation, this dependence is small

in terms of the multi-year mean correlation coefficient of global

temperature (Kim et al., 2012).

In this study, the model assessment period is 1982–2011. For

each model, the ensemble means of all the members equally

weighted for each month is employed. The analysis focuses on

seasonal predictions for the boreal summer (JJA, June-July-

August) and winter (DJF, December-January-February). For

the JJA (DJF) mean, the 0-month lead forecast is the forecast

initialized in June (December), and the predictions of 1-month

lead time are mainly evaluated in this study. For comparison, all

TABLE 1 The evaluation area range and abbreviation.

Area Range

Global (GL) 90°S~90°N, 0°–360°E

Tropics (TP) 20°S~20°N, 0°–360°E

Extratropical in the Northern Hemisphere (NET) 20°N~90°N, 0°–360°E

Extratropical in the Southern Hemisphere (SET) 20°S~90°S, 0°–360°E

East Asia (EA) 20°N~50°N, 90°–150°E

South Asia (SA) 10°S~30°N, 60°–130°E
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the model hindcast results and the observation are re-

interpolated to the same 2.5 ° × 2.5 ° grid using the bilinear

interpolation method. This paper focuses primarily on global

assessment, considering the distribution characteristics of the

model prediction skills and some operational focus areas, and

also evaluates the performance of some regions, such as East Asia,

the different regional ranges are shown in Table 1.

2.2 Evaluation metrics

In this study, the skill of model seasonal predictions is

evaluated by widely used deterministic (Temporal Correlation

Coefficient, TCC; Anomaly Correlation Coefficient, ACC) and

probabilistic (Ranking Probabilistic Skill Score, RPSS; Brier Skill

Score, BSS) metrics.

2.2.1 Deterministic skills
TCC describes the prediction capability of the model at each

grid point and obtains the spatial distribution of prediction skill.

Firstly, the variance and covariance of each grid point are

calculated, which are defined as follows:

TCCi �
∑N

j�1(xi,j − xi)(fi,j − fi)�����������������������������∑N
j�1(xi,j − xi)2

× ∑N
j�1(fi,j − fi)2

√ (1)

where xi,j represents the observed or reanalysis temperature, and

fi,j denotes the model prediction. xi and fi are corresponding

temporal averages, respectively. i � 1, 2, 3, . . . ,M represents the

number of grid points and j � 1, 2, 3, . . . , N represents the

time series. TCC ranges between -1 and 1, and the closer it is to 1,

the higher the prediction skill. The 3-month averages of JJA and

DJF are first calculated for 1982–2011, and applied a 9-year high-

pass filter to extract interannual variability, and then calculated

the TCC between the seasonal average of each model and the

observation. Statistical significance is computed using the

Student’s t-test.

ACC measures the spatial similarity between prediction and

observation, and requires the time average and anomaly for each

grid point, as defined below:

ACCj �
∑M

i�1(Δxi,j − Δxj) × (Δfi,j − Δfj)���������������������������������∑N
i�1(Δxi,j − Δxj)2

×∑N
i�1(Δfi,j − Δfj)2

√ (2)

where Δxi,j is the observed anomaly, Δfi,j indicates the

temperature anomaly calculated from a forecast and the

corresponding model climatology, Δxi,j and Δfi,j represents

the spatial average of the observed and model temporal

anomaly of all grid points, respectively.

2.2.2 Probabilistic skills
RPSS and BSS are widely used to assess probabilistic forecasts

skills (Goddard et al., 2003; Kusunoki and Kobayashi, 2003;

Wilks, 2007; Shukla and Lettenmaier, 2013; Yang et al., 2016).

The RPSS is used to evaluate ensemble forecasts for multiple

categories of events (Weigel et al., 2007; Wilks, 2007). In general,

threshold values are estimated based on the theoretical

probability distributions of temperature, both for model

hindcasts and observation, events above or below the

thresholds are categorized to the upper or lower tercile

categories, respectively, and correspondingly regarded as

above normal (AN), near normal (NN) and below normal

(BN) event. Therefore, the forecast probabilities for different

categories can be constructed based on the proportion of

ensemble members that fall into the given category, and the

observed probability of a certain event is either 0 or 1. In addition,

using climatological forecasts as reference forecasts and

calculating cumulative probabilities of climate is 0.33,

0.67 and 1, respectively, the same as (Goddard et al., 2003).

The PRSS of 0 indicates no skill when compared to the reference

forecast, and the PRSS of 1 is considered a “perfect forecast”. It

measures the improvement of a multi-category probabilistic

forecast relative to a reference forecast (usually a long-term or

sample climate), and it is defined as:

RPS � ∑K

k�1(fk − xk)2 � (F −X)2 (3)
RPSCLI � ∑K

k�1(pk − xk)2 � (P −X)2 (4)

RPSS � 1 − 〈RPS〉
〈RPSCLI〉

(5)

where K is the number of forecast categories, fk and xk denotes

the cumulative probability at the k-th forecast category of the

model and the observed, respectively,

i.e., fk � ∑k
i�1fi, xk � ∑k

i�1xi, and fi and xi indicates the

corresponding probabilistic forecast value at the i-th forecast

category, respectively. When the i-th forecast category occurs in

observation xi � 1 and vice versa. pk denotes the cumulative

probability of climate at the k-th forecast category.

While the RPSS reflects the overall probabilistic forecast

performance of the different model predictions, the BSS is

simpler and more effective for the respective forecasting

skills for a particular event (e.g. cold and warm anomalies).

The BSS is a special case of an RPSS with two categories (Weigel

et al., 2007; Wilks, 2007), and it is used to assess the accuracy of

probability forecasts for dichotomous events, that is, for the two

categories of probability with p and (1 − p). Its formula is as

follows:

BS � 1
n
∑n

i�1(fi − xi)2 (6)

BSS � 1 − BS

BSCLI
(7)
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2.3 The multi-model ensemble correction
method

The partial least squares regression (PLSR) method is

developed to build the linear regression model of multiple

dependent variables to one or several independent variables.

Rather than directly considering the relationship between the

independent and dependent variables, it extracts the components

of the variables that are more explanatory for the system and uses

these component variables for modeling (Wold et al., 2001). First,

standardizing the independent and dependent variables, and

then extracting the pairs of principal components that could

carry as much variability information as possible of the variables

and have the greatest correlation from the standardized matrix.

Second, the regression model is established to calculate the

regression coefficient matrix and the residual matrix between

the principal component of the independent variable and the

independent or dependent variable. Finally, judging whether the

residual meets the accuracy requirements. If not, use the residual

matrix to replace the original data matrix, and repeat the above

steps until the residual meets the accuracy requirements. The

model is formulated as follows:

F0 � ∑s

i�1tip
′
i + FS (8)

X0 � ∑s

i�1tir
′
i+Xs (9)

where F0 and X0 denote the normalized matrix of the

independent and the dependent variable, respectively,

F0 � (F01,/, F0p)n×p, and X0 � (X01,/,X0p)n×q. s stands for

the number of components extracted from the original

variables, ti denotes the i-th principal components of the

matrix of independent variables and pi is loading matrix, ri
represents the regression coefficient matrix, Fs and Xs are the

residual matrixes.

Since t1/ts can be expressed as a linear combination of

F01/F0p, so Eqs. 8, 9 can be returned to the regression of

standardized dependent variable x*k � X0k and the

standardized independent variable f *j � F0j, and its expression is:

x*k � ∑p

j�1αkjf
*
j + Fsk (10)

αkj represents the standardization coefficient of the j-th

independent variable for the k-th dependent variable, (*)

indicates standardized variables.

In this study, the PLSR is applied to a multi-model

ensemble correction. Using hindcast data derived from

different seasonal prediction models as independent

variables and corresponding observation as the dependent

variable to build the PLSR equation at all grid points. Leave-

one-out cross-validation is used within all training periods.

The advantages of the PLSR method are that it takes the

widespread multi-correlation (collinearity) between the

individual model forecasts into account and allows the

time length less than the number of models, thus creating

a more robust regression equation. In addition, because the

regression equation takes observation as the dependent

variable, the PLSR could be regarded as observational

constraints on the multimodel ensemble to improve the

deterministic and probabilistic skills of the ensemble

prediction.

3 Results

3.1 Deterministic forecast skill

Figure 1 shows TCC spatial distributions for the JJA and DJF

temperature prediction from JMA/MRI-CPS2, CFSv2 and CanCM3.

As shown, tropical marine areas possess a high skill level both in

summer and winter, particularly in the central and eastern equatorial

Pacific with the TCC greater than 0.70. High deterministic skill in the

extratropical Northern Hemisphere (NET) is extend from the

tropical marine continent to the northeast and southeast Pacific.

Compared with the skills on the sea, the prediction skill over the land

is generally lower. However, there are some regions such as most of

South America, Africa, and parts of Australia, Southeast Asia, and

North America, where the TCC skill appears moderately good. A

similar spatial distribution is also described in some previous studies

(Wang et al., 2009; Kim et al., 2012; Materia et al., 2014). It indicates

that tropical SST anomalies are the most important source of climate

predictability on the seasonal-interannual scale, most of the skillful

predictions over the above regions are from the influence of ENSO

through teleconnection and local air-sea interaction (Wang et al.,

2009; Yang et al., 2016). In JJA, the prediction skills over Eurasia are

quite limited, all models only show skillful prediction in Southeast

Asia, but most other regions show statistically insignificant skills.

During theDJF, CFSv2 andCanCM3 show significant correlations in

reaching above 0.30 in central and northern Eurasia, respectively. The

global averaged TCC prediction skills of the three models are

generally comparable in summer and winter, the variation range

is 0.44–0.50 and 0.47–0.52, respectively, with the CFSv2 having a

slightly lower skill in JJA (0.44), primarily influenced by the lower skill

in the tropics (Figure 1B).

A visual comparison of the deterministic skill TCC between the

3models in different regions for JJA andDJF is displayed in Figure 2.

In general, the prediction skills of the three models are more than

0.6 in the tropics, which is larger than that in the extratropical. The

skills in the extratropical Southern Hemisphere (SET) are slightly

higher than those in NET because most of the regions of SET are

marine areas. The prediction skills in South Asia are also high,

reaching more than 0.52. The prediction skills in East Asia are low.

Except for the winter prediction skills of CFSv2 (0.36), the rest are

within 0.30. In terms of different models, JMA/MRI-CPS2 is slightly

better than CFSv2 and CanCM3 models in tropics and South Asia;

the TCC prediction skill of CFSv2 in East Asia is slightly higher than

that of the other two models, especially the TCC is about 0.10 larger
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than the other two models in DJF; CanCM3 has the best forecasting

skills over the extratropical.

3.2 Probabilistic forecast skill

Figure 3 exhibits the probabilistic skill RPSS of the three

models. As seen, probabilistic skills are relatively smaller than

TCC. The spatial patterns of the RPSS are characterized by a high

skill in the tropical oceans, especially in the central and eastern

equatorial Pacific where the RPSS forecast skill can even reach

above 0.40 in DJF, while the extratropical marine skill is within

0.20. Nonetheless, features of the probabilistic skill are still

possible to find that extend from the tropical Pacific to the

central and northern Pacific. In addition to CanCM3 in DJF,

probability skills are also shown in the North Atlantic. Instead,

the RPSS is much smaller over land, some regions present

meaningless negative values. In JJA, JMA/MRI-CPS2 exhibits

some skills in central and northern Africa, southern Europe,

Southeast Asia, the eastern coast of North America and

Greenland; in addition to the above regions, CFSv2 also

achieves RPSS skill of 0.10 or more in parts of northern East

Asia, South America and Australia; while CanCM3 performs

slightly worse in probabilistic forecasts over land, and has small

positive skills in central Africa and Greenland. During the winter

JMA/MRI-CPS2 exhibits skillful RPSS in most of Africa and

South America; besides these areas, the probabilistic skills of

CFSv2 in the Arabian Peninsula, the Mongolian Plateau,

Greenland and parts of China are about 0.10; while the

distribution of CanCM3 skill areas on land remains poor.

As mentioned above, when the RPSS is larger than 0, it

indicates an improvement in prediction skills relative to the

climate probability. Therefore, the percentages of grid points

with RPSS greater than 0 out of the global field for the three

models are also calculated. Figure 4 displays regional averaged

RPSS skills and the annual variation of its global average. The

annual variations of global averaged RPSS during JJA and DJF

FIGURE 1
Spatial distributions of Temporal Correlation Coefficient (TCC) for JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) of temperature in JJA
(A–C) and DJF (D–F) season for the period 1982–2011. The global-averaged scores are also displayed in the upper right corner of the plot. The
dotted areas indicate statistical significance at the 95% level using the Student’s t-test.

FIGURE 2
The area-averaged TCC in different regions for JMA/MRI-
CPS2, CFSv2 and CanCM3 of temperature in JJA (solid) and DJF
(shaded) season for the period 1982–2011.
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seasons show higher skills in strong El Niño years than normal

years, such as 1997/2009 (Figures 4A,B). Although there are still

negative skills in some years, which may remain skillful

predictions in specific regions such as the tropical region. The

RPSS skill of JMA/MRI-CPS2 performs above 0.1 in the tropics,

which is considerably higher than the other two models.

CFSv2 has the highest skill of the three models in the

extratropical, East Asia, and South Asia (in DJF), although

sometimes with negative skill. It shows that CFSv2 is slightly

better than JMA/MRI-CPS2 and CanCM3 in probability

prediction except in the tropics. The RPSS skill for different

regions of CanCM3 is positive only in the tropics during DJF,

indicating that due to the low probability prediction skills of

tropical CanCM3 performs slightly worse for probabilistic

prediction in global and regional temperature (Figures 4E,F).

In terms of the fraction of area where the prediction is skillful

(Figures 4C,D), the percentages of grids in the globe where RPSS

is greater than 0 are generally above 50% in the three models. The

multi-year mean of this fraction is about 58% in JJA and DJF for

JMA/MRI-CPS2, comparable to CFSv2 (57% and 59%) and

CanCM3 (57% and 58%). However, the percentages of the

year when the largest fraction is detected from different

models during individual years, reach 40% for JMA/MRI-

CPS2 and CFSv2 in JJA, and correspondingly reach 30% and

43% in DJF, respectively. The multi-year mean of global averaged

RPSS for JMA/MRI-CPS2 and CFSv2 respectively are 0.03 and

0.02 in JJA, 0.05 and 0.06 in DJF, while the values for

CanCM3 are less than 0 in both seasons. It also shows that

the probabilistic forecasting of JMA/MRI-CPS2 and CFSv2 is

slightly better than that of CanCM3.

While RPSS reflects prediction skills for the probability of

multiple category events, BSS can further reflect improved skills

for a specific event relative to climate probability. As with the

classifications of abnormal events for RPSS, BSS skills are

examined for the AN, BN, and NN events. As shown in

Figure 5, the regions with high prediction skills for the AN

event are also mainly distributed in the tropical ocean in JJA and

DJF, and also show some prediction skills in the North Atlantic

for JJA. On land, the BSS of JMA/MRI-CPS2 in northern Africa,

southern Europe, the Arabian Peninsula, Southeast Asia, and

southern North America are 0.20–0.40 in summer; CFSv2 has

skills with a varied range of 0.20–0.40 in Europe, most parts of

Siberia and northern Africa, and about 0.20 in part regions of

North America and South America; CanCM3 still performs low

skills on land. In winter, the prediction skills of the three models

are high in northern South America, which can reach more than

0.40, and all models show some skills in southern Africa. In

general, the spatial patterns of BSS for the BN event are largely

similar to that for normal events, but the prediction skills in

tropical areas are increased (Supplementary Figure S1). The

prediction skills of the model for AN and BN events are

higher than those for the NN event, the mean BSS over the

different regions of the normal event are both below 0 (Figure 6).

The BSS for abnormal events of JMA/MRI-CPS2 in the tropics

can reach 0.20 in DJF, but the corresponding skills of

CanCM3 are only 0.10 or less, which is significantly lower

than the other two models, and the skills in other regions are

mainly negative. It is worth noting whether it is for the prediction

of AN and BN events, CFSv2 shows higher skills in NET and East

Asia than those of the other two models. It shows that CFSv2 has

FIGURE 3
Spatial distributions of Ranked Probability Skill Scores (RPSS) for JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) of temperature in JJA
(A–C) and DJF (D–F) season for the period 1982–2011.
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certain advantages in probabilistic prediction in NET and East

Asia, especially for the below-normal in East Asia in DJF, that is,

CFSv2 has a good ability to predict abnormal low temperatures in

winter.

3.3 Comparison of the model ensemble
schemes

According to the previous analysis, JMA/MRI-CPS2,

CFSv2 and CanCM3 have their own advantages in

deterministic and probabilistic predictions. If the prediction

result of the ensemble means is corrected, is there any

significant improvement in ensemble forecasting skills?

Therefore, taking the ensemble mean of multi members of

three models as the independent variables, the PRC method is

used for the ensemble correction, and the deterministic metrics

TCC and ACC are also used to test the correction results. As can

be seen from Figures 7B,D, the TCC after PRC ensemble

correction is improved, and the global averaged TCC is

increased by at least 0.09 in JJA and DJF, compared with the

results of the individual model (Figure 1). Relative to the MME

(SCM), the TCC is also improved, such as in the equatorial east-

central Pacific and parts of North America in summer, and in

northern East Asia, central North America and Australia in

winter. Furthermore, it is notable that the corrected results of

the PRC ensemble are facilitated to capture the prediction

advantages of individual models. For example, TCC skill

presents to be significant in parts of northern Asia for

CFSv2 and CanCM3 during DJF, whereas it is small and

FIGURE 4
Time series of the global-averaged RPSS (A,B); and the percentage of grid cells where the RPSS is >0 out of the global grid cells (C,D); the area-
averaged RPSS in different regions (E,F) for JMA/MRI-CPS2, CFSv2 and CanCM3 of temperature in JJA (left panel) and DJF (right panel) season for the
period 1982–2011.
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insignificant by the MME, but increases after the PRC ensemble

and turns to significant. The same is true for North America, with

significant TCC skills only for JMA/MRI-CPS2 in DJF. TCC

remains insignificant in southern North America after the MME,

but changes to be statistically significant across North America

after the PRC method. Possibly due to the methodological

advantages of the PLSR of combining principal components

analysis and linear regression.

Statistics on the averaged TCC skill for different regions

(Figures 8A,B) show that the global averaged TCC markedly

increases after the PRC. TCC of the different regions increases by

about 0.10 compared to theMME, except for the tropics (TP) and

South Asia where the skill increases by about 0.07. Compared

with the results of the individual models, TCC after the PRC

method is about 0.15 higher than CFSv2 and CanCM3 over the

globe, TP, NET and SET, and about 0.18 higher than JMA/MRI-

FIGURE 5
Spatial distributions of Brier Skill Scores (BSS) for the above normal (AN) event for JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) of
temperature in JJA (A–C) and DJF (D–F) season for the period 1982–2011.

FIGURE 6
The area-averaged BSS in different regions for the above normal (AN), near normal (NN) and below normal (BN) event for JMA/MRI-CPS2 (A,B),
CFSv2 (C,D) and CanCM3 (E,F) of temperature in JJA (upper panel) and DJF (below panel) season for the period 1982–2011.
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FIGURE 7
Spatial distributions of TCC for simple averaged multi-model ensemble (MME) (A,C) and the ensemble corrected with partial regression (PRC)
(B,D) of temperature in JJA (upper panel) and DJF (below panel) season for the period 1982–2011. The global-averaged scores are also displayed in
the upper right corner of the plot. The dotted areas indicate statistical significance at the 95% level using the Student’s t-test.

FIGURE 8
The area-averaged TCC (A,B) and time series of anomaly correlation coefficient (ACC) (C,D) for simple averagedmulti-model ensemble (MME)
and the ensemble with partial regression (PRC) of temperature in JJA (upper panel) and DJF (below panel) season for the period 1982–2011. The
dashed line indicates the average ACC of the multi-model, and the gray marks present the ACC of the individual model.
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CPS2 and CanCM3 in East Asia in JJA. During DJF, the PRC

corrected TCC improved about 0.14 over the global average of

the three models, by more than 0.16 over CanCM3 in the SET,

and by about 0.17 and 0.26 over JMA/MRI-CPS2 and

CanCM3 in East Asia, respectively. As shown in the time

series of ACC (Figures 8C,D), the corrected ACC skill is

noticeably higher than the MME. Except for a few years, the

ACC with the PRC method is also larger than that of the

individual model. The corrected multi-year mean ACCs for

JJA and DJF are 0.57 and 0.55, respectively, which are about

0.13 higher than the MME and much higher than the mean ACC

of the three models (0.30 and 0.29 for JJA and DJF, respectively).

It is suggested that the PRC method is not only effective in

reducing the mean errors between model temperature and the

observation, but also in improving the spatial similarity of the

model and the observation.

3.4 PRC method for probabilistic forecast
skill

To further explore the improvement of the PRC ensemble

method on probabilistic forecasting, multiple PRC ensemble

results are constructed for probability calculations. As the

three models contain 10 (JMA/MRI-CPS2), 24 (CFSv2), and

10 (CanCM3) members, respectively, if one member from each

model is selected as the independent variable for PRC calculation,

then it would be generated 2400 PRC ensemble results, which

may lead to excessive computation. Both the Taylor diagram

(Taylor, 2001; Huang et al., 2022) and the DISO (Hu et al., 2019;

Zhou et al., 2021) can be used to assess the performance of

different climate models. Here the best 3 members in each model

are selected through the Taylor diagram (Supplementary Figure

S2) and used to construct multiple PRC ensemble results. For the

multi-member ensemble, the probabilistic skill RPSS is calculated

directly using these 9 members, while for the PRC ensemble, the

RPSS is assessed by obtaining 27 PRC ensemble results from

different combinations of these best 3 members in each model.

The results show that the RPSS is noticeably improved in the

equatorial region after the PRC ensemble compared to the multi-

member ensemble, especially in some parts of the equatorial east-

central Pacific where the skill can reach 0.80 in DJF. Besides,

skilled areas on land have increased significantly, such as parts of

North America and Asia, where the RPSS can reach about

0.20 shifting from no skill to skillful (Supplementary Figure

S3). From the annual variation in global averaged RPSS

(Figures 9A,B), except for a few years, the RPSS skill of PRC

ensemble results is distinctly higher than that of the multi-

member ensemble, particularly in years with positive skill. The

global annual averaged RPSS increases by approximately

0.05 and 0.04 in JJA and DJF, respectively. In different

regions, the RPSS skill of the PRC ensemble method is also

higher, which is more improved in tropics and South Asia, up to

more than 0.06, and about 0.05 in NET, but not much improved

FIGURE 9
Time series of the global-averaged RPSS (A,B) and the area-averaged RPSS in different regions (C,D) for simple averagedmulti-model ensemble
(MME) and the ensemble with partial regression (PRC) of temperature in JJA (left panel) and DJF (right panel) season for the period 1982–2011.
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in SET and East Asia (about 0.01 and 0 respectively)

(Figures 9C,D).

3.5 Predictability potential of PLSR
equation

In the PLSR equation, the dependent variable is the actual

observation. Therefore, the partial regression equation is

theoretically an observation constraint correction to the model

predictions based on observations that are known. To examine the

robustness of the PLSR model, 10-, 15- and 20-year training

periods are selected as sliding windows for calculation, and the

PLSR coefficients are statistically analyzed. Taking the results of

the different training periods in JJA as an example, it can be seen

that the zonal mean of regression coefficients from each seasonal

prediction model varies little with the growing training period,

whereas the variance of coefficients decreases significantly at the

same latitude (Figure 10). It implies that the zonal mean of

regression coefficients from the PLSR model remains broadly

stable across latitudes regardless of the length of the training

period, and its dispersion decreases significantly as the training

period increases. Moreover, the variation range (variance) of the

coefficients is smallest at low latitudes, but increases with latitude

in the southern hemisphere and even reaches above 1.0 at the 10-

year training, while increases first and then decreases with latitude

in the northern hemisphere. It may be related to the slightly low

predictability over land at high latitudes in the southern

hemisphere and mid-latitudes in the northern hemisphere.

However, for all models, the variance variation tends to be

gentler as the training period increases (with the variance of the

coefficients remaining within 0.20 at the 20-year training period).

The regression coefficients vary similarly in DJF (Supplementary

Figure S4). It suggests that for both JJA and DJF, the variation in

the regression coefficients from the PLSR equation at each latitude

becomes smaller and smaller as the training period increases,

implying that the observation in the year of the forecast (which

is usually not known at the time of building the partial regression

model) becomes less and less important in the partial regression

equation. Thus, by choosing the appropriate length of the training

period (sufficiently long), the partial regression model would have

increasingly smaller biases at different latitudes and have

forecasting potential for seasonal temperature predictions.

4 Discussion and conclusion

The sub-seasonal, seasonal and interdecadal climate prediction

is helpful for decision-makers and relevant producers to understand

and identify the short-term or future long-term climate change,

FIGURE 10
The zonal mean of regression coefficients of JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) which obtained in the different training
periods for the ensemble with partial regression of temperature in JJA season for the period 1982–2011: the multi-year average (left panel) and the
variance (right panel) of regression coefficients.
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evaluate the possible risks caused by climate change, and formulate

corresponding guarantee strategies and adaptive services (Acharya

et al., 2021). Several studies have evaluated the values of using

seasonal climate prediction information in climate decision-making

and services, but have also pointed out that the selection of

evaluation metrics in seasonal prediction systems and the

improvement of seasonal prediction skills and quality still need

to be explored and solved (An-Vo et al., 2021; Streefkerk et al., 2022).

In this study, the capacity of three seasonal prediction models

(JMA/MRI-CPS2, CFSv2 and CanCM3) and their ensemble mean

in forecasting global temperature were comprehensively evaluated

with deterministic and probabilistic metrics using hindcast data

covering a 30-year period from 1982 to 2011. The global averaged

prediction skills for the three models are generally similar, but each

also shows its superiority. JMA/MRI-CPS2 presents better

prediction skills in the tropics than the other two models.

CFSv2 is superior for probabilistic forecasts in the NET and East

Asia, especially for abnormal low winter temperatures in East Asia.

CanCM3 provides better forecasting skills in the extratropical than

JMA/MRI-CPS2 and CFSv2. These results quantified the

deterministic skills of the models and provided quantile-based

probabilistic skills that help users to compare and choose the

valuable model forecasts for the concerned area, as well as

extract predictive information for the abnormal events.

Following this, the PLSR method is introduced to correct the

ensemble results of the above three models with observational

constraints. It is found that the prediction skills after ensemble

correction are obviously improved, compared with that of the

individual models, and it is also better than that of MME. The

PRC ensemble method through observational constraints can reduce

the mean errors and enhance the spatial similarity between the

observation and model forecasts, and also strengthen the

consistency between them for abnormal events. It is worth noting

that the PRC is yet only able to correct model prediction under

observational constraints for known observations, and it still is a

challenge for forecasting seasonal variation of climate in the future.

The ensemble validation test results show that the PLSR

coefficients tend to be stable and their dispersion gradually

decreases as the training period increases, especially at the

middle and high latitudes. It suggests that the PRC ensemble

method has certain forecasting potential over a sufficient length

of the model training period, and could provide a useful tool for

more accurate seasonal prediction. In other words, although the

regression model is established based on observation and model

hindcast datasets, the validation across different training

periods shows that the regression coefficients of the PLSR

model exhibited relative stability, which gives some potential

to this PRC method for future temperature prediction. Here we

mainly focus on the global prediction evaluation, but for

specific regions, the PRC method can still improve relevant

forecasting skills, give strategic forecasts in a targeted manner,

and provide more accurate and effective forecasting services to

specific users.
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