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Cadmium, awidespread toxic heavymetal in farmland soils, is harmful to human

health. A field experiment was conducted to investigate the effects of biochar

and biochar-based fertilizers on soil pH, organic matter, and available Cd, as

well as rice Cd uptake and translocation. The results showed that rice biomass

was significantly increased after both the application of biochar and high rate of

biochar-based fertilizers at the tillering stage. The biomass and plant height of

rice were improved at filling and maturity stages. Soil pH was significantly

increased with the application of biochar but not with the biochar-based

fertilizer. The amendments of biochar and biochar-based fertilizers had no

significant (p < 0.05) influence on soil organic matter content. The

concentration of available Cd in soil and the concentration of Cd in rice

were decreased with the application of different amounts of biochar and

biochar-based fertilizers in the mature stage. However, this effect was much

greater under biochar amendment. Compared to the control, the

concentration of available Cd in soil was reduced by 33.09% with the low

application rate of biochar, while that was reduced by 18.06% with the high

application rate of biochar. The lowest bioaccumulation factor was due to the

high concentration of biochar and biochar-based fertilizers. It is concluded that

biochar and biochar-based fertilizers particularly at a high addition rate are

appropriate for decreasing Cd mobility and improve soil quality for

contaminated paddy soils. The study showed a method for the safe

production of rice in Cd-polluted farmlands by using a high application rate

of biochar or carbon-based fertilizers.
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1 Introduction

Heavy metal pollution of agricultural soil can be due to industrial wastes and the

application of agricultural chemicals, such as fertilizers and pesticides (Jin et al., 2019).

This seriously affects quality and yield of agricultural products, which further poses a

threat to human health (Yan et al., 2016; Shang et al., 2019). The major heavy metals in
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contaminated soils are Cd, Pb, Cu, and As, among which Cd is

the most common heavy metal in agricultural soils. Rice, one of

the main food crops in China, accounts for 55% of the annual

grain consumption in China (Ye et al., 2012). Rice planted in Cd-

contaminated soils can result in Cd accumulation in rice grains

(Cai et al., 2019; Huang et al., 2019) and further enter into the

human body through the food chain (Long et al., 2019).

Accumulation of Cd in the human body can lead to a series

of diseases, such as anemia, organ damage, and progression of

cancer in humans (Zhong et al., 2017). Therefore, soil Cd

pollution is a critical issue in the rice-growing area of China.

The in situ remediation technology of Cd is one of the most

widely used agricultural soil remediation technologies (Xu et al.,

2019). The amendments currently used widely for remediating Cd-

contaminated soils can promote plant growth and reduce risk of soil

pollution (Beesley andMarmiroli 2011; Bolan et al., 2014). However,

different amendments derived from different materials can

immobilize soil Cd to reduce its environmental risk in various

ways (Abad-Valle et al., 2016; Kai et al., 2017). Among the

passivators, biochar is a commonly used amendment to reduce

Cd in agricultural soils to ensure safe production of rice (Hamid

et al., 2020; Yang et al., 2021). Biochar-based fertilizers are also an

eco-friendly fertilizer that are based on biochar in addition to the

organic or inorganic fertilizers (Nyambishi et al., 2017). The

application of biochar in the soil can improve soil’s physical

structure, improve soil’s acidity by increasing soil pH, and

enhances the water-holding capability and soil fertility, thus

ultimately increasing the crop yield (Mansoor et al., 2021;

Mohamed et al., 2021). Biochar has a large specific surface area

and a strong adsorption capacity for heavy metals, which can be

used to reduce the bioavailability of heavy metals (Tian et al., 2021).

Previous research showed that biochar could significantly reduce the

concentration of acid-soluble Cd in soils by increasing soil pH, thus

consequently increasing the Cd immobilization (Xu et al., 2022).

Meanwhile, the biochar is effective for promoting plant growth and

reducing Cd accumulation (Albert et al., 2021; Wang et al., 2022),

showing that the 1% application rate of biochar reduced the Cd

concentrations of rice grains by 29.3–35.2%. Biochar derived from

different rawmaterials and produced under different conditions can

affect the remediation efficiency of Cd-contaminated agricultural

soils (El-Naggar et al., 2021; El-Naggar et al., 2022).

The application of biochar and biochar-based fertilizers to

polluted agricultural soils displayed a great practical significance

for preventing soil nutrient loss and alleviating agricultural non-

point source pollution (Lv et al., 2021). We hypothesized that the

application of biochar and biochar-based fertilizers can reduce

the transport of Cd from the soil to plant and the accumulation of

Cd in rice grains through decreasing the bioavailability of Cd in

soil. In this study, a field experiment was conducted to study the

effects of the application rate of biochar and biochar-based

fertilizers on chemical properties of soil, soil Cd availability,

and its uptake by rice, as well as the growth of rice in a Cd-

contaminated rice-growing soil. This study aims to search for an

effective method for decreasing Cd uptake and clarify the effects

of biochar and biochar-based fertilizers on heavy metal

immobilization and rice growth.

2 Materials and methods

2.1 Test materials

The tested soil was the paddy soil, with a pH of 5.56, organic

matter of 2.3%, available N of 126 mg kg−1, available P of

4.58 mg kg−1, available K of 110 mg kg−1, and total Cd of

0.42 mg kg−1.

Biochar was produced from wood chips under an oxygen-

limited condition; the material was heated to 450°C at a heating

rate of 20°C/min with a retention time of 2 h in a muffle furnace

and then taken out and left until the oven temperature dropped

to room temperature. A biochar-based fertilizer was produced by

mixing biochar and calcium magnesium phosphate fertilizer

(P2O5≥12%) at a 1:9 ratio. The properties of biochar and

biochar-based fertilizer are presented in Table 1.

2.2 Experimental design

The experiment was conducted in the Jinhua Economic

Development Zone (119°21′26″, 29°3′33”). Five treatments

were set for this experiment: CK, soil without amendment

(control); T1, low biochar (4500 kg hm−1); T2, high biochar

(9000 kg hm−1); T3, low biochar-based fertilizer

(2250 kg hm−1); and T4, high biochar-based fertilizer

(4500 kg hm−1). Each treatment had three replicates. In the

field experiment, the random block arrangement design was

adopted with a plot area of 5m × 8m each. The ridge covered

by a plastic film served as spacing between plots.

The rice variety (Yongyou 1540) at the three-leaf stage was

transplanted to the field on 2 July 2020 and was harvested on

25 October 2020. The method of base fertilizer + top dressing was

used for rice fertilization in all treatments. The base fertilizer was a

compound fertilizer (with the contents of N, P, and K of 15-15-15),

which was applied at the rate of 450 kg hm−2, and the fertilizer was

applied with top dressing (300 kg hm−2) at the tillering stage.

2.3 Sample collection and analysis

The samples of both rice plants and soils were collected at

tillering, booting, filling, and maturity stages, respectively. Five

samples were collected as a mixed sample from each plot with a

depth of 0–20 cm. The harvested plants were washed three times

with deionized water, heated at 105°C for 30 min, and then dried

at 65°C to be of constant weight. Rice plants were divided into

roots, stems, leaves, and brown rice, as well as carrying out the
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determination of dry weight of each part and plant height. The

Cd content of each part was determined with digestion of 0.3 g

sample with a mixture of HNO3 and HClO4.

The harvested soils were air-dried and passed through 2-mm

and 0.149-mm sieves for chemical analysis. We determined their

chemical properties such as pH value (soil/water ratio of 1:2.5),

organic matter (potassium dichromate volumetric method),

available N (alkaline diffusion method), available P

(molybdenum antimony anti-colorimetric method), available

K (flame photometer), and total Cd content (Xu et al., 2021).

Available Cd contents in soils (extracted by 0.1 M CaCl2 after

shaking for 4 h at 1:20 w/v) were determined according to Xu

et al. (2021). The soil and plant Cd contents were analyzed by

atomic absorption spectroscopy (Shimadzu AA-7000, Japan).

The number of certified reference material was GBW 07405

(GSS-5) for verification of soil analysis. The quality control

showed the spiked recoveries of Cd between 90% and 110%.

The Cd accumulation in terms of bioaccumulation factor (BCF)

and translocation factor (TF) were determined as follows: BCF =

[Cd concentration in rice tissues]/[Cd total concentration in

soil]; TF = [Cd concentration in the stem (leaf, husk, and brown

rice)]/[Cd concentration in the root].

2.4 Statistical analysis of data

Statistical analysis was conducted using SPSS 21.0. The values

were reported as mean and standard deviation of three

independent replicates. The difference was statistically

significant at p < 0.05 using one-way ANOVA and LSD. The

graphical work was carried out using SigmaPlot software v.12.5.

3 Results

3.1 Plant height and the biomass of rice
tissues

Figure 1 displays that the biomass of rice at the tillering stage

was significantly increased by 50.63%, 42.57%, and 17.13% after

TABLE 1 Characteristics of biochar and biochar-based fertilizer.

Property Biochar Biochar-based fertilizer

pH 10.42 8.27

Organic matter (%) 42.5 38.4

Ash (%) 12.9 11.2

Electrical conductivity (ds m−1) 0.38 0.31

Total Cd (mg kg−1) Not detected (<0.05) 0.03

FIGURE 1
Effects of biochar and biochar-based fertilizer on biomass and plant height. Data points and error bars represent mean ± S.D. of three replicates
(n = 3). Different letters indicate a significant difference between different treatments in the same period (p < 0.05).
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the application of low and high biochar and high biochar-based

fertilizer compared to the control, respectively. The biomass of

rice at booting and filling stages was increased by 24.30%,

18.63%, 22.86%, and 11.59% with different amounts of the

biochar-based fertilizer compared to the control, respectively.

The biomass of rice at maturity stages did not exhibit a significant

increase with biochar and biochar-based fertilizer treatments

compared to the control (Figure 1). The height of the rice

plant was enhanced after the addition of biochar and biochar-

based fertilizer at tillering and booting stages. There was no

significant variation in plant height during filling and maturity

stages.

3.2 Dynamic changes of soil properties

Figure 2 indicates that biochar treatment significantly

increased soil pH by 0.49 unit compared to CK (p < 0.05)

at the maturity stage. There was no change in soil pH after the

application of the biochar-based fertilizer. The higher

pH value was found in biochar-treated soils than those

treated with the biochar-based fertilizer. The treatments of

biochar and biochar-based fertilizer showed no significant

improvement in soil organic matter (OM) compared to the

control (Figure 2).

3.3 Effects of different stabilizingmaterials
on available Cd in soil

The concentration of available Cd in soil was reduced by

biochar and biochar-based fertilizer, except for the low

biochar-based fertilizer at the booting stage (Figure 3). The

low application of biochar significantly reduced the

concentrations of available Cd in soil by 26.26%

compared to those in the control at the tillering stage. The

available Cd concentrations in T1, T2, T3, and T4 were

reduced by 33.09%, 21.12%, 11.94%, and 19.94% in

comparison with those in the control at the maturity stage,

respectively. The biochar showed more significant effects

on Cd immobilization in soils than the biochar-based

fertilizer.

3.4 Effects of different stabilizingmaterials
on Cd uptake and translocation in rice

The concentrations of Cd in rice were decreased with the

application of stabilizing materials (Figure 4). The

concentrations of Cd in roots, stems, and brown rice were

significantly decreased by 19.45%, 24.95%, and 18.06% in

T2 treatment and 11.78%, 25.15%, and 14.45% in

T4 treatment compared to those in the control. There was no

significant difference in Cd concentration of roots with low

application amendment (T1 and T3 treatments) in

comparison with the control.

The bioconcentration factors and translocation factors of Cd

in rice were reduced by different stabilizing materials (Table 2).

The BCF size of Cd in rice was BCF root > BCF stem > BCF leaf >
BCF husk > BCF brown rice in all treatments. The BCF of Cd in rice

in all treatments was in the sequence of: CK > low biochar > low

biochar-based fertilizer > high biochar-based fertilizer > high

biochar. The TF of Cd in rice was TF root-shoot > TF root-leaf > TF

root-husk > TF root-brown rice.

FIGURE 2
Variation in soil pH and organic matter after the addition of different amounts of biochar and biochar-based fertilizer. Data points and error bars
represent mean ± S.D. of three replicates (n = 3). Different letters indicate a significant difference between different treatments in the same period
(p < 0.05).
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4 Discussion

Figure 2 exhibits the increase in soil pH and organic matter

with the application of different stabilizing materials, and the

highest pH value was recorded by treatments of biochar

compared to the biochar-based fertilizer. This may be due to

the higher pH of biochar (10.42) than that of the biochar-based

fertilizer (8.27). The increase in soil pH and organic carbon may

affect the bioavailability of Cd. The activated functional groups of

stabilizing materials (such as -OH, C-O, and CO3
2-) might

immobilize Cd ions in soil by precipitation, adsorption, ion

exchange, or electrostatic methods (Ahmad et al., 2014; Liu

et al., 2020). Previous research showed that the amendment of

biochar could release free radical ions such as OH−, HPO4
2-, and

CO3
2-, which may precipitate with Cd and form compounds such

as Cd(Ca10-xCdx (PO4)6(OH)2, CdCO3, Cd3(PO4)2, and

K4CdCl6, thus reducing the bioavailability of Cd (Lei et al.,

2019). In addition, the oxygen-containing functional groups

(such as -OH, -COOH, and C=O) on the biochar surface

could also complex with Cd in soil, increasing the Cd

immobilization (Rocco et al., 2018). In this study, the decrease

in available Cd concentrations in stabilizing materials may be

explained by the increase in soil pH. The immobilization of Cd in

soil with the amendments further decreased the translocation of

Cd from soil to plants. Previous research also reported that the

application of biochar (5%) to soil contaminated by heavy metals

reduced Cd, Pb, and Zn mobility and availability and hence

decreasing the accumulation of metals in different parts of

Phaseolus vulgaris L (Lomaglio et al., 2018).

The results showed that Cd mainly accumulated in roots,

followed by stems and leaves. The transportation route is

root–stem–leaf–grain, and the application of stabilizing

materials reduced the Cd accumulation in plant roots and rice

grains. This suggests that the reduction of Cd transfer from the

root to stem in biochar treatment may lead to the decrease in Cd

accumulation in grains (Chen et al., 2016). Root–stem

translocation is the main factor determining Cd accumulation

in grains of rice (Yu and Zhou 2009). In this study, the transport

factors from the above ground to grain of rice under high-biochar

treatment increased, but the Cd concentration in rice still

decreased significantly. This can be explained that the Cd

FIGURE 3
Concentrations of available Cd in soil with different stabilizingmaterials. Data points and error bars representmean± S.D. of three replicates (n=
3). Different letters indicate a significant difference between different treatments in the same period (p < 0.05).

FIGURE 4
Concentrations of Cd in rice with different stabilizing
materials. Data points and error bars represent mean ± S.D. of
three replicates (n = 3). Different letters indicate a significant
difference between different treatments in the same period
(p < 0.05).
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mobilization in the soil was reduced, and the transfer rate of Cd

from soil to the part of the plant above the ground will be reduced

(Rizwan et al., 2012). Our results were in accordance with the

previous researche studies (Bian et al., 2013; Yao et al., 2021).

Since the reduction in Cd concentration in edible parts of plants

is the key to produce safe food in Cd-contaminated soils (Rizwan

et al., 2016), the amendments in this study showed potential

effect on remediation of heavy metal-contaminated soil.

The biomass of rice was increased significantly after the

application of biochar as stabilizing materials at the tillering

stage (Figure 1). This may be due to the increase in soil organic

carbon which can control the bioavailability of Cd through

forming organic matter–metal complexes (Chiang et al.,

2006). Meanwhile, the results showed that the soil organic

matter was higher in the biochar treatment than that in the

biochar-based fertilizer treatment, which may be due to the

higher C storage of biochar than that of the biochar-based

fertilizer (Albert et al., 2021). It has been reported that the

increase in soil organic carbon with the amendment of

biochar and biochar-based fertilizer also provided the carbon

resource to microorganisms, promoting the soil microorganism

abundance and stimulating soil enzyme activity (Yan et al., 2019).

Some studies also show that biochar can improve nitrogen

efficiency and promote rice growth by adsorbing and slowly

releasing nitrogen (Spokas et al., 2012). This further improved

the soil fertility and enhanced the growth of rice (Mansoor et al.,

2021). In addition, Cd may reduce the plant cell-wall

constituents, inhibit mitosis, and damage the Golgi apparatus

of plants which reduced the plant growth (Kachout et al., 2010),

while biochar can decrease the detrimental influence of heavy

metals, for example, increasing the plant chlorophyll content

(Abbas et al., 2017b). In addition, plants could also mediate the

transformation, mobility, and bioavailability of heavy metals,

which may be due to the interactions of plant, soil, and microbes

(Park et al., 2011). Thus, the amendment of biochar not only

promoted the plant growth through increasing organic carbon

content or nitrogen efficiency which enhanced the interactions of

plant and soils but also increased the Cd immobilization in soil

through reducing the Cd accumulation and transport of

cadmium in plants, increasing the rice yield and food safety

(Zhang et al., 2013; Abbas et al., 2017a).

5 Conclusion

The biomass of rice increased with the application of

different amounts of biochar and carbon-based fertilizers,

while the height of the rice plant increased with the

application of low biochar and high carbon-based fertilizer at

the mature stage. The concentration of available Cd in soil was

reduced with the application of biochar and biochar-based

fertilizer. This may be due to the improvement of soil

properties, like the increase in soil pH and organic carbon

content, which further reduced the BCF of Cd at the high

application rate of soil amendments. Although the

translocation of Cd from the root to stem showed no

significant difference with the addition of biochar, the

decrease in Cd accumulation in the root still decreased the Cd

accumulation in grains. It is concluded that biochar and biochar-

based fertilizer with a high application rate in this study not only

improve Cd-contaminated soils but also provide practical

significance for future field experiments.
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