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Soil respiration in dryland ecosystems is challenging to model due to its

complex interactions with environmental drivers. Knowledge-guided deep

learning provides a much more effective means of accurately representing

these complex interactions than traditional Q10-based models. Mutual

information analysis revealed that future soil temperature shares more

information with soil respiration than past soil temperature, consistent with

their clockwise diel hysteresis. We explicitly encoded diel hysteresis, soil drying,

and soil rewetting effects on soil respiration dynamics in a newly designed Long

Short Term Memory (LSTM) model. The model takes both past and future

environmental drivers as inputs to predict soil respiration. The new LSTMmodel

substantially outperformed three Q10-based models and the Community Land

Model when reproducing the observed soil respiration dynamics in a semi-arid

ecosystem. The new LSTM model clearly demonstrated its superiority for

temporally extrapolating soil respiration dynamics, such that the resulting

correlation with observational data is up to 0.7 while the correlations of the

Q10-based models and the Community Land Model (CLM) are less than 0.4.

Our results underscore the high potential for knowledge-guided deep learning

to replace Q10-based soil respiration modules in Earth system models.
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1 Introduction

Soil respiration (Rsoil), the emission of carbon dioxide from the soil through

belowground autotrophic and heterotrophic respiration, is the second largest source

of terrestrial carbon flux in the global carbon budget and plays an important role in

regulating climate change (Raich and Potter, 1995; Schlesinger and Andrews, 2000; Bond-

Lamberty and Thomson, 2010). Soil temperature (Tsoil) exerts the primary controls on

Rsoil in ecosystems not limited by water availability (Lloyd and Taylor, 1994; HoÈgberg
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et al., 2001; Tang et al., 2005; Sampson et al., 2007; Bond-

Lamberty and Thomson, 2010). Rsoil desynchronizes with

Tsoil on diurnal cycles, also known as the diel hysteresis

(Gaumont-Guay et al., 2006; Riveros-Iregui et al., 2007;

Vargas and Allen, 2008; Phillips et al., 2011; Song et al.,

2015). In dryland ecosystems, which cover about 41–47%

Earth land surface (Lal, 2004; Yao et al., 2020), Rsoil exhibits

large interannual variability as the temperature and precipitation

regimes shift under the changing climate (Poulter et al., 2014;

Ahlström et al., 2015). Soil drying and rewetting cycles reshape

the Tsoil dynamics (Wang et al., 2014; Guan et al., 2018; Dusza

et al., 2020). Drying soil may reduce Rsoil by limiting root

respiration as a result of reduced photosynthesis and high soil

temperature (Rustad et al., 2000). However, sporadic rainfall

events during a dry period can incur large Rsoil pulses by

stimulating the soil microbial activities, a phenomenon known

as the Birch effect (Birch, 1958; Jarvis et al., 2007). Such sudden

soil rewetting by rainfall may also significantly increase the

magnitude of diel hysteresis for both autotrophic and

heterotrophic respiration (Song et al., 2015). These complex

interactions between Rsoil and its environmental drivers have

led to significant uncertainty in predicting Rsoil in dryland

ecosystems (Jarvis et al., 2007), consequently for projecting

future global carbon budget given the accelerated expansion of

drylands (Huang et al., 2016; Yao et al., 2020).

Q10-based methods, which assume an exponential relation

between Rsoil and Tsoil (Lloyd and Taylor, 1994; Davidson et al.,

2006), are widely adopted to empirically estimate Rsoil in land

surface models such as the Community Land Model (CLM)

(Lawrence et al., 2019). Q10-based Rsoil modules have evolved

over time to account for the dependence of Rsoil on other drivers

(e.g., soil wetness and soil organic matter) using either

multiplicative coefficients or more complex empirical

functions that can be parameterized or calibrated using field

observations and lab experiments (Davidson et al., 2006; Phillips

et al., 2011; Oikawa et al., 2014; Zhang et al., 2015). Despite the

plethora of empirical and semi-empirical models that relate Rsoil

to soil temperature and water content, the models fail to capture

the pulsed Rsoil spikes in response to sudden soil rewetting

during prolonged dry seasons (Lloyd and Taylor, 1994; Jarvis

et al., 2007;Wang et al., 2014; Muñoz-Rojas et al., 2016; Yan et al.,

2022).

Knowledge-guided deep learning (DL) (Raissi et al., 2017;

Shen, 2018; Willard et al., 2020) offers a potential alternative

for encoding complex interactions without explicit governing

equations into DL models. DL models excel at capturing any

nonlinear relationship between inputs and outputs based on

observational or simulation data and have been widely applied

in earth system studies recently (Shen, 2018; Reichstein et al.,

2019). For instance, Long Short-TermMemory (LSTM) model

(Hochreiter and Schmidhuber, 1997), a type of recurrent

neural network, is well suited to learning long-term

dynamic system behaviors, such as sea surface temperature

(Zhang et al., 2017), groundwater table depth (Zhang et al.,

2018), and watershed surface runoff (Kratzert et al., 2018).

Knowledge-guided DL takes one step further by incorporating

the domain knowledge of given systems to guide the

architectural design of deep neural networks (DNNs) or

customize the loss function to impose physical constraints

(Jia et al., 2020; Willard et al., 2020). Raissi et al. (2017)

proposed physics-informed neural networks to better

emulate partial differential equations by constraining the

DNNs with the initial and boundary conditions. Sadoughi

and Hu (2019) encodes domain knowledge obtained from

nonparametric physics-based kernels into a convolutional

neural network used for fault diagnosis of rolling element

bearings. Despite the rapid development of DL, its

applications in modeling Rsoil are few and mostly limited

to the usage of artificial neural networks or vanilla machine

learning methods (Zhao et al., 2017; Ebrahimi et al., 2019; Lu

et al., 2021).

Here, we propose a knowledge-guided DL approach to model

the complex interactions between Rsoil and its environmental

drivers in dryland ecosystems, which cannot be captured by the

traditional Q10-based methods. We apply information theory

(Cover and Thomas, 2006) to continuous monitoring data to

identify drivers that share significant information with Rsoil. The

knowledge gained from the mutual information analysis is used

to guide the architectural design of an LSTM model. We

hypothesize that the knowledge obtained from the

information-theoretic analysis is able to enhance the

predictability of the LSTM model, which in turn outperforms

the traditional Q10-based modeling. To this end, we compare the

DL-based modeling performance in predicting Rsoil with three

Q10-based models and CLM simulation. Further, we evaluate

both the temporal interpolation and extrapolation capabilities of

the DLmodels in order to assess the applicability of the models in

an unseen time period. The new approach reproduces Rsoil

dynamics and outperforms the Q10 methods for modeling a

semi-arid sagebrush ecosystem in central Washington,

United States of America. An automated chamber at this site

has continuously monitored soil respiration for a year at a 30-

min resolution. An Ameriflux site (US-Hn1) collocated with the

soil chamber provides continuous measurements of

environmental drivers during the same time window (Missik

et al., 2019; Missik et al., 2021). The availability of such

comprehensive data facilitates the development of our DNN

models.

Below, Section 2 describes the study site, the mathematical

framework of mutual information analysis, and the proposed

knowledge-guided DL to model Rsoil. In Section 3, we first

present the mutual information analysis result which guides

the selection of the inputs to the DL models; then, we

evaluate the modeling performances of DL-based and CLM/

Q10-based Rsoil modeling. Last, Section 4 provides follow-up

discussions and draws the conclusion at the end.
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2 Methods

2.1 Study site

The studied semi-arid ecosystem is at the AmeriFlux site US-

Hn1 in central Washington, USA (Missik et al., 2019)

(Figure 1A). The site receives an annual mean precipitation of

170 mm (Duncan et al., 2007), with primary vegetation of shrubs

and grasses (Missik et al., 2019). 84% of the soil is composed of

loamy sand. The primary source of soil moisture is precipitation

with a wilting point around 5%–10% and a field capacity around

10%–20% (O’Geen, 2019). An integrated flux tower system

(Missik et al., 2019) has been operated since 2016, which

records a variety of environmental fluxes and states at a

resolution of 30-min. Continuous observations of Rsoil were

collected using an automated chamber system from July 2018 to

December 2020 at sub-30-min resolution.

In this study, we select precipitation (Precip),

photosynthetically active radiation (PAR), Tsoil, and SWC at

a depth of 5 cm as the environmental drivers to explore. We

aggregated the chamber data to be half-hourly to be consistent

with the AmeriFlux data. The remaining analysis and modeling

were performed on the time window from July 2018 to December

2020 (Figure 1B).

2.2 Mutual information analysis

To analyze the pairwise dependency between Rsoil and the

environmental drivers, we computed mutual information (Cover

and Thomas, 2006) between the current state of Rsoil and a lagged

state of each driver from the past 24 h to the future 24 h as follows:

I Rsoilt;Dt−τ( ) � H Rsoilt( ) +H Dt−τ( ) −H Rsoilt, Dt−τ( ) (1a)

� ∑
Rsoilt�r

∑
Dt−τ�d

p r, d( )log p r, d( )
p r( )p d( )( ) (1b)

WhereH is Shannon’s entropy; τ is the time lag, ranging from the

prior 24 h to the future 24 h; Rsoilt is Rsoil at time t; Dt−τ is an

environmental driver, including Precip, PAR, Tsoil and SWC, at

time t − τ; and p is the probability function. The first equation

describes that I is the shared uncertainty/entropy between Rsoilt

FIGURE 1
Observations of soil respiration (Rsoil) and environmental drivers at the US-Hn1 site. (A) The geographic location of the study site. (B) Time series
observations of Rsoil, precipitation (Precip), soil water content at 5 cm depth (SWC), soil temperature at 5 cm depth (Tsoil), and photosynthetic active
radiation (PAR) at a temporal resolution of 30-min. (C) The new LSTM architecture whose past and future inputs are informed bymutual information
analysis.
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and Dt−τ, which mathematically gives the second equation. We

employed the fixed-binning method to estimate a two-

dimensional probability space p (r, c) with 50 bins along each

dimension (Ruddell and Kumar, 2009). Here, only non-zero

Precip is included in the mutual information calculation

because the inclusion of data points with zero Precip will

significantly dilute the information contained in sporadic

rainfall events, which occur rarely compared to data points

associated with non-rainy times.

2.3 Knowledge-guided deep learning for
soil respiration modeling

The mutual information analysis facilitates the selection of

drivers or inputs in DL models by uncovering the lagged

dependence between Rsoil and the environmental drivers. To

incorporate this dependency into the DL model, we designed a

new LSTM architecture that explicitly propagates information

about the selected variables forward from their past dynamics

and backward from their future dynamics to predict Rsoil. While

the past dynamics are mostly causally related with the current

state, the future dynamics can be informative when there is a

delayed dependency of the inputs. In the example of clockwise

Tsoil-Rsoil diel hysteresis, Tsoil lags behind Rsoil due to the delay

caused by photosynthesis activities or heat transport across the

soil profile; and as a result, the future state of Tsoil probably

carries more information of the current state of Rsoil than the

current and past Tsoil.

The design of the new LSTM is shown in Figure 1C. The new

LSTM uses two LSTM layers to account for both the information

transferred from the past input states and the backpropagated

information from the future input states. Note that the new

LSTM is reduced to an unidirectional LSTM (uniLSTM) in the

absence of future inputs. While similar to a bidirectional LSTM

(biLSTM) (Graves et al., 2005), the new LSTM is more flexible

than a biLSTM for its ability to adopt different numbers of input

variables and input temporal lengths for forward and backward

LSTM layers.

Here, we vary the past input length from 12 h to 7 days to

assess the impact of the temporal length of past dynamics for

predicting Rsoil, while a fixed 24 h window is used for the inputs

of the future states to maximize the potential impact of diel

hysteresis. Further, to study the impact of encoding future

dynamics, we also developed the LSTM models that take only

past states. Note that the new LSTM is reduced to a uniLSTM

model when only past states are taken as inputs. Table 1 lists all

cases with different input lengths. For each case, we train both a

LSTM model a multilayer perceptron (MLP) model to evaluate

which DNN architecture is best suited for predicting Rsoil.

Evaluating the temporal interpolation and extrapolation

capabilities of the DL models. We performed two splittings on

the observations to prepare two separate sets of training/

validation/test data for assessing the interpolation and

extrapolation capabilities of the DL models, respectively. The

DL models are developed on both interpolation and

extrapolation datasets as follows (see the Supplementary

Material for the details of model development):

• First, we separated the observations into training,

validation, and test data according to either

interpolation or extrapolation scenario.

• For each DL model, we then performed the

hyperparameter tuning to find the best model

architecture (e.g., the number of hidden layers) using

the training and validation data.

TABLE 1 Cases involving different temporal periods as inputs for estimating Rsoil and Precip/SWC/Tsoil using MLP, uniLSTM, and the new LSTM.

Cases Models Past lengths Past inputs Future lengths Future inputs

including both past and future states as inputs the new LSTM MLP 12h Precip SWC Tsoil 1day Tsoil

1day

1.5days

2days

3.5days

7days

including only past states as inputs uniLSTM MLP 12h Precip SWC Tsoil N/A N/A

1day

1.5days

2days

3.5days

7days
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• Last, we evaluated the performance of the developed DL

model with the optimal hyperparameter on the test data.

The interpolation scenario is aimed at assessing the model

prediction performance on a dataset sharing the same time

window as the training/validation data. We generated the

interpolation dataset by randomly splitting the observations

into training, validation, and test sets with a proportion of 8:1:

1. On the other hand, the extrapolation scenario is used for

assessing the model predictability on an untrained or unseen

time window (e.g., future time steps). To this end, we selected the

time window from 2019-07-01 to 2019-12-31 for testing and

randomly split the observations of the remaining time window

into training and validation sets with a proportion of 9:1.

Supplementary Figure S1 shows the separation of the training,

validation, and test data of the two scenarios.

Benchmarks: Q10-based methods and the Community

Land Model (CLM). To benchmark the performance of the

DL modeling, we developed Rsoil using three Q10-based models

and leveraged an existing CLM product calibrated at the same

study site (Zhu et al., 2020).

The Q10-based models include the basic Q10 and two SWC-

dependent formula, defined as below (Lloyd and Taylor, 1994;

Wang et al., 2014):

Rsoilt � a1 × b
Tsoilt−10

10
1 (2a)

FIGURE 2
Knowledge-guided deep learning (DL) for predicting soil respiration (Rsoil) using mutual information analysis. (A) the quantified mutual
information between Rsoil and each of the lagged environmental drivers: non-zero precipitation (Precip), photosynthetic active radiation (PAR), soil
temperature (Tsoil), and soil water content (SWC). Positive (negative) time lag represent lagging behind (before) Rsoil. (B) two clockwise diel
hysteresis events between Rsoil and Tsoil on two summer days separated by a rainfall event. (C) the new LSTM model for estimating Rsoil that
takes past states of Tsoil, SWC, and Precip as well as 24 future hrs of Tsoil as inputs.
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Rsoilt � a2 × b
Tsoilt−10

10
2 × SWCc2

t (2b)
Rsoilt � a3

1 + exp b3 × c3 − Tsoilt( )( ) × SWCd3
t , (2c)

Where a1, b1, a2, b2, c2, a3, b3, c3, and d3 are model parameters.

We estimated the parameters of each model in Eq. 2, based on

the training and validation data in the interpolation scenario

using the Levenberg-Marquardt least square algorithm (Zobitz

et al., 2021; Gelybó et al., 2022). Note that since no

hyperparameter tuning is needed for developing these

empirical models, both training and validation data is used

to estimate the parameters. The calibration leads to a1 =

0.351, b1 = 1.028, a2 = 0.109, b2 = 1.172, c2 = 0.586, a3 =

0.129, b3 = 0.263, c3 = 4.391, and d3 = 0.684. The parameter

estimation was performed using a Python package: Scipy

version 1.8.

The CLM-based Rsoil simulation is generated from an

existing CLM setup at the same study site (Zhu et al., 2020). As

a land surface model, the CLM systematically simulates

hydrological process, surface energy balance, and

biogeochemical process. Rsoil is modeled as a sum of root

respiration and heterotrophic respiration parameterized by a

variety of dependencies, including Tsoil, SWC, oxygen, etc

(Lawrence et al., 2019). To study the local water and carbon

budget, this model was calibrated against evapotranspiration

and gross primary productivity observations (Zhu et al., 2020)

and provides simulation of US-Hn1 in the year 2019. Due to

different temporal resolutions of the forcings data, the

temporal resolutions of the CLM outputs vary and range

from 30 min to 2days (see Supplementary Figure S2 for

the time series simulations of the CLM and Q10-based

models).

3 Results

In this section, we first present the mutual information

analysis results, which guides the design of the new LSTM

model. We then present the modeling results. We start by

illustrating the deficiencies of CLM and Q10-based modeling

in simulating Rsoil, compared with which we show the

superiority of the DL models. Particularly, we highlight how

the knowledge-guided DL improves predictions of Rsoil. We

further evaluate the interpolation and extrapolation capabilities

of the DL models and assess the impact of the input time series

length on the modeling performance.

FIGURE 3
The calibratedQ10-basedmodels and CLM simulation. (A) The training and test performances andmodel fitting of the calibrated Q10 equation:
Rsoil � 0.351 × 1.028

Tsoil−10
10 (B) The training and test performances and model fitting of the calibrated SWC-dependent Q10 equation: Rsoil �

0.109 × 1.172
Tsoil−10

10 × SWC0.586 (C) the performance and model fitting of the calibrated SWC-dependent logistic power equation: Rsoilt �
0.129

1+exp(0.263 × (4.391−Tsoilt)) × SWC0.684
t (D) The performance and CLM simulation based on model settings from (Zhu et al., 2020). CC refers to the

correlation coefficients.
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3.1 Mutual information analysis and its
implications to knowledge-guided DL

The estimated mutual information shown in Figure 2A

illustrates that Rsoil shares the most mutual information with

SWC and non-zero Precip, followed by Tsoil and PAR, at all

lags. We find the dominant role of soil wetness in regulating

Rsoil dynamics, indicated by the maximum information

provided by SWC and non-zero Precip. Figure 2B shows

two diel hysteresis patterns before and after a rainfall event

during the summer of 2018. The wetting event significantly

increases the diel hysteresis magnitude, consistent with results

reported in earlier studies of other dryland ecosystems (Feng

et al., 2014; Wang et al., 2014; Song et al., 2015; Guan et al.,

2018).

The importance of future Tsoil. The computed lagged

mutual information suggests that the future states of Tsoil

carry more information for the current state of Rsoil than the

past states of Tsoil, which peaks at a positive lag of 2 h (the

black line in Figure 2A). The importance of future Tsoil is

consistent with the clockwise diel hysteresis between Rsoil

and Tsoil, shown in the two diel hysteresis examples in

Figure 2B.

Implications for the new LSTM.We leveraged the mutual

information analysis to explicitly encode diel hysteresis into a

DL model for modeling Rsoil. The analysis suggest that: 1)

Tsoil, SWC, and Precip can all be significant predictors for

Rsoil; and 2) future states of Tsoil provide more useful

information for predicting Rsoil than past states. We thus

designed the new LSTM model such that the model inputs of

the past states include Tsoil, SWC, and Precip dynamics,

whereas the inputs of the future states only contain Tsoil

(Figure 2C), shown in Table 1.

3.2 CLM and Q10-based modeling

Figure 3 shows the scatter plots of observations versus

predictions by the Q10s and CLM. All barely capture the

fraction of high Rsoil. The basic Q10, which relates to just

FIGURE 4
Performance of deep learning models for estimating Rsoil. (A-C) model performances on the interpolation scenario test dataset using mean
square error (MSE), Nash–Sutcliffe model efficiency coefficient (NSE), and correlation coefficient (CC). (D-F) model performances on the
extrapolation scenario test dataset usingMSE, NSE, andCC. The selectedmetric is calculated for all cases with different input temporal ranges in each
subplot (see Table 1).
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FIGURE 5
Comparison between the best interpolation and extrapolationmodels. (A)observed and estimated Rsoil for training, validation, and test datasets
using the best interpolation model (i.e., MLP that takes the past 7 days of Tsoil/SWC/Precip and 24 future hours of Tsoil as inputs). (B) observed and
estimated Rsoil for training, validation, and test datasets using the best extrapolation model (i.e., the new LSTM that takes the past 7 days of Tsoil/
SWC/Precip and the future 24 h of Tsoil as inputs).
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Tsoil, has the worst performance with its parameters

optimized towards the dominant fraction of Rsoil in the

range of 0–0.5 umol m−2s−1 (Figure 3A). Including SWC

dependence in a Q10-based model improves model

performance, increasing the correlation coefficient between

model prediction and observations from nearly 0 to over 0.3.

Particularly, representing the dependencies of SWC and Tsoil

in a logistic power model best captures the soil respiration

dynamics with correlation increasing to almost 0.5, which is

consistent with the findings in Wang et al. (2014). Moreover,

by using a more complex representation to estimate Rsoil, the

CLM simulation demonstrates a modest improvement over

the Q10-SWC model. Although both the two SWC-dependent

models and CLM can better capture low to medium Rsoil

values (Figures 3B,C), they still struggle to capture Rsoil values

larger than one umol m−2s−1. Most of these high Rsoil values

occur after rainfall events during the prolonged dry summer

season.

3.3 Knowledge-guided DL for rsoil
modeling

Figure 4 shows the performance of the trained DL models on

the test data for both extrapolation and interpolation scenarios

listed in Table 1. We assess the prediction performance of each

DL model using the following three metrics: mean square error

(MSE), Nash–Sutcliffe model efficiency coefficient (NSE), and

correlation coefficient (CC). Overall, all the DL models

substantially outperform the Q10-based models and the CLM

simulation, with CC increasing from less than 0.4 (Figure 3) to

approximately 0.6 (extrapolation, Figure 4F) and 1.0

(interpolation, Figure 4C).

Performance gained by knowledge-guided DL in temporal

extrapolation. In general, the knowledge-guided DL models that

include future environmental drivers are no worse than or even

outperform those that solely rely on past states. When

performing interpolation (Figures 4A–C), all DL models show

FIGURE 6
The match between modeled and observed Rsoil during and after two rainfall events. (A) Performance of the best interpolation and
extrapolation DLmodels (Figure 5), the Q10-SWC-logistic model, and the CLM simulation for a short and quick rainfall event. (B) Performance of the
best interpolation and extrapolation DL models (Figure 5), the Q10-SWC model, and the CLM simulation for a long and sustained rainfall event.
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high prediction accuracy (with NSE and CC close to 1). As a

result, using future states as inputs slightly improves model

performance. The best model type turns out to be the MLP

model (grey bars) that takes in both the past and future states.

The MLP model shows optimum performance when using as

inputs the prior 7 days of states and 24 future hours of Tsoil. For

extrapolation scenarios (Figures 4D–F), the newly designed

LSTM (purple bars) that includes the future states as inputs

shows its superiority over MLP and uniLSTM. The new LSTM

increases CC to almost 0.7 when incorporating input data from

the prior 7 days, outperforming the other two models whose

correlation metrics are only around 0.6. In fact, given a past input

length, the new LSTM generally outperforms the corresponding

uniLSTM and MLP model with lower MSE and higher NSE/CC

values (Figures 4D–F).

Interpolation vs. extrapolation. The DL models generally

perform better in temporal interpolation than extrapolation.

Figure 5 plots the time series of observed and predicted Rsoil

using the best DL models and the corresponding scatter plots

on the training, validation, and test datasets. The best

interpolation and extrapolation models are the MLP and

the new LSTM, respectively. Both models use

environmental states of both the past 7 days and one future

day as inputs (Figure 4). The models show nearly perfect

predictions on the training and validation datasets with NSE

and CC close to 1. While the best extrapolation model

systematically underestimates Rsoil on the untrained test

period (Figure 5B), its correlation metric can still achieve

up to around 0.7, greatly outperforming the CLM and Q10-

based models whose correlations are no greater than 0.4

(Figure 3).

Furthermore, we find that the performances of the DL

models generally increase with the temporal length of the past

input, though converging differently between the MLP and

LSTM-based models. For the interpolation scenarios, the MLP

models achieve better performance on the test dataset than the

LSTM-based models when the past input length is longer than

1.5 days (Figures 4A–C). Meanwhile, the LSTM-based models

outperform the MLP models in all extrapolation scenarios

(Figures 4D–F). Such performance difference between the

MLP and LSTM increases with the temporal length of the

past states. In fact, the extrapolation predictivity of the new

LSTM improves substantially when the past input length

increases from 12h (NSE: ~0.2; CC: ~0.46) to 7 days (NSE:

~0.37; CC: ~0.7).

Modeling the Birch effect. We further zoom into the

modeling behaviors after two representative rainfall events

with short or long durations (Figures 6A,B), respectively,

during the test period of the extrapolation scenarios. The

best interpolation DL model (the red line) perfectly

reproduces the Rsoil rewetting pulses and the subsequent

drying process dynamics. The best extrapolation model (the

blue line) captures the Rsoil pulses though mismatches their

magnitudes. Yet, neither the Q10-SWC-logistic (the yellow

line) nor the CLM (the brown dots) is able to simulate the

pulses. It is noted that the fluctuating soil moisture (the cyan

line) reflects the diurnal signals as captured by the temperature

observations (the green line). Further, while the measured soil

moisture does not show abrupt increases due to rainfalls in

both events, the developed DL model shows its flexibility to

account for the precipitation impact and thus predicts the

Rsoil pulses. The unparalleled success of the DL models lies in

their ability to encode the dramatic changes in the diel

hysteresis patterns during the drying and rewetting

cycles by using future Tsoil dynamics as inputs (the right

panels in Figure 6). On the other hand, both Q10 and CLM

models fail to represent such interactions by exclusively

relating Rsoil to the current states of the environmental

drivers.

4 Discussions and conclusion

Our study showcases the power of knowledge-guided DL

models in emulating complex interactions between dynamic

system behaviors and their environmental drivers without

knowing the exact functional relations. Due to the

clockwise diel hysteresis between Rsoil and Tsoil, including

future Tsoil states in DL models led to unprecedented success

in predicting Rsoil in a semi-arid ecosystem. The newly

configured DL models were able to capture all the large and

small Rsoil pulses induced by summer rainfalls. They also

captured the dynamics following rainfall events as the soil

moisture shifts between wet and dry regimes, overcoming a

long-standing challenge of the traditional Q10-based models

and other similar empirical representations adopted in

process-based models such as the CLM. This data-driven

approach can be readily applied to train DL models for

other dryland ecosystems with continuous measurements of

Rsoil, Tsoil, SWC, and Precip. These results can be ultimately

generalized to enable more accurate predictions of Rsoil from

monitored or model-projected environmental drivers across

global dryland ecosystems.

In addition to showing the importance of the future states,

the mutual information-based analysis partially reveals the

dominant mechanism that drives the clockwise diel hysteresis

at this dryland ecosystem. The least significant role of PAR,

revealed by its minimal information shared with Rsoil

(Figure 2), may imply that autotrophic respiration

contributes little to the total soil respiration due to its

sparse vegetation in this ecosystem. Further, contrary to the

decoupling between Tsoil and Rsoil, PAR is almost

synchronized with the respiration such that the maximum

information peaks without lag during a day. This differs from

the multiple-hour lead often observed in ecosystems where

physiological factors play a more dominant role in controlling
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Rsoil dynamics (Vargas and Allen, 2008; Kuzyakov and

Gavrichkova, 2010). In other words, the diel hysteresis is

probably caused by the physical process (i.e., the delay

caused by heat transport across the soil profile).

To the best of our knowledge, this is the first implementation

of the DL models in estimating soil respiration in a sub-hourly

scale. Most existing studies only adopted vanilla machine

learning models (e.g., artificial neural networks (Zhao et al.,

2017) and random forest (Lu et al., 2021; Yao et al., 2021)) in

emulating soil respiration dynamics at coarser temporal scales

from daily to annually, which are too coarse to capture the diel

hysteresis. Thus, they fail to recognize the importance of future

environmental states to the current respiration state in a dryland

ecosystem such as this study site. This uniqueness brings the

opportunity of explicitly capturing information transferred from

both past and future states by using a newly configured LSTM

model.

Our proposed DL model shows its superiority in

performing temporal extrapolations of Rsoil, which is a

common need in Earth system modeling. The modeling

performance of the new LSTM model improves with the

temporal length of the past input states. Meanwhile, the

extrapolation performance of the other models either do not

improve over past input length (i.e., MLP) or are consistently

inferior to the new LSTM (i.e., uniLSTM). Though slightly

worse than MLP for performing interpolation, the new LSTM

achieves high accuracy in interpolation (i.e., with both NSE and

CC larger than 0.9) and proves to have the best performance in

extrapolation. Therefore, the new LSTM can be adopted as the

prototyping model in future data-drivenmodeling development

for Rsoil prediction.

One potential future work could be leveraging soil moisture

and temperature measurements from multiple layers by

including them in the input layers of the LSTM model(s). A

straightforward implementation would be directly taking the

observations from multiple layers as the inputs of one

composite LSTM model. Another alternative is to develop a

hybrid modeling framework by coupling the land model (e.g.,

CLM) with multiple LSTMs, each of which is used to estimate

respiration at one soil layer. That is, the DL model serves as the

substitute of the corresponding Q10-based module at a given

layer for calculating carbon flux. Under such hybrid model, new

measurement technology, such as line sensors (Lazik et al., 2019),

could provide CO2 concentrations at multiple depths for

training, validating, and testing LSTM models.

Although the high Rsoil pulses induced by sporadic sudden

rewetting of dry soil are usually short-lived, their accumulation

over time and the large coverage of global dryland ecosystems

may make them significant global carbon sources. This will only

increase with the projected expansion of drylands under the

future climate. Therefore, the deficiency in Q10 approaches

translates into significant underestimation of soil respiration

in dryland ecosystems across the globe by Earth system

models like the CLM. Replacing those less accurate dryland

soil respiration modules with knowledge-guided DL models

will help more accurately model global carbon cycling.

To build a data-driven dryland soil respiration model for

Earth system models, future efforts will focus on exploring the

transferrability of DL-assisted modeling (Willard et al., 2021) to

other locations using community databases of high-resolution

Rsoil, such as COSORE (Bond-Lamberty et al., 2020). Such

efforts will eventually lead to a generalized global model for

dryland Rsoil. The integration of exploratory data analysis and

knowledge-guided DL can also be leveraged to model the

dynamics of other greenhouse gas fluxes, such as CH4 and

N2O, with poorly understood emission mechanisms. Paired

with rapid advancements in sensing technologies, knowledge-

guided DL can assist Earth scientists in building better and faster

Earth system models.
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