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Soil is the basis of agricultural production, and the quality of soil directly affects

crop quality and yield. Microalgae can carry out photosynthesis, carbon and

nitrogen fixation, and produce large amounts of valuable biomass coupled with

wastewater treatment. Also, microalgae can produce plant hormones and other

high-value products, which can promote plant growth, improve soil fertility, soil

ecological health, and control crop diseases. This research reviews the

characteristics of microalgae in improving soil health, discusses the situation

of microalgae in controlling soil pollutants, elaborates on the technical

application of microalgae in alleviating soil problems, and proposes potential

applications of microalgae in ecological environment. Also, resource utilization

of multifunctional microalgae is discussed, to provide a theoretical basis for the

application of microalgae in soil improvement.
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Introduction

Soil is the basic substance of the earth’s ecosystem, and an indispensable resource for

economic and social development. Soil health is an important part of ecosystem health. As

we know, the health soil can grow various products that benefit human health, it can

improve the quality of water and the atmosphere, and has a certain degree of anti-

pollution capability (Jun et al., 2018). Soil pollution is a ‘centralized’, ‘complex’ and

‘explosive’ problem, and would reduce the soil quality and productivity of cultivated land

and thus directly endangers food safety, ecological security, and human health

(Nematollahi et al., 2020). It also pollutes groundwater through water conservancy,

which seriously damages the stability of soil ecosystems (Perez-Lucas et al., 2019).

Algae include macroalgae and microalgae, while microalgae are a class of low-grade

organisms, small in size, simple in structure, but with high photosynthetic efficiency.

Microalgae are widely distributed in different habitats, such as soil, oceans, rivers, lakes,
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and even extreme environments (high salinity, low pH, high

temperature, etc.) (Jun et al., 2016; Little et al., 2021). About

40,000 different species of microalgae exist on earth and account

for about 20%–30% of the unknown algae in the world (Dahiya,

2015). Microalgae include eukaryotes such as diatoms and green

algae, and prokaryotes such as cyanobacteria, which offer the

following advantages as soil biofertilizer, owing to their specific

characteristics: 1) They can prevent nutrient loss by slowly

releasing nitrogen, phosphorus, and potassium to meet the

growth needs of plants (Coppens et al., 2016; Sasaki et al.,

2020). 2) They also contain trace elements and substances

that promote plant growth, such as plant hormones, vitamins,

carotenoids, amino acids, and antifungal substances (Silva et al.,

2019). These substances can promote crop growth and improve

soil fertility. 3) Microalgae reproduce quickly and can be

cultivated on a large scale, and their biomass can be directly

used for soil inoculation without polluting the surrounding

environment. They can also reclaim damaged soil, such as

desertified soil and saline-alkali land (Wu et al., 2022).

In recent years, the overuse of fossil fuels has greatly

increased energy consumption, as well as the adverse impact

of industrial waste on the environment. Apart from industrial

waste, agricultural waste is also a major cause of water pollution.

Compared with other physical and chemical treatment methods,

microalgae biotechnology is a promising method with important

potential, to address the energy crisis and wastewater treatment

(Randrianarison and Ashraf, 2017; Wollmann et al., 2019).

Moreover, carbon neutrality has become a consensus goal in

the global response to climate change, but many challenges to

achieve this goal still exist. The novel microalgae can use solar

energy to efficiently fix CO2 through photosynthesis; they can

convert and fix organic carbon through heterotrophic

assimilation and convert them into biofuels, biomaterials, and

biofertilizers to replace the use of fossil fuels, plastics, and

fertilizers. In agricultural production, different pollutants from

wastewater including pesticides, fertilizers, and rural domestic

garbage, which contaminates the soil because of the lack of fixed

pollution emission points. The use of microalgae could purify

different types of wastewaters, and harvest microalgal biomass as

a fertilizer (Wuang et al., 2016; Das et al., 2019), and greatly

reduce production costs (Tang et al., 2020). Moreover, it can

improve soil quality through its own growth, promoting

microbial decomposition, improving the transformation and

circulation of soil materials, enhancing soil fertility, and

providing more usable materials for crops.

Therefore, this review focuses on three aspects: 1) microalgae

cultivation for the improvement of soil ecological health, 2) using

microalgae to control diseases and soil pollutants and reduce soil

crop diseases, and 3) employing microalgae for the wastewater

treatment and their resource utilization. This review is to provide

a scientific basis for improving soil problems in agriculture, and

to provide reference for the resource application of wastewater

treatment with microalgae.

Microalgae cultivation improves soil
ecological health

Farmland are susceptible to the loss of soil fertility due to

large-scale intensive farming, which may lead to soil degradation

of cultivatable land. Amongst other soil microbiota, the novel

microalgae alone account for about 27% of the total biomass in

agricultural land (Abinandan et al., 2019). Moreover,

cyanobacteria are more suitable as soil biological indicators

for land use and have the potential to improve soil health and

fertility (Chamizo et al., 2018) (Table 1). Green algae and

cyanobacteria produce abundant organic matter during

climate change (Grzesik and Romanowska, 2015), increase soil

organic carbon by releasing exopolysaccharides (EPSs) during

algal cell decomposition, and become a readily available form of

carbon, required for the growth of soil microbiota (Tiwari et al.,

2019).

Microalgae improve soil physicochemical
properties

Soil microorganisms, including bacteria, fungi, viruses and

microalgae, that distribute in different soil layers and are invisible

to the naked eye. They promote the decomposition of soil organic

matter and the transformation of nutrients through oxidation,

nitrification, and nitrogen fixation, and have remarkable impacts

on soil formation, material circulation, and fertility evolution. In

addition to nitrogen and carbon fixation, microalgae can secrete a

variety of active substances, such as carotenoids, proteins, fatty

acids, plant hormones, extracellular polysaccharides (EPSs),

vitamins and antibiotics. Plant hormones are a class of small

molecules that act as chemical messengers to coordinate the

activities of agricultural crops and higher plant cells (Raza et al.,

2019). They play important roles in plant growth and

development, while EPSs can provide nutrients for soil

microorganisms, increase soil organic carbon and thus affect

soil properties (Redmile-Gordon et al., 2020).

On the other hand, microalgae can enhance the stability of

soil aggregates with the increment of organic matter, nitrogen,

phosphorus and pH (6.5–8.5) in the soil (Redmile-Gordon et al.,

2020). Stable soil aggregates are an important factor in

maintaining soil fertility, which provide suitable pores for

plant growth and nutrients absorption. A rank soil aggregate

structure can increase soil oxygen content and water holding

capacity. It was reported that organic soil aggregates mainly

formed of algal filaments and EPSs after cyanobacteria were

inoculated into the soil for 6 weeks (Malam Issa et al., 2007).

Yilmaz et al. studied the effect of different microalgal biofertilizer

on the stability of soil aggregates, and found that the retention of

the available water and plant root growth could be improved by

inoculating Chlorella sp. alone or in combination with

vermiculite (Yilmaz and Sönmez, 2017). Previous research
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reported that alkali-hydrolyzed nitrogen, soil organic matter,

available phosphorus and potassium, increased considerably

after watering cucumber, tomato, pepper and radiant cowpea

with different concentrations of microalgae liquid fertilizer, and

the enzyme activity in soil such as protease, catalase, etc. also

increased in varying degrees (Alobwede et al., 2019; Deepika and

Mubarakali, 2020).

Microalgae, including prokaryotes and eukaryotes have a

range of unique and valuable properties to cope with challenging

agricultural scenarios (Rizwan et al., 2018; Kato and Hasunuma,

2021). Microalgae are beneficial for soil nutrient cycling, as they

can improve nutrient utilization and produce biologically active

substances (Ekinci et al., 2019; Ronga et al., 2019); while some

other microalgae produce biofuels or other high value chemicals,

such as EPSs, which improve soil structure and soil quality

(Renuka et al., 2018).

Microalgae improve soil microbial
community structure

Microalgae as the potential organic carbon have a wide range

of agricultural uses (Renuka et al., 2018). The depletion of soil

organic carbon leads to a decrease in soil fertility and is an

important factor in farmland degradation (Stavi and Lal, 2015).

Microalgae convert carbon (including organic carbon) into

sugars through photosynthesis, which also affect soil microbial

community structure, and thus improve soil aggregation and

stability (Marks et al., 2019). Moreover, the multifunctional

microalgae, especially for the cyanobacteria, can secrete plant

hormones and active substances to further control pathogens and

pests (Garcia-Gonzalez and Sommerfeld, 2016; Chanda et al.,

2019). The biomass accumulated by the microalgae, can be

converted into nutrients that can be used by other plants

(Coppens et al., 2016; Alobwede et al., 2019).

The use of active microalgae-derived biofertilizers can

improve the microbial ecosystem of the soil, plant growth,

nutrient use efficiency, simultaneous tolerance to abiotic stress

and reduce the utilize of chemical fertilizers (Ronga et al., 2019;

Yoder and Davis, 2020). During the growth of some microalgae

species, the contents of intracellular and extracellular

polysaccharides increase considerably, which can fix more

carbon in the soil; therefore, increase the dissolved organic

carbon (DOC) and total carbon (TC) (Jiajun et al., 2019).

Whether microalga-derived biostimulants are used alone or

mixed with traditional biological fertilizers, they can promote

TABLE 1 Improvement of soil health and fertility with different microalgae. Adaptedwith the permission from Taylor & Francis Online (Abinanda et al.,
2019).

Soil type Major soil
characteristics

Cyanobacterial/microalgal
inoculants

Soil fertility improvenment Reference

Silt loam soil Poor micronutrient availability Anabaena sp. and Providencia sp Iron concentration in soil was >2–3 folds Manjunath et al.
(2016)

Desert soil Low organic carbon and total
nitrogen

Microcoleus vaginatus Gom >5-Fold increments of soil organic carbon and
total nitrogen based original content

Shubin et al. (2017)

Sterile soil Low nutrients Chlorella sp., Scenedesmus sp Microbial biomass carbon Renuka et al.
(2016)

Clay loam Low nitrogen Chlorella vulgaris Improved nitrogen and soil enzyme activities Dineshkuma et al.
(2018)

Ferruginous
tropical soil

Poor soil aggregation Nostoc sp Improvement of aggregate stability Yadav et al. (2021)

Glade soil Poor nutrients and
hydrophysical parameters

Tribonema minus, Choricystisminor, and
Klebsormidium subtile

Tribonema minus, Choricystisminor, and
Klebsormidium subtile

Lichner al., (2013)

FIGURE 1
The beneficial mechanism of microalgae on soil and plants
improvement. Permission from ELSEVIER (Alvarez et al., 2021).
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the activity of soil nitrogenase (Cai et al., 2017). The synergetic

effects of microalgal biomass on soil and plants would provide a

basis for the application of microalgae in crop production

(Alvarez et al., 2021) (Figure 1).

Microalgae control specific pollutants
that can cause plant diseases in soil

In agricultural production, biochemical pesticides are

selected to control pests through non-toxic mechanisms, but

high concentrations of pesticides or fertilizers could poison

weeds and cause various growth abnormalities, such as root

growth inhibition and carbon assimilation. Degradation of the

microtubule system and membrane directly contributes to weed

death (Mfarrej and rara, 2019). Therefore, the development of

microbial pesticides that use organic matter, such as algae,

bacteria or fungi has become necessary. Cyanobacteria are

regarded as one of the main biological agents for the

management of soil diseases and the control of pathogenic

fungi in plants (Stavi and Lal, 2015). They produce bioactive

compounds called secondary metabolites (Mager and Thomas,

2011), antifungal and antimicrobial activities are toxic to

nematodes (Marks et al., 2019). Various species and genera of

microalgae are potential producers of secondary metabolites

owing to their biological control and insecticidal properties.

Chemical compounds found in microalgae that have potential

as biopesticides are listed in Table 2 (Costa et al., 2018).

Heavy metals

Heavy metals, such as chromium (Cr), arsenic (As),

cadmium (Cd), mercury (Hg) and lead (Pb), are carcinogenic,

and toxic even in trace amounts. They persist in the food chain,

leading to bioaccumulation and thus posing a threat to human

health and environmental ecology (Leong and Chang, 2020).

Using microalgae in the remediation of heavy metals has become

an emerging trend owing to their abundant resources, low price,

high removal efficiency and eco-friendliness. Compared to

higher plants, fast growth, simple and non-toxic process are

also the main advantages for microalgae (Leong and Chang.,

2020). Table 3 shows the ability of microalgae for the removal of

heavy metals from aqueous solutions.

The adsorption process of microalgae not only releases free

radicals against heavy metals, but also synthesizes antioxidants such

as glutathione reductase, superoxide dismutase (SOD), peroxidase,

ascorbate peroxidase, catalase, etc. (Upadhyay et al., 2016). As

endogenous antioxidants, GSH and ASC play key roles in

reducing both free radicals and reactive oxygen species (ROS)

(Devars et al., 2000). Microalgae secrete high levels of ASC, which

acts as a hydroxide-philic reducing buffer and is responsible for

protecting cellular components from oxidative threats. ASC exerts a

protective effect on microalgae by regulating the activity of ascorbic

acid glutathione (ASC-GSH) pathway and metalloenzymes while

maintaining the balance of ROS elimination and generation.

Furthermore, high levels of GSH can protect microalgal cells by

scavenging free radicals, providing tolerance, promoting PCs and

ASC synthesis, and restoring substrates for other antioxidants

(Gomez-Jacinto et al., 2015).

In detail, heavy metal removal with microalgae through two-

stage action: biosorption and bioaccumulation (Figure 2).

Biosorption is the fast passive adsorption outside the cell,

while bioaccumulation is an active and slow transport process.

Microalgal cell wall components include organic proteins,

polysaccharides, lipids as well as cellular macromolecules such

as peptides and exopolysaccharides, with various functional

groups to bind heavy metals (Priatni et al., 2018). Moreover,

laminar, carboxyl, monomeric alcohol and deodorizing sulfates

of macromolecular clusters from microalgae can also be formed

to attract cations and anions of different heavy metals (Pradhan

et al., 2019; Leong and Chang., 2020).

TABLE 2 Chemical compounds found inmicroalgae have potential as biopesticides. Adapted with the permission from Taylor & Francis Online (Costa
et al., 2018).

Microalga Activity Metabolite Extraction method Identification/
quantification
method

Reference

Anabaena laxa Antimicrobial Laxaphycin B and
laxaphycin C

Fractionation of the extract by
successive gel filtration

High performance liquid
chromatography (HPLC)

Hernandez-Carlos and
Gamboa-Angulo., (2011)

Anabaena sp Larvicidal Anatoxin-a Ultrasonic disintegration of the
microalgae cell wall

GC/MS Mejean et al. (2014)

Calothrix sp Insecticide Eremophilone Essential oil obtained by vacuum
distillation

GC/MS Yasinet al., (2018)

Chlorella
vulgaris

Antifungal Phenolic compounds Extraction using FolinCiocalteu
reagent

HPLC Mofeed and El-Bilawy, (2020)

Fischerella sp Antimicrobial Ambiguine isonitrile Extraction using methanol/H2O HPLC Albarano et al. (2020)

Lyngbya sp Larvicidal Pahayokolides Extraction using methanol/H2O Unrealized Pattanayak et al. (2021)
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Organic pesticides

It was found that the organophosphorus pesticide malathion

can inhibit the growth of Aspergillus oryzae and Nostoc

muscorum in paddy fields; however, the nitrogen-fixing

cyanobacteria could degrade malathion and utilize them as a

source of phosphorus (Ibrahim et al., 2014). Amongst them,

Candida grisea has the highest biodegradability (91%). Hangjun

et al. found that Anabaena PD-1 isolated from rice fields could

tolerate polychlorinated biphenyls (PCBs) (Hangjun et al., 2015),

and low-chlorinated PCBs are more easily degraded by the algae

than their highly chlorinated counterparts. Meta-

trichlorodiphenyls, tetrachlorobiphenyls and para-

trichlorodiphenyls are more susceptible to dechlorination

degradation than their ortho-chlorinated counterparts. In

addition, the algae can also degrade dioxin-like PCBs. After

25 days of treatment, the degradation rates of 12 dioxin-like

PCB compounds ranged from 37.4% to 68.4%, indicating that the

algae can be used for the in-situ bioremediation of PCB-

contaminated paddy soil. Tiwari et al. found that Scytonema

sp. BHUS-5 could remove and degrade methyl parathion and use

the phosphorus after degradation (Tiwari et al., 2017). Abdel-Aty

et al. found that Anabaena sphaerica has the ability to remove

diurons, and when the initial diuron concentration was 40 mg/L

and the pH was 3, adding 1 g/L Anabaena sp. could remove

diuron with the rate of 80% in 80 min (Abdel-Aty et al., 2017).

Antibiotics

Antibiotics are the chemical substances produced during the

metabolism of microorganisms that can inhibit the growth and

TABLE 3 The ability of microagae for the removal of heavy metals from aqueous solutions (Leong and Chang, 2020).

Microalgae
strains

Heavy
metal

Temp
(°C)

Optimal pH Initial
metal
conc.
(mg/L)

Biomass
conc.
(g/L)

Time
(min)

Max.
Sorption
(mg/g)

Removal
Efficiency (%)

Reference

Ulothrix
cylindricum

As 20 6 10 4 60 2.45 98 Tuzen et al. (2009)

Immobilized
Chlorella sp

Cd - 6 10 1.3 - 15.51 92.5 Shen et al. (2018)

Scenedesmus
quadricauda

Cr 25 6 100 2 120 - 98.3 Shokri Khoubestani
et al.(2015)

Phormidium sp Pb 25 5 10 4 40 2.305 92.2 Das et al. (2016)

Spirogyra sp Hg 4 4 1 3 30 0.253 76 Rezaee et al. (2006)

FIGURE 2
Mechanism of Removal of Heavy Metals by Microalgae. Adapted with the permission from ELSEVIER (Leong and Chang, 2020).
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activity of other microorganisms at low concentrations (Sherpa

et al., 2015). Antibiotics are widely used in aquaculture, soil and

crop planting (Chuah et al., 2016). It was reported that antibiotics

have shown a powerful effect in inhibiting the reproduction,

sterilization and bacteriostasis of aquatic bacteria (Lijian et al.,

2020). It is accustomed to add different types of antibiotics to the

algal fluid to achieve sterilization or bacteriostasis. Different

antibiotic treatments can also be used in different growth

stages of microalgae. Haematococcus pluvialis was sterilized

with 8 different antibiotics and the antibacterial effect of

adding griseofulvin in the early stage was the best, but the

antibacterial effect of adding penicillin in the middle and late

stage was more obvious (Kiki et al., 2020).

However, the applications of antibiotics are to inhibit the

growth of bacteria in the process of microalgal culture, but the

use of antibiotics also has an impact on the growth rate, algal cell

density, and chlorophyll content (Dantas et al., 2019; Shan et al.,

2020). The effect of antibiotics on algae is dual; they may be used

as a poison to inhibit the growth of algae, it can also induce toxic

irritant effects at specific concentrations; so as to activate protease

and induce gene expression, etc., and further to promote the

growth of microalgae.

Microalgae remove antibiotics in contaminated soil mainly

through biosorption, bioaccumulation and biodegradation, and

then achieve the purpose of degradation, thereby restoring soil

fertility. Aseptic microalgal culture is very important in its

genetic, biochemical, physiological, and taxonomic studies

(Ananthi et al., 2018). It shows an effect in sterilization, as

antibiotics inhibit the growth and reproduction of bacteria

(Xiaoyu et al., 2022). Microalgae are more resistant to

antibiotics than bacteria; hence, obtaining sterile algae by

selectively using one or more antibiotics for aseptic treatment

(Sandhya and Vijayan, 2019).

Microplastics

The problem of microplastic pollution in the soil has

attracted global attention. Many reports have been

conducted on microplastics, especially on the effect of the

water and soil environment. As primary producers,

microalgae play an important role in aquatic ecosystems

and can maintain the balance of aquatic ecosystems

(Nickelsen, 2017; Yokota et al., 2017). Previous studies

have found that microplastics can act as substrates for the

growth of Raphidocelis subcapitata and promote the growth of

the algae (Canniff and Hoang, 2018). Microalgae are sensitive

to toxic substances and all changes in microalgae will

ultimately affect the structure and function of aquatic

ecosystems (Guo et al., 2016; Cai et al., 2017).

At present, plastics are made from chemicals derived from

fossil fuels, particularly ethylene and propylene. However, lipids,

proteins, and carbohydrates are important raw materials for

bioplastic synthesis. Microalgae are rich in these substances;

therefore, they become an important source of bioplastic raw

materials. The main used in the industrial-scale production of

bioplastics contain polylactic acid (PLA), polyhydroxybutyrates

(PHBs), polyhydroxyalkanoates (PHAs), starch plastics, protein

and cellulosic plastics (Laurens et al., 2017). Calothrix sp.,

Synechocystis sp., Nostoc sp., Oscillatoria sp., and Spirulina

sp. are expected to be used for PHAs production, whereas

photoautotrophic Scenedesmus sp. can be used for PLA

production (Chaofan et al., 2019). Nutrient-limiting increase

PHA and PHB production but without affecting microalgal

growth (Kamravamanesh et al., 2018).

Microalgae biotechnology improves
soil diseases

Microalgae biotechnology is based on the biology and

engineering principles to study algal breeding, algal cell

culture, and algal harvest and the treatment of water and

nutrients. The established microalgae biotechnology involves

carbon sequestration, emission reduction, large-scale

cultivation, environmental remediation, bait and feed,

functional or high value products (Alam et al., 2020).

Moreover, the microalgae biotechnological potential in the

maintenance of soil fertility and health are greatly useful and

worth expecting.

Saline soil application

To date, about 99.13 million hm2 of saline-alkali land are

present in China, especially in Gansu, Ningxia, Xinjiang and

other provinces and regions in the northwest region. In detail, the

soil affected by salinization in Gansu province is close to

30,000 hm2, especially in Hexi and Yanhuang irrigation areas.

The area of soil salinization is increasing annually because of

unreasonable irrigation. The annual loss of grains exceeds

100 million kg (Lili and Baoshan, 2021). Cyanobacteria play

an important role in the improvement of saline soil. They can

improve the contents of nutrients and contribute to the chelation

of harmful sodium ions in the soil. The EPSs secreted by

cyanobacteria have a tendency to chelate cations. EPSs have

negatively charged groups, such as uric acid (Kumar et al., 2018),

reduces the availability of Na+ in soil solution by binding to Na+.

Nisha et al. isolated several salt- and drought-tolerant

cyanobacteria from saline-alkali land and used cyanobacteria

as biological fertilizer to improve saline soil, potassium,

magnesium cation exchange capacity and soil water-holding

energy and also decrease sodium ions and electrical

conductivity. Saline-tolerant algae can survive in high-salinity

environments and can be considered for application as biological

bacterial fertilizers in saline-alkali soils.
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In saline soils, the application of fungi Arbuscular

mycorrhiza and green algae can increase pH, bacterial

biomass carbon, root density, carbon mineralization, soil

microbes and soil aggregate formation (Al-Maliki and

Ebreesum, 2020). However, Gehringer et al. found that the

inoculation of nitrogen-fixing cyanobacteria in high salinity

soils can reduce wheat biomass and nutrient content, which

may be due to the adsorption of nutrients by algal extracellular

polymers, making them unable to be absorbed by plants

(Gehringer et al., 2010). This finding indicates that nitrogen-

fixing cyanobacteria may not be suitable for wheat in saline-alkali

soil but are beneficial to soil fixation. Saline soils are usually low

in nitrogen, carbon, and phosphorus; have high electrical

conductivity and contain some toxic ions, which greatly limit

plant growth (Munns et al., 2020).

Desertification soil application

Nitrogen-fixing cyanobacteria have been used in

desertification soil control in the form of biological crusts in

Northwest China and have achieved good results. However, the

adaptation mechanism of nitrogen-fixing cyanobacteria to such

extreme environmental conditions has not been fully elucidated.

The researchers measured organic matter, soil texture, nitrogen,

phosphorus, temperature, and solar irradiance in Brazil and

found that Leptolyngbya sp. has better biocrust under drought

conditions (De Lima et al., 2021). Wu et al. found that the shape,

species and Colour composition of artificial algal crusts increased

with the growth of crusts, and available nitrogen, phosphorus

and soil moisturnd also increased (Wu et al., 2022). It shows that

the artificial inoculation of biological crusts can improve soil

fertility and micro-ecological environment of the topsoil. It was

revealed that the tolerance of Lentinula boryana to drought stress

could be expressed by the levels of intracellular proline, SOD and

carotenoids (Prasanna et al., 2014).

Cyanobacteria act as an important protective role in

biological soil crusts (BSCs) in arid and semi-arid regions;

however, the cyanobacteria, green algae, and mosses are lesser

concern in the wetter agricultural soils of eastern North America.

Unlike the traditional BSCs growth pattern in semi-arid areas,

the substrate growth in agricultural soils is frequent, short-lived

and rapid (Xin and Bruns, 2019). Therefore, cyanobacteria, as

renewable C and N resources and have a role in enhancing soil

resilience, and have broad prospects in soil applications.

Phylogenetic mapping showed that all typical members of the

cyanobacterial circle were eutrophic and many of them were

nitrogen-fixing bacteria. As assessed with qPCR, nitrogen

fixation genes are actually several orders of magnitude more

abundant than in bulk biocrust soils. In contrast, competition for

CO2, low organic carbon concentrations, and light define a

fraction of OTUs separated from cyanobacteria (Couradeau

et al., 2019).

Nitrogen-fixing cyanobacteria may also promote desert plant

growth and drought resistance. Some cyanobacteria can secrete

active compounds which help in promotion of plant growth.

Research showed that these active compounds have potential to

reduce abiotic stress in crops (Gr et al., 2021). Moreover,

cyanobacteria can improve soil quality and alleviate salinity

stress and drought resistance with a wide application.

Microalgae wastewater treatment
and soil improvement resource
utilization

Traditional wastewater treatment has gone from backward

and expensive. They simply transfer contaminants from the

water, which also cause secondary pollution. Microalgal

wastewater treatment is a biological process that removes

pollutants while also fixing CO2, and the harvested microalgal

biomass can be made into various high valuable products (Jacob

et al., 2021). However, advanced methods are required to avoid

the adverse effects of different pollutants when use of microalgal

biomass based on the wastewater treatment for the improvement

of soil (Wu et al., 2022). The characteristic pollutants in

wastewater can affect the growth and metabolism of

microalgae. Exogenous carbon can effectively increase the

growth rate of microalgae and thus improve the removal

effect of nitrogen and phosphorus, it also increases the cost of

treatment and operation. Swine wastewater is rich in organic

matter and afford an effective carbon for the growth of

microalgae that can eliminate the cost of carbon supply and

simultaneously reduce the organic matter. The researchers

designed a comprehensive process for the treatment of

digested manure wastewater for advanced treatment and

resource recovery (Shubin et al., 2017). It is concluded that

the activated carbon adsorption combined with microalgae

purification can remove nutrients in wastewater with high

efficiency. However, the resource utilization of microalgae

after wastewater treatment can improve the economy. Some

studies have shown that cyanobacteria polysaccharides in

desert soil can play an important role in sand surface stability

and soil nutrient retention (Xu et al., 2013). Water retention and

structure protection abilities were considerably positively

correlated with the content of total carbohydrates and

macromolecular carbohydrates in the crust when watering the

active microalgae. This indicates that the EPSs from microalgae

can play a key role in soil remediation. Microalgae could

accumulate 30%–80% of lipids, particularly triacylglycerols.

Most algal strains, such as Chlorella, produce fatty acids in

the range of C16–C18, whereas the carbon chain of biodiesel

is concentrated in C14–C18; therefore, it is suitable for biodiesel

production. Carbohydrates are one of the components of

microalgal biomass and can be directly used to produce

bioethanol. Studies have shown that algae grown in
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wastewater have the potential to accumulate carbohydrates;

therefore, carbohydrate-rich biomass can be cultivated in soil

to reduce the cost of microalgae production. In addition, many

studies have shown that cultivating microalgae with agricultural

wastewater can produce valuable compounds i.e., proteins,

carbohydrates, pigments, vitamins, etc., which can be used to

further produce cosmetics, food, feed, and/or medicine (Alvarez

et al., 2021).

Conclusion

Soil health is an important segment of ecological environment.

However, soil pollution deteriorates the soil quality and productivity

of cultivated land and thus directly endangers food safety and

human health. Photosynthetic microalgae can improve soil

physicochemical properties, soil microbial community structure,

and recycling with their multiple active chemicals. Likewise,

microalgae can control much pollutants of underlying factors for

soil deterioration, such as heavy metals, pesticides, antibiotic, and

microplastics, with their particular cell structure or functional

group. Moreover, utilization of microalgal biomass after

wastewater treatment has a sustainable prospect in saline soil and

desertification soil application.
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