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Knowledge discovery in databases (KDD) has an important effect on various

fields with the development of information science. Electricity energy

forecasting (EEF), a primary application of KDD, aims to explore the inner

potential rule of electrical data for the purpose to serve electricity-related

organizations or groups. Meanwhile, the advent of the information society

attracts more and more scholars to pay attention to EEF. The existing methods

for EEF focus on using high-techs to improve the experimental results but fail to

construct an applicable electricity energy KDD framework. To complement the

research gap, our study aims to propose a gradient boosting machine-based

KDD framework for electricity energy prediction and enrich knowledge

discovery applications. To be specific, we draw on the traditional knowledge

discovery process and techniques to make the framework reliable and

extensible. Additionally, we leverage Gradient Boosting Machine (GBM) to

improve the efficiency and accuracy of our approach. We also devise three

metrics for the evaluation of the proposed framework including R-square (R2),

Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).

Besides, we collect the electricity energy consumption (EEC) as well as

meteorological data from 2013 to 2016 in New York state and take the EEC

prediction of New York State as an example. Finally, we conduct extensive

experiments to verify the superior performance of our framework and the

results show that our model achieves outstanding results for the three metrics

(around 0.87 for R2, 60.15 for MAE, and 4.79 for MAPE). Compared with real

value and the official prediction model, our approach also has a remarkable

prediction ability. Therefore, we find that the proposed framework is feasible

and reliable for EEF and could provide practical references for other types of

energy KDD.
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1 Introduction

Electricity energy, as one of the necessary energy resources,

has an increasing influence on all walks of life in modern society.

Hence, electricity energy prediction is essential and significant to

humans. Hu (2017) has revealed the rapid increment of the EEC

over the past decades and its importance for the world.

Specifically, there are around 250,000 TW h per year of

electricity produced by all countries worldwide but 44.1% of

the total is generated by the 36 main members of the

Organization for Economic Cooperation and Development

(Statistical Review of World Energy, 2022). This imbalance

will lead to the unreasonable distribution of electricity and

power shortages in numerous underdeveloped countries. Here

is the statistic for worldwide electricity demand from 2015 to

2020. According to Figure 1, the average annual electricity

demand growth rate is increasing year by year except for

2019 and 2020 due to COVID-19. This electricity decline in

2019 and 2020 leads to a lower vitality in diverse fields such as the

inadequate power supply for industry, lack of lighting for

business and education, instability of the government systems,

etc. As a result, understanding the potential rules of power

generation and consumption, as well as balancing global

electricity distribution, is an important challenge that should

be solved. EEF, as a kind of knowledge discovery, is a valuable

approach to acquire the potential laws of electricity energy data.

Besides, EEF has far-reaching policy implications for

governments and institutions in the information era like

guidelines for electricity-related policy development, business

policy guidelines for electricity-related companies, guidance on

electricity generation for power generation agencies, etc. When

applied to predict electricity generation and consumption, EEF

will be beneficial advice to governments and organizations for

electricity-related policy-making decisions.

KDD refers to the non-trivial process of extracting effective,

novel, potentially useful, and understandable patterns from a

dataset (Fayyad et al., 1996). With the rapid advancement of

data science, public interest in KDD is in full swing. Electricity

energy knowledge discovery is a process of extracting

potentially valuable, novel, and effective knowledge patterns

from massive electricity data. Previous studies have shown that

there are two main differences between electricity knowledge

discovery and general KDD. First, there are large volumes of

electricity data with a wide variety and complexity that makes it

rather tough to handle. Second, discrete and heterogeneous

electricity data is vulnerable to multiple factors like weather,

human activities, regions, and so forth (Reddy and Momoh,

2014; Shao et al., 2014; Weron, 2014; Reddy, 2018). However,

the rise of machine learning (ML) provides an increasing

number of approaches to be employed in electricity KDD

such as neural networks (Kaur and Kaur, 2016), ensemble

algorithms (Banik et al., 2021), etc. As one of the most

important applications of electricity energy knowledge

discovery, EEF is attracting wide attention from industry and

academia.

EEF methods can be split into two categories, time series

analysis and multivariate regression (Wang L et al., 2018).

Regarding time-series approaches, a linear time-series

prediction system with nonlinear models (Chou and Truong,

2021) and a hybrid model with variational mode decomposition,

autoencoder, and long-short term memory (LSTM) (Bedi and

Toshniwal, 2020) are proposed for accurate electricity

predictions. Additionally, several ensemble models are built

for predicting EEC like conditional generative adversarial

FIGURE 1
Global electricity generation and growth data of electricity consumption from 2015–2020 (Statistical Review of World Energy, 2022).
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networks (Zhang and Guo, 2020), and random forests (Alshboul

et al., 2022). On the issue of multivariate regression, numerous

experts make efforts to achieve excellent performance. For

example, some hybrid models have obtained outstanding

results like the multiple linear regression (MLR) model with

back-propagation neural networks (Li et al., 2017) and the MLR

model with neuro-fuzzy models (Samhouri et al., 2009).

Meanwhile, there are some algorithms for EEF with cluster

analysis, multivariate adaptive regression splines, and

conditional inferences trees (Li et al., 2020). Furthermore,

Obaidat et al. (2019) discuss the feasibility and efficiency of

MLR models for electricity energy forecasting. All of the

mentioned methods have leveraged splendid cutting-edge

algorithms for EEF and the average results were

approximately 85%. However, there is a need to be more

excellent methods for large-scale industrial utilization.

Therefore, further in-depth research needs to be taken for the

accuracy improvement of EEF. For example, more precise feature

selection and ensemble algorithms can be employed for

electricity prediction since they can fit the power data of

different structures and make the model’s generalization

ability stronger.

Ensemble algorithms have taken a vital role in the problem of

prediction and classification recently. Many of them have been

applied in various domains and made significant achievements.

For instance, the first team in the Netflix prize competition

attempts to apply ensemble methods to predict user ratings

and obtain great performance (Koren, 2009). In terms of all

ensemble algorithms, the tree-based method is undoubtedly the

most successful which uses many simple decision trees to

promote the whole model’s accuracy instead of training the

“best” model. GBM is one of the most popular tree-based

models, which contains multiple gradient boosting (GB)

algorithms (Gumaei et al., 2021). Therefore, it can handle

diverse variables easily through the augment of multiple base

trees. GBM has achieved excellent results in multiple studies due

to its advantages such as robustness, reliability, easy

implementation, compatibility, etc. For example, GB

algorithms are applied in different models for diverse

scenarios, such as building energy consumption prediction

with 8.06% of MAPE (Lu et al., 2020), electricity demand

forecasting with 0.92% of MAPE (Leme et al., 2020), and

photovoltaic power prediction with about 14% of MAPE

(Wang et al., 2018). The superior performances compared

with some other models prove that the GB ensemble predictor

can effectively minimize errors in different scenarios.

In this study, we devise a novel electricity energy KDD

framework for electricity energy forecasting by combining the

traditional KDD process and the advanced ensemble model,

GBM. Specifically, we first learn from the traditional

knowledge discovery to build the main process of electricity

energy KDD. Then, we use GBM as the predictor to mine the

potential knowledge from electricity energy due to the

vulnerability of electricity data to various elements such as

regions, time, and climate (Meng and Niu, 2011). GBM is

able to examine the specifics of each variable and parameter

in the prediction process by merging many basic tree models,

which makes our model more sensitive to time-series data and

the various factors of the training procedure. After that, we

design three evaluation metrics to prove the efficiency of our

approach. To verify the feasibility of our framework, we collect

the 2013 to 2016 electricity consumption data andmeteorological

information from New York state as an example.Then, our

framework is employed to mine the latent information for

predicting the hourly, daily, and monthly EEC. The

experimental results are visualized and a detailed analysis is

provided.

The contributions of this study are summarized as follows.

First, this study builds a knowledge discovery framework based

on GBM by combining meteorological information and energy

data to mine the potential rules of electricity data. Meanwhile,

this study describes the theoretical applicability of the model to

KDD in energy data and discusses the possibility that our

framework is applicable for mining knowledge from various

energy data. Last, we employ our model to conduct

experiments on the collected dataset and compare it with real

EEC value and the bidirectional long-short term memory

(BiLSTM)-based model of the New York electricity institution,

regarding three metrics, i.e., R2, MAE, and MAPE. However, we

do not employ our framework for different energy data and will

further explore it in the follow-up research.

The parts of this study are presented as follows. The related

work is shown in chapter two. The framework construction process

and the GBM prediction model are developed in chapter three. The

experiments and analysis are provided in chapter four. Finally, the

conclusion and discussion are given in chapter five.

2 Related work

2.1 Research on energy-related
knowledge discovery

Energy is the economic lifeblood of a country (Magazzino

et al., 2020). Especially in the era of big data, knowledge discovery

is able to find latent rules of energy data to promote economic

development of a country. There are a vast number of scholars

paying attention to energy-data-driven KDD recently. In order to

implement the application of the KDD process for predicting the

power demand of a supply fan of an air handling unit, Le Cam

et al. (2016) proposed an integrated method of an autoregressive

neural network and a physical model to prove that the fan’s

actual power consumption is consistent with the prediction.

Based on artificial intelligence (AI) techniques, Huang et al.

(2019) established a hybrid-driven knowledge discovery

platform for grid security feature selection in Guangdong
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Power Grid. They combine manual rule extraction with AI real-

time judgment operation models to update the massive data

inside the power grid and effectively discover knowledge. Wang

and Zhang (2019) combined cat swarm optimization with a back

propagation neural network to estimate short-term power and

verify the method’s excellent performance through experiments.

Additionally, some research revealed the importance of

information, environment, and energy (Magazzino et al.,

2021) in the information society. For example, Magazzino and

Mele (2022) presented a new D2C algorithm-based knowledge

discovery approach to explore the nexus of carbon dioxide

emission, energy use, and GDP in Russia.

Nowadays, many scholars are attempting to focus on EEF

primarily including short-term forecasting, mid-term

forecasting, and long-term forecasting. Multiple algorithms

have been utilized commonly in the electricity prediction field

in recent years including random forest, convolution neural

networks, recurrent neural networks, genetic algorithms, back-

propagation neural networks, etc. Kim et al. (2020a) explored the

performance of different algorithms in building electrical energy

forecasting and showed that artificial neural networks are more

exact and trustworthy than linear regression in terms of EEF on

working days. Besides, Kim et al. (2020b) worked on another

study related to commercial building electricity consumption.

They used four back-propagation neural networks to forecast

electricity usage in buildings and proved that the algorithms are

useful for determining how each input component affects energy

consumption. Pinto et al. (2021) utilized three different ensemble

algorithms to improve the prediction accuracy of EEF in office

buildings and show the Adaboost model exceeds other

algorithms for hour-ahead forecasting. Banik et al. (2021)

designed an ensemble model of random forest and Xgboost to

estimate electricity consumption in Agartala, Tripura of India.

The proposed model aimed to precisely forecast the next 24-h, 1-

week, and 1-month load, which has been proven by experiments

in the study. Kang et al. (2020) built various deep learning (DL)

models including recurrent neural networks, convolutional

neural networks, and the combination of both algorithms for

mining the data supported by Korean power exchange. It is

shown convolutional neural networks have the best performance

by comparing to the other models. Mukherjee et al. (2021)

constructed the delay tolerance network-assisted internet for

smart grid communication, as well as various algorithm-

ensembled techniques for load prediction, and verified the

feasibility of the proposed models by experiments.

In summary, energy-related KDD is one of the global

research hotspots currently. With the popularity of AI, KDD

has a wide range of applications including movie box office

forecasting, highway traffic prediction, the prediction of aircraft

flight delays, traffic accidents forecasting, solar radiation

forecasting, electricity consumption forecasting, etc. Regarding

energy-related KDD, most researchers tried to use the newest ML

and DL algorithms to discover the knowledge from extensive

energy data but fail to build a framework applicable to different

genres of energy data. Meanwhile, there are relatively few studies

applying GBM to energy knowledge discovery. In order to

explore the feasibility and scalability of GBM in mining

energy data, this study proposes a KDD process based on

GBM and takes EEF for example to demonstrate the

adaptability, scalability, and accuracy of the proposed KDD

process.

2.2 Research on gradient boosting
machine

GBM is a group of valuable and significant machine learning

algorithms that integrate several base predictors into a strong

predictor with outstanding effectiveness and achieves excellent

performance in multiple prediction missions including anomaly

detection, event mining, energy consumption forecasting, etc.

(Lu and Mazumder, 2020) It is routinely considered as a kind of

the top efficient algorithms in the competitions of Kaggle and

KDD Cup (Chen and Guestrin, 2016). At the same time, GBM is

capable of reducing the noise of missing data, highly correlated

data, and other heterogeneous datasets. Besides, it can organically

optimize an explainable model by aggregating weak learners for

the whole frame (Friedman, 2001). GBM is also available in a

wide range of existing machine learning and deep learning

libraries such as Scikit-Learn, TensorFlow, Light GBM, etc.,

and can easily be applied in numerous fields. Based on the

advantages of GBM, an increasing number of scholars attempt

to leverage GBM for prediction tasks.

Zhang and Haghani (2015) trained a travel-time prediction

model with GBM to efficiently improve the accuracy of

traditional traffic prediction methods. Gong et al. (2020)

leveraged the GBM model to predict the return temperature

of the district heating systems and verified the superiority of the

model in comparison with the other support vector machine

(SVM) and neural network models. Cui et al. (2021) constructed

a powerful GBM model to predict rainfall-runoff with the

expectation to solve the problem of flood migration and prove

the efficiency of the model. Alshboul et al. (2022) designed a solid

model based on GBM to predict the forecast green building costs

and showed excellent performance in contrast to deep neural

networks and random forests. Andrade and Bessa (2017) applied

a gradient boosting tree to wind and solar forecasting and

obtained a significant improvement over prior models. Alonso

et al. (2015) attempted to solve the issues of wind energy

prediction with random forest and GB algorithms. They

revealed that both algorithms can improve the accuracy of the

prediction but GB can handle significantly higher data volumes.

Razavi et al. (2019) developed a combined framework with

genetic programming and GBM algorithms for electricity theft

detection by using the electricity demand data from

4,000 families.
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Generally speaking, there are lots of successful GBM

applications in diverse domains but few cases in electricity

energy prediction. Therefore, we attempt to build a GBM-

based electricity energy knowledge discovery framework in

this paper and demonstrate the feasibility and scalability of

our framework.

2.3 The limitations of the existing methods

Although tons of existing models and methods can be used

for EEF, there is a lack of an effective KDD framework capable of

mining the electricity energy data or other types of energy data in

an accurate and scalable manner.

Meanwhile, EEF is complicated work since it is easily

influenced by a variety of circumstances such as weather,

temperature, season, etc. Additionally, inhabitants’

consumption patterns, which have a significant impact on

EEF, are easily influenced by weather conditions. As a result,

there are lots of uncertainties in the task of EEF under the impact

of weather. Therefore, weather conditions must be considered

comprehensively when forecasting EEC. Furthermore, there are

several types of periodic variations in the process of EEF. The

impact of the climate on EEC during the four seasons of a year

results in seasonal fluctuation of electricity usage. This kind of

change is frequently affected by a lot of factors, such as region,

climate, longitude, etc. All of which make EEF difficult. The

present methods in the literature could not tackle these critical

challenges efficiently.

GBM, a mechanism of ensembled gradient boosting

algorithms, can reliably and accurately analyze EEC with time

series and regression. It can effortlessly capture various features

in the time series of electricity consumption in order to make EEF

more precise. Hence, in the following section, we design a novel

KDD framework based on GBM for forecasting energy data and

utilize EEC for example to prove the viability of the proposed

framework in this study.

3 Methodology

The aim of electricity energy KDD is to obtain “predictive

knowledge” by extracting potential knowledge from historical

data and predicting future electricity energy trends. Therefore,

there are several requirements for this task including predicting

the findings as accurately as possible, being well adapted to

multiple data types and diverse data formats, having good

fault tolerance and robustness, and paying attention to the

feedback of the KDD process. To satisfy the above items, we

design a framework for electricity energy knowledge discovery

that effectively considers how to select the huge data source on

the internet and includes detailed data preprocessing steps to

improve compatibility and scalability. The latent knowledge

hidden in the data source is significantly discovered through

GBM and a feedback mechanism is engaged in the process to

provide a closed-loop and feasible operation of electricity

knowledge discovery. The specific process is shown in Figure 2.

According to the figure, there are five sections in the KDD

framework including data collection, data preprocessing, data

mining, evaluation, and result visualization. They complement

each other and promote each other to ensure accurate and

effective implementation of electricity energy KDD. For data

collection, our framework provides two main methods to gather

the data sources. First, the electricity energy data can be obtained

from specific organization datasets by establishing agreements

with these institutions. The information era stimulates

electricity-related agencies to urgently handle and analyze

their own data in detail, which makes cooperation with

electricity institutions feasible. Second, we can use web spiders

to acquire the electricity energy data from the internet. This is a

common approach to attain the required data when there are no

other ways to get approximate information. Meanwhile, a variety

of programming languages (i.e., python, java, etc.) are capable of

implementing web spiders. In terms of data preprocessing, there

are many high-dimensional, heterogeneous, and noisy

information in the actual electricity data. Hence, our

framework provides three methods to preprocess data

including data cleaning to remove data noise, data conversion

to reduce high-dimensional data, and data aggregation to

eliminate data heterogeneity. Of course, other data

preprocessing methods can be used for different types of data.

For knowledge representation and visualization, our framework

provides a process to implement visualization. In our framework,

we transfer acquired knowledge to the knowledge representation

section to represent the knowledge in a way and then leverage

visualization tools to present the mined knowledge in an

interactive manner. Evaluation is the key to evaluating the

efficiency of our framework, which joins the expert system to

help the evaluation part to make a more accurate evaluation. If

the evaluation is not up to standard, the feedback system will be

triggered to feedback to the previous sections, thus improving the

accuracy of the entire knowledge discovery cycle. For GBM-

based data mining, we utilize GBM to extract knowledge from the

electricity data. Since our KDD conforms to the conventional

knowledge discovery process and GBM is universally compatible

with various data, our framework is widely applicable and

extensible to various energy data. It is worth noting that data

mining and evaluation are the core of the framework. We will in-

depth discuss these two sections in the following.

3.1 Gradient boosting machine

The GBM was proposed by Friedman (2001). The primary

idea is to create M weak classifiers and finally combine them to

form a strong classifier through multiple iterations (Alonso et al.,
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2015). There are m steps of gradient boosting, where 0≤m<M.

If there are some basic classifiers, there is a predicted model

hm(x) of each classifier. The predicted value is

Fm(x) � ∑M
m�1hm(x). The purpose is to make Fm(x) as close

as possible to the real value y. As a result, it is necessary to make

the output of each base model close to the real value, which

makes the question more complicated. To simplify the process, it

is efficient to update one base classifier every time. Therefore, the

update equation of the model becomes as follows.

Fm+1(x) � Fm(x) + hm+1(x) � y (1)

Here, the loss function is 1
2 (y − Fm(x))2, the residual y − Fm(x)

is the gradient of the loss function in the negative direction.

Friedman. (2002) shed light on an improved method,

gradient boosting decision tree (GBDT), which can

accumulate the learning ability of each weak learner. The

general GB algorithm needs to use hm(x) to fit the residual in

mth steps so that the space is divided into Jm orthogonal spaces

{Ri}jmi�1m. Wherein Jm is the number of the leaf nodes, bjm is the

predicted value of Rjm, and I is the indicator function. Therefore,

the equation of hm(x) is as follows.

hm(x) � ∑Jm

j�1bjmI(x ∈ Rjm) (2)

Then, h(x) is multiplied by the coefficient γm to update the

model, where γm can be updated as follows.

FIGURE 2
The Framework of Knowledge discovery based on GBM.
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Fm(x) � Fm−1(x) + γmhm(x), γm
� argminγ∑n

i�1L(yi, Fm−1(xi) − γhm(xi)) (3)

After that, Friedman tried to discard the coefficient b + jm

from the tree fitting process for modifying the algorithm (Dehuri

and Ghosh, 2013) and find the optimal value γmj of each Rjm .

The revised algorithm is called “TreeBoost”, and the model

updates as follows.

Fm(x) � Fm−1(x) +∑jm

j�1γjmI(x ∈ Rjm) , γjm
� argminγ ∑xi∈Rjm

L(yi, Fm−1(xi) − γ) (4)

GBM is an ensemble gradient boosting mechanism, which

can attain the accurate prediction through the iteration of

multiple weak learners (Natekin and Knoll, 2013). Traditional

KDD is only a one-way process from the original data source to

new knowledge, with a rather constrained data mining and

analysis procedure that leads to unsatisfactory results

(Harbelot et al., 2015). Our GBM model can optimize the

knowledge discovery process by using base decision trees to

form a loop until the optimal results are attained.

3.2 Gradient boosting machine feature
extraction

Feature extraction is the process of obtaining valuable

features to improve the model’s performance (Barta et al.,

2017). In our framework, we fully consider the following

issues. Before data mining, a k-dimensional feature vector is

created for the data source and different feature vectors should be

chosen to represent information subsets. If the information

represented by feature vectors satisfies the requirements for

predicting dependent variables, the model’s prediction

performance will increase, and vice versa. Therefore, the

following two points should be paid attention to when

extracting useful features. Firstly, whether or not the feature is

scattered. For example, the original data basically has no

difference regarding this feature when the variance of a

feature vector is close to 0 in the electricity consumption

prediction, so this feature is not scattered. Secondly, whether

or not features and dependent variables are correlated. For

instance, the feature with high correlation should be selected

priorly concerning the correlation between the feature and the

prediction target.

There are three steps in the process of feature extraction. The

first is feature selection for choosing appropriate features and

continuously optimizing feature subsets. The second is to

compute the correlation between features and targets. The last

is to select the most important features according to the ranking

calculated by the above steps. Feature extraction is significant for

the KDD process.

Excellent feature extraction is beneficial for improving

prediction accuracy and can avoid over-fitting and reducing

irrelevant features. This study designs a method for

characteristic extraction, as shown in Figure 3. General

electricity energy prediction is usually closely related to the

users, regions, time, etc. Therefore, the feature selection is

based on the interactive characteristics of users, regions, and

user areas.

3.3 Gradient boosting machine prediction
modeling

GBM is compatible with almost all linear or nonlinear

regression prediction problems, and binary classification

problems. The primary applications contain fault prediction,

fraud prediction, energy prediction, etc. GBM allows different

combinations of features are permitted when modeling and is

appropriate for cases when different feature combinations

generate diverse results. In addition, we choose GBM to build

the model for the following five reasons. 1) Most energy

forecasting is a type of regression analysis problem that GBM

excels at. 2) GBM can handle well the issue of diverse feature

combinations in energy prediction. 3) The resilience of the GBM

can meet the scalability and robustness of our framework. 4).

GBM has a strong generalization ability to different samples. 5)

The time complexity of GBM is lower than that of neural

networks. 6). GBM allows multiple discriminants and has less

complexity of computation.

FIGURE 3
Feature extraction.
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When modeling, we fully consider the valuable information

in the lagging historical data and the changing trend at each lag

time point. Therefore, the model’s generalization ability of time-

series analysis is incredibly enhanced. Firstly, we utilize original

data to train the GBMmodel and get the initial prediction results

and residuals in light of the exact feature selection. Secondly, we

use base decision trees to correct and update the residuals of the

whole GBMmodel. Then, we repeat the above two steps until the

prediction is accurate. There are overfitting problems of

regression trees that should be paid attention to during this

period. The modeling process is shown as follows.

3.3.1 Gradient boosting machine modeling
process

The following steps show the process of the GBM modeling.

First, to initialize the estimated values of all sample data in K

categories. fk(x) represents a k-dimension vector (i.e., the

estimated value of sample X in K categories). Where K is the

number of features after feature engineering.

{fk(x) � 0, k � 1, 2, 3, . . .K} (5)

The second step is to perform the logistic transformation for

the estimated value of each sample and to convert f(x) into a

probability value between 0 and 1. Then, the model repeats the

calculation K times to gain the probability series.

Pk(x) � exp(fk(x))∑K
t�1 exp(ft(x)), k � 1, 2, 3, . . .K (6)

Third, the probability of each class in every sample is

traversed and each sample’s gradient of the K class is

calculated. Therefore, the loss function is constructed.

L({yi, fk(xi)}k1) � −∑K

k�1yilogPk(xi) (7)

The model uses the gradient descent method to obtain the

gradient form by seeking the derivative. The gradient is the

residual, which is the difference between the real and estimated

probabilities. Meanwhile, the label of input data is the actual

probability. When x belongs to k category, yik � 1. Otherwise, yik

is 0, the gradient g is y − p. gk represents the sample’s gradient of

a certain dimension. When gk > 0, it means that the probability

P(x) of the sample in the dimension should be increased.

Otherwise, P(x) should be reduced. The ideal gradient is the

value closer to 0.

~yik � −⎡⎣zL({yi, fk(xi)}kl�1)/zfk(xi)⎤⎦{fl(x)�fl,m−1(x)}k1
� yik − Pk,m−1(xi) (8)

The fourth step is to use the ~yik to establish regression trees

by the gradient direction. By inputting all the N samples x, the

model takes the residuals of samples as the update direction,

traverses the feature dimensions of samples, and selects a feature

as the segmentation point. The learning will be stopped when J

cotyledons have been learned.

{Rjkm}Jj�1 � J terminal node tree({~yik, xi}N1 ) (9)

Next, the γ value of each leaf node is calculated by the following

equation.

γjkm � K − 1
K

∑xi∈Rjkm
~yik

∑xi∈Rjkm

∣∣∣∣~yik

∣∣∣∣, j � 1, 2, 3, . . . , J (10)

The sixth step is to update the estimated values of all samples

in the Kth category. The estimated value f of all samples is

obtained by adding the estimated value to the γ value of the last

iteration. As a result, the model obtains the preliminary

prediction result listed as follows.

fkm(x) � fkm−1(x) +∑J

j�1γjkm I(xi ∈ Rjkm) (11)

It is noteworthy that γ values of all J leaf nodes are summed

and then multiplied by vector 1. The second to sixth steps will be

iterated by our model until the final prediction results are

attained after M iterations. But the number of iterations

should not be too many due to the reason for overfitting. In

this study, grid search and cross-validation were used to select

and determine the hyperparameters. The modeling algorithm is

shown as follows.

Algorithm 1. GBM modeling algorithm (Friedman, 2002).

3.3.2 Evaluation metrics

In this study, we introduce R-squared (R2), Mean Absolute

Error (MAE), and Mean Absolute Percentage Error (MAPE) as

the evaluation indicators of the prediction results. Their

equations are shown as follows.

R2 � 1 − ∑(ypre − ytrue)2
∑(ytrue − yavg)2 (12)

MAE � 1
n
∑n

i�1
∣∣∣∣∣ypre,i − ytrue,i

∣∣∣∣∣ (13)

MAPE � 100%
n

∑n

i�1

∣∣∣∣∣∣∣∣∣
ypre,i − ytrue,i

ytrue,i

∣∣∣∣∣∣∣∣∣ (14)
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Wherein, ypre,i and ypre represent the prediction values, yavg

represents the average value, ytrue,i and ytrue denote the real

values, and n represents the number of samples. The value of

R2 should be between 0 and 1. The larger the value, the better the

fitting effect of the model. MAE and MAPE will produce diverse

values according to different training sets. The smaller the value,

the lower the model prediction error.

4 Experiments and analysis

We conducted our experiments in five steps including data

collection, data preprocessing, data mining, data visualization,

and evaluation.

4.1 Data collection and preprocessing

We collect two aspects of data in the stage of data collection.

The first is New York State’s EEC data from 1 January 2013, to

31 December 2016. The other is the climate information of

various regions in New York State since EEC is inseparable

from the weather. For example, the electricity consumption in

summer is large, and EEC on rainy days is generally more than

that on sunny days. The EEC data of 12 regions in New York

State is obtained from NYISO. The weather information in

various areas of New York State is collected by using the

weather underground API to synchronize the historical period

from 1 January 2013, to 31 December 2016. Climate data includes

the following fields such as timeest (time), temperaturef

(temperature), humidity (humidity), winddirdegree (wind

speed), etc. In our experiments, we separate the data into two

lists including time and date. Then we established the mapping

relationship among the different regions in New York State, the

corresponding cities, and weather stations, which is shown in

Table 1. After that, we use data preprocessing techniques to retain

four columns of information which are timestamp, region name,

region name, region id, and power demand load. Table 2 is the

part of the EEC data after data cleaning.

4.2 Data mining

After the data collection and preprocessing, we use the GBM

model to conduct in-depth mining of EEC and weather

information for intentionally forecasting the future electricity

consumption trend.

4.2.1 Feature extraction
EEC prediction is an issue of time-series regression. It is

necessary to process the features according to time and then

generate fine-grained time characteristics for forming a

probability model to predict electricity consumption. The

extracted time features are shown in Table 3.

4.2.2 Gradient boosting machine modelling
The GBM regressor has several hyperparameters such as

n_estimators, max_depth, max_features, etc. Wherein,

n_estimators denotes the number of basic classifiers,

max_depth represents the maximum depth of the tree, and

max_features means the number of random features of each

classification node. All the parameters could affect the

TABLE 1 Mapping of regions, cities, and weather stations.

Regions Weather stations Region names Cities

‘CAPITL’ kalb Capital Albany

CENTRL ksyr Central Syracuse

DUNWOD klga Dunwoodie Yonkers

GENESE kroc Genese Rochester

HUD VL kpou Hudson Valley Poughkeepsie

LONGIL kbuf West Buffalo

MHK VL kjfk Long Island NYC

MILLWD krme Mohawk Valley Utica

N.Y.C._LONGIL klga Millwood Yonkers

NORTH kjfk NYC NYC

WEST kpbg North Plattsburgh

TABLE 2 Part of the EEC data after data cleaning.

Time stamp Name Id Load

2012–01–01 00:00:00 CAPITL 61,757 1,084.4

2012–01–01 00:05:00 CAPITL 61,757 1,055.3

2012–01–01 00:10:00 CAPITL 61,757 1,056.6

2012–01–01 00:15:00 CAPITL 61,757 1,050.8

TABLE 3 Time series feature engineering.

Features Details

`dow` day of the week (integer 0–6)

`doy` day of the year (integer 0–365)

`dom` day of the month (integer 1–31)

`woy` week of the year (integer 1–52)

`month` month of the year (integer 1–12)

`year` each year (integer 2000–2016)

`hour` hour of the day (integer 0–23)

`minute` minute of the day (integer 0–1339)

`t_m24` load value from 24 h earlier

`t_m48` load value from 48 h earlier

`tdif` difference between load and t_m24
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TABLE 4 Parameter selection grid table.

n_estimators max_depth max_features Train loss Remaining time (s)

1 3 log2 1,433,777.9602 40.40

2 3 log2 1,266,661.9115 33.42

3 3 log2 1,128,864.2468 33.91

4 5 log2 1,016,488.9487 33.12

5 5 log2 924,162.8882 32.86

6 5 log2 844,857.8927 31.83

7 5 Auto 778,376.1653 31.19

8 7 Auto 723,249.4004 31.27

9 7 Auto 676,961.8092 32.10

10 7 Auto 639,059.8139 32.37

20 7 Auto 359,979.0310 28.17

30 5 Auto 260,246.8057 24.17

40 5 Auto 216,447.4121 20.95

50 5 Auto 190,852.9143 16.88

60 5 log2 176,315.3805 13.17

70 7 log2 166,255.7610 9.64

80 7 log2 159,546.2387 6.39

90 3 log2 153,307.5116 3.18

100 3 log2 148,946.2941 0.00

FIGURE 4
Error variation with parameters change.
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performance of the model. This study uses grid search and cross-

validation to select the optimal parameters. The details are shown

in Table 4.

It can be seen that the larger the parameters, the greater the time

complexity of the model. When the parameters are increased to a

certain extent, the model’s error reduction is not obvious. Therefore

excessively raising the parameters will result in overfitting. As shown

in Figure 4, the error reduction amplitude of the model will occur

with the change of parameters. The error will not drop visibly and

the model has the best performance when n_estimators is

100. We use grid search and try cross-validation to find the

best combination of parameters (i.e., n estimators � 100;

max depth � 3; max features � log 2).

In this study, we select six characteristics including

temperaturef, summer, minute, dow, doy, and year. The

importance of features is calculated based on the Gini

coefficient (see Figure 5). As we can see, summer has the least

impact on the model, while minute and doy make a significant

difference to the model.

4.3 Result evaluation and visual analysis

After the above steps, we implement experiments to

obtain the visualization results. We compared our

experimental findings with the real electricity consumption

FIGURE 5
Feature importance of each factor.

FIGURE 6
The forecasted EEC from the end of July 2015 to the beginning of August 2015.
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and BiLSTM prediction results by official institutions.

BiLSTM, a kind of recurrent neural network (RNN),

leverages forward and backward long-short term memory

to train data, which can handle highly correlated sequential

information. Therefore, BiLSTM is suitable for time-series

information such as electricity consumption data in this

research. Finally, we select the official BiLSTM model as

the comparative method.

Since EEC has a close relationship to the climate, this study

selects three time periods consisting of the end ofMarch (the cold

weather), the end of July (the hot weather), and the end of

October (the milder weather). The comparison between data and

actual data is as follows.

The red lines in Figure 6 and Figure 7 are the predicted values

of our experiments, and the blue lines are the actual value. By

comparing with the actual consumption, we find that the EEC

predicted by our model is basically consistent with the actual EEC

trend. As the actual hits a pinnacle, the predicted basically follows

suit. The differences between the forecasting results and the

actual data is subtle.

To demonstrate the accuracy of the prediction, Figure 8 plots

the actual values, the official results, and our predicted results at

FIGURE 7
The forecasted EEC from the end of October 2015 to the beginning of November 2015.

FIGURE 8
The forecasted EEC at the end of July 2014.
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the end of July 2014. Figure 9 plots the three EEC trends of every

day’s different time periods at the end of March 2016. The red

lines are experimental results, the blue lines are the actual EEC,

and the green lines are the official results. The following two

figures show that our results trend and the official forecast results

are by and largely consistent with the actual EEC curve trend.

Meanwhile, our model is closer to the actual electricity

consumption than the official model in terms of peak

electricity consumption forecasting. And our model is more in

line with the actual trend.

FIGURE 9
The forecasted EEC at the end of March 2016.

FIGURE 10
The average daily EEC from April 2014 to January 2016.
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As we can see, the GBMmodel obtains excellent performance

with the comparison of data during different periods. Therefore,

we eventually draw the average daily EEC from April 2014 to

January 2016 (see Figure 10). The red is the predicted result, the

green is the official result and the blue is the actual EEC. As seen in

the image below, the peak EEC of the proposedmodel is frequently

closer to the real condition than the official model, which shows

that our model is more accurate in anticipating extreme

occurrences. Meanwhile, the GBM results are highly consistent

with the actual EEC, which indicates that the framework proposed

in this study is feasible and reliable in terms of EEF.

Finally, we use the R2-MAE-MAPE evaluation metrics to

score the proposed model and the official BiLSTM model. As

shown in Table 5, it is found that the official result is slightly

better than our experiments regarding R2 and MAPE. Because

there are more comprehensive data and more auxiliary

information in official experiments while we are not able to

get such data due to data privacy. Generally speaking, the

experiments verify the feasibility of the proposed framework

proposed and the framework can be applied to other scenarios

due to tolerance of KDD and robustness of GBM. Our

experimental results are reasonably accurate and satisfy the

expectations for our designed framework when making

electricity predictions.

5 Conclusion and discussion

5.1 Conclusion

In this study, we target to construct an accurate and scalable

KDD framework for electricity forecasting. Specifically, we

employ the KDD process and the popular algorithm, GBM, in

our framework. Therefore, we design five robust and elastic steps

to keep the proposed framework extendable for other types of

energy knowledge discovery and discuss the scalability of the

framework for other scenarios. Then we implement experiments

to verify the accuracy and feasibility of the framework for

electricity energy prediction. Therefore, the framework

proposed in the study can provide reasonable support to the

real-world energy system with data mining and analysis.

Several insights can be drawn from our study. First, when

constructing the KDD framework in this study, we have fully

borrowed the advantages of the traditional KDD process and

techniques. Simultaneously, we keep up with the times to include

ML-related techniques to increase the framework’s

dependability. The GBM algorithm is finally selected as the

best algorithm for the framework by comparing and assessing

the many common algorithms’ advantages and shortcomings.

Additionally, we utilize three metrics (R2, MAE, and MAPE) to

construct a relatively complete evaluation system, which can

accurately evaluate and analyze the experimental results. It is

worth noting that the proposed framework contains a feedback

system to optimize the process of knowledge discovery.

Second, we construct a K-dimensional feature vector based

on the original data and completely consider two factors when

performing feature selection including feature discreteness and

feature-target function correlation. Meanwhile, we devise an

available feature selection approach to guarantee the

practicality and reliability of the selected characteristics.

Third, we consider the lagging history information and the

changing trend information of each lag time point to enhance the

generalization ability of the model to analyze time-series data

when modeling. The modeling process is to obtain the data

sequences of selected features for original residuals. Next, we

train GBM regression trees to correct the residuals and iterate the

training process until the final predicted result is acquired.

Finally, we integrate grid search and cross-validation to

determine the appropriate parameters for overfitting

avoidance. We use New York State’s electricity usage data as

an example to conduct experiments for the constructed

framework verification. We compare our experimental results

with the actual EEC and official forecasting results to

demonstrate our framework’s reliability and practicality.

In conclusion, the contributions of this study are shown as

follows. Firstly, we construct a framework of the KDD process for

electricity energy forecasting, which is scalable and applicable for

different scenarios. Secondly, we utilize GBM to predict

electricity consumption and set three effective metrics to

demonstrate the validity and reliability of the framework.

Thirdly, we illustrate that the proposed framework is suitable

for electricity energy forecasting and has a splendid performance

by comparing the experimental results with the real-life

condition and the official prediction results. Lastly, we discuss

the potential that our framework is applicable to other types of

energy knowledge discovery. As for society, the proposed

framework could assist governments in better creating

corresponding energy-related regulations based on diverse

real-world scenarios and establishing a more ecologically

friendly society. The proposed framework can potentially

benefit the decision-making and long-term sustainable

development of governments and energy-related organizations.

5.2 Limitations and future research

This study develops a KDD framework based on the GBM

and conducts a series of experiments to validate the feasibility

TABLE 5 The prediction result score.

R2 MAE MAPE (%)

GBM Model 0.867490890278 60.1585035707 4.79558589766

The official model 0.882233047224 69.5581818182 4.67055917116
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and scalability of the framework. However, we do not consider

other applications of GBM, such as text clustering, medical field

prediction, automatic summarization, etc. Meanwhile, the

experiments in this study only use the EEC data in New York

State and the applicability of our framework for other energy data

still needs to be further demonstrated. In addition, the

experimental dataset is relatively small, and experiments on

large datasets have not confirmed the feasibility of the

framework. Meanwhile, the forecasting in this study is limited

to the nearer future, and the accuracy of the forecasting for the far

future is not confirmed.

Therefore, it would be beneficial to extend this study to

different genres of datasets to account for the actual feasibility

and reliability of our framework. In the near future, we will try to

use large and different datasets to in-depth verify the resilience

and scalability of the proposed framework.
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