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Black carbon (BC) is one of the main factors in global climate change and

human health. Based on reanalysis data from the Modern-Era Retrospective

Analysis for Research and Applications Version 2 (MERRA-2), the historical

trends in the variation of BC and the factors affecting this were investigated

in core city of Central Plains Economic Zone in China-Zhengzhou. Based on

correlation analysis with ground measurements of BC concentration, it was

determined that the MERRA-2 reanalysis data could be used to reveal the

variations in ground-level BC concentrations. According to the variation trends

of BC concentration in 1980–2020 and typical fossil fuel consumption in

2008–2017, two periods of rapidly increasing BC concentration were

identified in 1980–1989 and 1999–2006. The increase in BC concentration

then slowed from 2007. Since 2012, due to the adjustment of the Zhengzhou

strategy and the implementation of an emission control strategy throughout

Henan Province, the consumption of coal and coke decreased by 4% every year,

resulting in a downward trend in the total BC emissions. However, coal and

coke were still the main factors affecting the BC concentration in Zhengzhou.

The contribution of transportation to BC in Zhengzhou has been particularly

important since 2016. Analysis of BC seasonal variation revealed that the highest

BC concentration was in winter, mainly due to the increase in industry and

residential emissions. Additionally, based on the local and regional emission

inventories and combined with potential source contribution function (PSCF),

concentration weighted trajectory (CWT), this study revealed the potential

sources regions and source types of BC in Zhengzhou, and found that the

intensification of energy consumption and BC emissions in Zhengzhou and the

surrounding regions of Henan Province might be the reasons for the high BC

loading in Zhengzhou through regional transport.
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1 Introduction

Black carbon (BC) is an important component of

particulate matter (PM), which diameter is between

0.01 and 1.0 μm (Wang et al., 2015). Generally, the sources

of BC can be divided into natural and anthropogenic sources

(Pani et al., 2020; Wang et al., 2016). Natural sources mainly

include natural fires and volcanic eruptions, which have

strong contingency and obvious spatial differences. In

contrast, anthropogenic sources are universal and

sustained, mainly including fossil fuel combustion, biomass

combustion, open straw burning and vehicle exhaust

emissions, which are the main factors causing the variation

in BC concentration in the atmosphere (Bond et al., 2013;

Wang et al., 2016). Previous research found that, although BC

accounts for less than 5–10% of PM (Liu et al., 2021), it is the

strongest light-absorbing component in PM. It can directly

absorb or scatter solar radiation and thereby affects the

regional and global radiation balance and climate (Li et al.,

2016; Liakakou et al., 2020). Moreover, the warming effect of

BC is about two-thirds that of carbon dioxide (CO2) and it has

become the second-largest factor affecting global warming

behind CO2 (Gustafsson and Ramanathan, 2016; Bond et al.,

2013). The average lifetime of BC in the atmosphere is about

7 days (Qin et al., 2019); thus, it can participate in the physical

and chemical processes and reactions of the atmosphere

during long-distance transmission (Lund and Berntsen,

2012). Furthermore, BC is a carcinogen and the adverse

health effects of BC exposure have been shown to be

greater than those of PM (Isley et al., 2017; Peng et al.,

2019). Due to the significant impact of BC on the

environment and health, it is necessary to analyse the

sources of BC and implement effective mitigation measures

in high BC pollution regions.

In past studies, long- and short-term ground

measurements of BC have been conducted around the

world to determine seasonal variations, diurnal variations

and source apportionment (Dumka et al., 2018; Pani et al.,

2020; Peng et al., 2019; Singh et al., 2018; Wei et al., 2020). For

example, Dumka et al. found that fossil fuel combustion was

the major source (72%) of BC in Delhi, India (Dumka et al.,

2018). In North China, the concentrations of BC were higher

in autumn and winter than in spring and summer, and in

urban compared to non-urban areas. Zheng et al. analysed the

temporal variation of BC in Hefei (Zhang et al., 2015). The

results showed that the annual average concentration of BC

was 3.5 ± 2.5 μg m−3, the lowest BC concentration was in

summer and the highest in winter, and the diurnal variation

was bimodal due to the morning and evening traffic peaks. To

date, three main research methods are used to determine the

spatial and temporal distribution of BC: ground monitoring,

numerical simulation and remote sensing reanalysis data.

However, ground measurement is limited by

instrumentation, observation stations and manual

operation, which cannot determine the spatial variation in

BC (Boys et al., 2014). Although satellite data can be used for

large-scale observation, it is vulnerable to weather conditions

and data loss can occur (Zhao et al., 2021). NASA’s Modern-

Era Retrospective Analysis for Research and Applications

Version 2 (MERRA-2) reanalysis data were released by the

Global Modelling and Assimilation Office (GMAO) in 2017,

including atmospheric BC products since 1980 (Bali et al.,

2017). These data can compensate for the deficiencies in the

above observation methods. Additionally, many studies have

proved the reliability of MERRA-2 data by determining the

correlation between BC concentrations from MERRA-2

reanalysis data and ground measurements (Qin et al., 2019;

Zhao et al., 2021).

As China is a developing country, its BC emissions are

increasing year by year due to its economic development and

the massive use of fossil fuels, which account for about

25–30% of the global total (Ni et al., 2014; Mao et al.,

2016). As the core city of the Central Plains Economic

Zone, Zhengzhou’s energy consumption and motor vehicle

ownership are increasing year by year as the population

density and urbanisation rate increase. This has significant

effects on urban air quality, climate change and human

health (Luo et al., 2021; Wang et al., 2017). To control air

pollution and improve air quality, China has formulated a

series of measures and promulgated a series of

administration policies. Additionally, Henan implemented

various reinforcing emission control measures during the

2008 Beijing Olympic Games (Wang et al., 2010) and the

Shanghai Cooperation Organisation Prime Ministers’

Meeting, which was hosted in Zhengzhou (Feng et al.,

2018); these have resulted in remarkable improvements in

air quality. Although the reinforcing air pollution control

measures have proved to be successful, especially for major

pollutants such as BC, air quality improvement in

Zhengzhou remains a great challenge.

To sum up, this study selected Zhengzhou as the study

region, which is the core city of the Central Plains Economic

Zone, and used BC concentrations from MERRA-2

reanalysis data to 1) study the historical BC concentration

variation from 1980 to 2020 and sources of BC in Zhengzhou,

2) clarify the potential source regions of BC in Zhengzhou

and 3) evaluate the impact of ambient air control measures

on BC.
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2 Data and methods

2.1 MERRA-2 BC concentration data

MERRA-2 is a reanalysis data set formed after the

assimilation and absorption of satellite aerosol data set based

on the Goddard Earth Observing System (GEOS-5) and its data

assimilation system (ADAS-5.12.4; Bali et al., 2017; Gelaro et al.,

2017). MERRA-2 provides the spatial distribution of atmospheric

BC concentration since 1980, with a spatial resolution of 0.5° ×

0.625° and a temporal resolution of 1 h, 3 h and month. All

products can be downloaded through the NASA Earth Science

Data Website (https://earthdata.nasa.gov/). With the wide

application of MERRA-2, many validations have been carried

out on MERRA-2 by research. Qin et al. (2019) compared the

12 h average data of MERRA-2 BC and observation in each year

during 2015–2016 in Beijing, showing the higher correlation

coefficients between them. Xu et al. (2020) compared the BC

concentration of 14 ground observation stations in eastern China

with the BC data in MERRA-2 in each year from 2000 to 2016,

and found that there was a high correlation between them.

Additionally, the above results indicated that BC data in

MERRA2 could be directly used to analyze the temporal and

spatial variation of BC. In order to investigate the applicability

and accuracy of the MERRA-2 BC product, the comparisons

were performed between MERRA-2 BC product and ground

observation in different time intervals at Zhengzhou in

Section 3.1.

In the present study, hourly BC concentration data at

Zhengzhou (Figure 1) were collected from the MERRA-2

reanalysis data during 1980–2020, for which the spatial

distribution resolution was 0.5 × 0.625°, which using the

Goddard Earth Observing System, Data Assimilation System,

Version. 5.12.4 (GEOS-5, DAS, NASA Global Modeling and

Assimilation Office). The global MERRA-2 reanalysis data shows

a slightly better accuracy and greater stability than the satellite

data, although the value is slightly higher (Qin et al., 2019).

2.2 Potential source analysis

The Hybrid Single-Particle Lagrangian Integrated Trajectory

(HYSPLIT) modeling system (Yu et al., 2020; Yu et al., 2019;

Stein, A. F et al., 2015; Rolph, 2003; Draxler and Rolph, 2003) was

used to calculate back trajectories from gridded meteorological

data. HYSPLIT was developed at the Air Resources Laboratory

(ARL) of the National Oceanic and Atmospheric Administration

(NOAA). It is a complete system for computing trajectories of

complex dispersion and deposition simulations using either puff

or particle approaches. The details information of the model can

be found on the NOAA website (http://www.emc.ncep.noaa.gov/

modelinfo/index.html). In this study, the meteorological data

were collected from the global data assimilation system (GDAS)

of the National Centres for Environmental Prediction (NCEP),

using a spatial resolution of 1 × 1 (http://ready.arl.noaa.gov/

HYSPLIT_traj.php) was used to analyse the backward

FIGURE 1
The location and surrounding landform of Zhengzhou (The unit on the color contour is metre).
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trajectories, potential source contribution function (PSCF) and

concentration weighted trajectory (CWT).

24-h air mass back trajectories above the ground level over

the monitoring site in Zhengzhou were calculated at each hour

during 00–23 h for each day, with 100 m above ground level was

calculated in this study. According to the publish literatures,

there is no accepted ground-level starting height for the

HYSPLIT model. Generally, reasons for using a specific

altitude have not been given, and choices are based on

previously experience (Karaca et al., 2009; Schwarz et al.,

2016; Feng et al., 2017; Yu et al., 2020). In this study, the

potential sources of BC in Zhengzhou was conducted using

the potential source contribution function (PSCF) and the

concentration weighted trajectory (CWT), which was

implemented based on the GIS-based software TrajStat (Wang

et al., 2009). Hourly BC concentration was used to calculated its

PSCF and CWT, where the average concentration of BC was used

as the pollution criterion (Ren et al.,. 2021; Wang et al., 2021; Cao

et al., 2022; Xing et al., 2022). When the concentration

corresponding to a given backward trajectory exceeds the

pollution criterion, the trajectory is considered polluted.

Higher values of PSCF and CWT represent higher probability

of potential sources and higher potential contributions to a high

pollution level in the receptor sites.

2.3 BC emission data of various pollution
sources

This study collected the total amount of BC emitted by

industrial, power, residential and transportation sources in

Zhengzhou, Henan Province and the surrounding regions

from 2008 to 2017 from the China Multi-Resolution Emission

Inventory (MEIC) developed by Tsinghua University (http://

www.MEICmodel.org), including monthly and annual

emissions.

3 Results and discussion

3.1 The BC concentration of MERRA-2
reanalysis data validation

Past studies have suggested that the MERRA-2 reanalysis

data corrected the total column aerosol mass by assimilating

and absorbing the deviation-corrected AOD from the Terra

MODIS and Aqua MODIS satellites, but the loss of nitrate

aerosols could not be eliminated during severe pollution (Song

et al., 2018). Therefore, it was necessary to validate MERRA-2

data with ground-level measurements before analyzing the

data. In this study, the ground-level BC concentration data in

Zhengzhou from 2006 to 2016 was collected from Xu et al.

(2020), and BC concentration in that study was mainly from

Zhengzhou site, which is one of the Chinese Meteorological

Administration (CMA) Atmosphere Watch Network

(CAWNET) site. The CAWNET was established by China

Meteorological Administration, is designed to monitor the BC

surface mass concentration over China since 2006 with a

seven-channel Aethalometer (Model AE-33, Magee

Scientific Company, United States).

In this study, the Pearson correlation coefficient, root

mean squared errors (RMSE) and mean bias errors (MBE)

were used to verify the difference between the monthly

concentration of MERRA-2 and ground observation BC.

The correlation between MERRA-2 and ground

measurements was 0.66 (N = 107, p < 0.01)

(Supplementary Figure S1), and the root mean squared

errors (RMSE) in Zhengzhou was 2.40 μg m−3, which was

close to that in the study of Xu et al. The MBE was 7.59%

in Zhengzhou, which indicated that the ground measurements

BC concentration was higher than that in MERRA-2. In

previous studies, MERRA-2 has negative bias in some

areas, mainly due to the limited retrieval ability of

assimilation satellites under heavy air pollution, and the

lack of retrieval ability is one of the reasons for low

correlation and large RMSE in Zhengzhou (Song et al.,

2018). Moreover, the different resolutions of MERRA-2 and

ground observation data may result in deviation to some

extent. In this study, MERRA-2 reanalysis data resolutions

was the grid remote sensing data of 0.5 × 0.625, while the

ground measurement data was from Zhengzhou National

Basic Meteorological Station (113.39°E, 34.43°N). As

meteorological parameters and emissions will affect the BC

concentration (Zhao et al., 2021), the bias of MERRA-2 data in

different seasons also needed to be determined. Accordingly,

the correlation between BC concentrations from the MERRA-

2 and ground measurements in different seasons was

analyzed, revealing the two data sets to be highly correlated

in every season (r > 0.90, p < 0.01) except for summer

(Figure 2). The lowest correlation coefficient between the

MERRA-2 and ground measurement BC concentrations

was 0.014, which was similar to that obtained by Qin et al.

(Qin et al., 2019). Previous studies have found that

precipitation may result in a weak correlation between

MERRA-2 and ground-level measurements of BC

concentration (Qin et al., 2019). In summer in Zhengzhou,

the precipitation is about 352.9 mm, accounting for 55% of the

total annual precipitation. Although the BC concentrations

from the MERRA-2 reanalysis data and ground-level

measurements were more weakly correlated in summer, the

ratio of the concentrations of these two data sets ranged

between 0.90 and 1.20 for each month from 2006 to 2016,

and without apparent seasonal difference. Thus, it was

determined that the BC concentrations from the MERRA-2

reanalysis data could be used directly to analyse the annual

and seasonal variations in BC in Zhengzhou.

Frontiers in Environmental Science frontiersin.org04

Yan et al. 10.3389/fenvs.2022.1028572

http://www.MEICmodel.org
http://www.MEICmodel.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1028572


FIGURE 2
Monthly variations in BC concentrations from ground-level measurements and MERRA-2 reanalysis data in Zhengzhou from 2006 to 2016.

FIGURE 3
Trend in BC concentration from MERRA-2 data from 1980 to 2020 at Zhengzhou.
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3.2 Temporal variation in BC

In this study, BC concentration was analyzed based on the

BC data in MERRA2. The average annual variation in BC in

Zhengzhou from 1980 to 2020 was 6.11 ± 1.21 μg m−3 (Figure 3).

The highest BC concentration was 7.74 μg m−3 in 2011 and the

lowest was 4.00 μg m−3 in 1982. Compared with other cities and

regions in China, the BC concentration in Zhengzhou was higher

than that in Shanghai (2.55 ± 0.59 μg m−3; Cao et al., 2021) Anhui

Province (2.82 ± 1.76 μg m−3) and Zhengjiang Province (2.54 ±

1.34 μg m−3; Jing et al., 2019), lower than that in Beijing

(10.10 μg m−3; Song et al., 2013) and close to that in

Guangzhou (6.50 μg m−3; Cao et al., 2021).

Overall, the BC concentration showed an increasing trend,

with two rapid increasing periods in 1980–1989 and 1999–2006.

However, the trend in BC concentration in Zhengzhou has slowly

declined since 2007. According to the China Statistical Yearbook,

the annual consumption of coal and coke in 1995–2003 in Henan

Province was lower than 120 × 106 t·a−1, markedly increased

during 2004–2011 and steadily decreased since 2012

(Supplementary Figure S2). Simultaneously, the annual

consumption of gasoline, kerosene and diesel has been

steadily increasing since 2002.

In 2008, the Olympic Games were hosted in Beijing. This had

a tremendous impact on the environmental policy in Zhengzhou

and other surrounding regions of Henan Province, resulting in

slow growth in coal and coke consumption since 2007. It has

been shown that reducing the use of industrial coal and adopting

new vehicle emission standards helped to retard BC

concentrations in the early stage of the Olympic Games (Chen

et al., 2013). Additionally, following the Olympic Games, coal

consumption by industry increased from 2009 to 2011, and

resulted in increased BC emissions from industry in

Zhengzhou, which was twice the emissions from

transportation and residential, and peaked in 2011 (Figure 4).

However, after China began to formulate a series of energy

conservation and emission reduction plans in 2012 (Yuan and

Zuo, 2011), the use of coal and coke decreased significantly (with

an average annual decrease of 4% from 2012 to 2020) and the

total BC emissions also showed a decreasing trend (Figure 4).

BC emissions have been caused primarily by transportation

in Henan in 2017 (Supplementary Figure S3) and its contribution

to BC in Zhengzhou has been particularly important. From

2008 to 2017 in Henan Province, the total gasoline, kerosene

and diesel consumption increased from 7.5 to 18.4 million tons,

which may have profoundly impacted BC concentrations in the

FIGURE 4
Annual emissions from different sources in Zhengzhou based on the 2008–2017 MEIC emission inventory.
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ambient air. Zhang et al. found that motor vehicles powered by

gasoline or diesel are one of the main sources of air pollutants

(Zhang et al., 2017), and the study suggested that aerosols from

such ground-level sources can easily accumulate in the

atmosphere due to topographic barriers, as compared to those

from elevated sources.

From 2005 to 2020, the BC concentration in Zhengzhou has

shown a decreasing trend. This was mainly due to the overall

decrease in energy consumption in Zhengzhou from 2008 to

2017 (Figure 4). However, it is interesting that BC concentration

displayed an uptrend from 2018 to 2020, which was not affected

by the COVID-19 lockdown. According to previous studies,

fossil fuel combustion and vehicle exhaust emissions are the

main factors causing the variation in BC concentration in the

atmosphere (Bond et al., 2013; Wang et al., 2016). In 2019, the

motor vehicle ownership in Zhengzhou have been reached

600,000, which was 1.03 times than that in 2018, and

although the consumption of coal and coke decreased during

this period, the consumption of kerosene and diesel increased

(Supplementary Figure S2), which has caused the increase of BC

concentration during 2018–2020.

To better understand the relationship between the BC

concentration in ambient air and its emission sources in

Zhengzhou, this study also analyzed the correlation coefficients

between BC in ambient air and different typical fossil fuel

consumption in Zhengzhou from 1995 to 2019 (Table 1).

Higher, positive correlation coefficients were observed for coal,

coke and diesel, while lower and positive correlation coefficients

were observed with gasoline and kerosene. This result suggested that

BC concentration was still influenced primarily by local coal and

coke in Zhengzhou, while liquid fuel was widely used in vehicle

engines and jet enginesmay also be an important factor affecting the

BC in Zhengzhou in recent years.

In this study, the seasonal variation in BC concentrations also

was explored from 1980 to 2020 (Figure 5). The monthly averages

of the BC concentration from March to May (spring), June to

August (summer), September to November (autumn) and

December to February (winter) were obtained to represent the

BC variation in different seasons. Overall, the concentration of BC

exhibited the following trend: winter > autumn > spring >
summer, and with the highest average concentration was found

in winter in past 40 years (98%). This result was similar to other

cities such as Beijing and Shanghai (Qin et al., 2019; Cao et al.,

2021). Supplementary Figure S4 also displayed the BC different

sources seasonal variation based on the 2008–2017 emission

inventory, which provided by MEIC. In Zhengzhou, the

dominant emission source of BC was industrial emission, and

with the highest emission in winter, similarly to the BC

concentration variation in winter. Transportation emissions

showed similarly high emissions in all seasons. In contrast, the

residential emissions inWinter were about four-fold higher than in

other seasons. This phenomenon also showed that the significant

increase in BC emissions from residential heating in winter could

lead to increased BC concentrations. Additionally, adverse

meteorological factors can readily cause BC to accumulate in

winter, thus increasing the BC concentration (Feng et al., 2018;

Zhao et al., 2021). However, in summer, due to the increased

temperature and meteorological conditions that are conducive to

the diffusion of pollutants, the BC concentration was reduced.

FIGURE 5
Seasonal variation in BC concentrations from MERRA-2 data in Zhengzhou from 1980 to 2020.

TABLE 1 Correlation coefficients between BC concentration and
different fossil fuels consumed from 1995 to 2019.

Coal Coke Gasoline Kerosene Diesel

0.886** 0.717** 0.520** 0.429* 0.676**

*Significant correlation (p < 0.05).

**Extremely significant correlation (p < 0.01).
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FIGURE 6
Trajectory cluster maps for Zhengzhou from 2008 to 2017.
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FIGURE 7
The potential source regions of BC in Zhengzhou from 2008 to 2017 based on the PSCF analysis (μg·m−3).
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3.3 Impact of regional transmission on BC
concentration in Zhengzhou

The HYSPLIT 4 model was used to calculate 24-h

backward trajectories for Zhengzhou. Figure 6 shows the

backward trajectory cluster distributions from 2008 to

2017. In these 10 years, there were four types of air masses

each year with similar transmission directions. The first type

air masses cluster accounted for 4.84%-20.41 (10.45% on

average), which originated from Inner Mongolia and was

transported across Shaanxi Province, Shanxi Province and

northwest Henan Province. Second type air masses were

mainly from Shaanxi and Shanxi Province, accounted for

8.84%–29.22% (19.39% on average). Third type air masses

accounted for 14.06%–38.99% (30.15% on average), and

originated from the south of Hebei and north of Henan

Province. Fourth type air masses mainly originated from

local emission and the south of Henan Province, which

accounted for 24.25%–58.20% (40.01% on average). From

2008 to 2016, the proportion of air masses from local

emissions in Zhengzhou was the largest, and this type air

masses cluster was shorter than that of other clusters.

According to the previous literature, a short cluster means

that the air mass moves slowly and can readily cause the

accumulation of pollutants (Yu et al., 2020). Thus, this result

suggested that local emissions were the main source of BC in

Zhengzhou.

It has been reported that the source direction and spatial

distribution of air mass trajectories affecting a city can be

determined by their backward trajectory, but the potential

source regions and its contribution of BC cannot be

identified (Yu et al., 2019). Therefore, the PSCF and CWT

were used to identify potential source regions and their

contribution to BC in Zhengzhou. Yu et al. reported that

high PSCF and CWT values identify potential source regions

of the study target region (Yu et al., 2019; Yu et al., 2020).

From 2008 to 2017, Shaanxi, Shanxi and Hubei provinces and

the east and southeast of Zhengzhou were the main potential

contributors to BC in Zhengzhou, with a weighted PSCF

of >0.5 (Figure 7). A high CWT value was also found for the

same region as PSCF, with BC contributions of >8 μg m−3

(Supplementary Figure S5). Overall, the PSCF and CWT

results identified the regions to the north and northwest

of Henan Province—especially southeast of Shaanxi

Province, south of Shanxi Province, northeast of Hubei

Province, and locally in Zhengzhou—as the potential

source regions of BC in Zhengzhou. Residential was the

main BC emission source, contributing 59%, 46% and 39%

from Hubei, Shaanxi and Henan Province, respectively, and

industry (53%) in Shanxi Province based on the MEIC BC

emission inventory.

4 Conclusion

In this study, the historical trend variations in BC in Zhengzhou

were analysed based on 1980–2020 MERRA-2 reanalysis data. The

BC concentrations from the MERRA-2 reanalysis data and ground

measurements were highly correlated, indicating that the MERRA-2

data could be effectively applied to reveal the long-term variations in

the ground-level BC concentrations. The average annual

concentration of BC in Zhengzhou from 1980 to 2020 was 6.11 ±

1.21 μg m−3, with the highest BC concentration in 2011 (7.74 μg m−3)

and the lowest in 1982 (4.00 μg m−3). The BC concentration in

Zhengzhou has decreased since 2007. The use of coal and coke

decreased by 4% each year from 2012 to 2020, and the total BC

emissions also showed a decreasing trend, which was attributable to

both the adjustment of the emission control strategy in Zhengzhou

and the region-wide implementation of emission control strategies.

Although coal and coke consumption decreased year by year since

2012, it was still the main factor affecting the BC concentration in

Zhengzhou. Additionally, BC was mainly generated by

transportation since 2017 in Henan and its contribution to BC in

Zhengzhou was particularly important. The significant increase in

industry and residential heating in winter could explain the increase

in BC concentration in winter. The backward trajectory, PSCF and

CWT results suggested that the intensification of energy

consumption and BC emissions in Zhengzhou and the

surrounding regions of Henan Province might be the reasons for

the high BC loading in Zhengzhou through regional transport.
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