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Landslides are natural disasters deliberated as the most destructive among the

others considered. Using the Muzaffarabad as a case study, this work compares

the performance of three conventional Machine Learning (ML) techniques,

namely Logistic Regression (LGR), Linear Regression (LR), Support Vector

Machine (SVM), and two Multi-Criteria Decision Making (MCDM) techniques,

namely Analytical Hierarchy Process (AHP) and Technique for Order of

Preference by Similarity to Ideal Solution (TOPSIS) for the susceptibility

mapping of landslides. Most of these techniques have been used in the

region of Northern Pakistan before for the same purpose. However, this

study for landslide susceptibility assessment compares the performance of

various techniques and provides additional insights into the factors used by

adopting multicollinearity analysis. Landslide-inducing factors considered in

this research are lithology, slope, flow direction, fault lines, aspect, elevation,

curvature, earthquakes, plan curvature, precipitation, profile curvature,

Normalized Difference Water Index (NDWI), Normalized Difference

Vegetation Index (NDVI), roads, and waterways. Results show that SVM

performs better than LGR and LR among ML models. On the other hand,

the performance of AHP was better than TOPSIS. All the models rank slope,

precipitation, elevation, lithology, NDWI, and flow direction as the top three

most imperative landslide-inducing factors. Results show 80% accuracy in

Landslide Susceptibility Maps (LSMs) from ML techniques. The accuracy of

the produced map from the AHP model is 80%, but for TOPSIS, it is less

(78%). In disaster planning, the produced LSMs can significantly help the

decision-makers, town planners, and local management take necessary

measures to decrease the loss of life and assets.
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1 Introduction

Considerable life and economic losses, and harmful

influences on communities, environment, and infrastructure,

relentlessly disturbing land use and urban development are

caused by landslides, which are common natural hazards

(Shahabi and Hashim, 2015; Flentje and Chowdhury, 2018;

Zhu et al., 2018; Bragagnolo et al., 2020). Due to the

increasing deforestation rates, unrestrained urbanization, and

rising population density, the dangers of landslides have grown

(Flentje and Chowdhury, 2018; Froude and Petley, 2018;

Bragagnolo et al., 2020). To reduce and manage disasters

related to landslides, it is vital to appraise zones susceptible to

landslides (Hong et al., 2016a; Chen et al., 2018b). A widespread

assumption that future landslide locations are linked to past and

present landslides is based on all the prediction-related studies

involving different techniques (Capitani et al., 2013). In other

words, the failures of slopes are ascertained by a specified set of

regulating factors, and impending failures are anticipated to

happen under identical circumstances.

Landslides usually occur in those areas where few factors,

such as mountains, steep slopes, higher precipitations, and higher

seismicity, are substantially found (Hong et al., 2016a; Chen et al.,

2018b; Maqsoom et al., 2021; Aslam et al., 2022). Mapping of

landslide susceptibility is also of eminent value for land use

planning and facilitates planners in making potential

development-related decisions (Erener et al., 2016; Bragagnolo

et al., 2020; Aslam et al., 2022). Consequently, in current times,

appraising different models for landslide susceptibility has

become a key research topic globally.

Formerly many studies have used several methods aiming at

the susceptibility mapping of landslides in different regions of

the world. These different methods can be largely categorized as

Qualitative and Quantitative methods. Different researchers

extensively utilized qualitative methods until the late 1970s.

Qualitative techniques weigh each landslide-causing factor

based on researchers’ expertise. These methods have been

utilized broadly to evaluate landslide susceptible areas

(Yoshimatsu and Abe, 2006; Abella and Van Westen, 2007)

and are considered subjective in nature (Fall et al., 2006).

Quantitative techniques, which have been developed and

used frequently in recent years, comprise approaches to

evaluate the associations among causes of landslides based

on probabilistic models (Raghuvanshi et al., 2014). They are

considered objective in nature (Girma et al., 2015). The

development of computer and Geographic Information

System (GIS) technology has assisted in the application of

these approaches, and they have become prevalent in recent

times (Shano et al., 2020).

Additionally, methods to map landslide susceptibility can be

classified into four groups, namely statistical, physical-based,

heuristic, and data-driven or Machine Learning (ML) methods

(Chen et al., 2018b; Zhang et al., 2018). Statistical methods are

used to choose and examine landslide-causing factors in areas

with environmental situations like those where past landslides

have been reported. Statistical methods such as the Weight of

Evidence (Baeza et al., 2010; Tsangaratos et al., 2017), the

Certainty Factors (Devkota et al., 2013; Azareh et al., 2019),

the Frequency Ratio (Youssef et al., 2015; Chen et al., 2016a), the

Analytical Hierarchy Process (AHP) (Pourghasemi et al., 2012;

Shahabi et al., 2014; Kanwal et al., 2017), the Evidential Belief

Function (Chen et al., 2019a), and the Technique for Order of

Preference by Similarity to Ideal Solution (TOPSIS) (Najafabadi

et al., 2016; Razavi and Shirani, 2019), are easy to manage and

simple to comprehend and therefore have been used frequently

for mapping landslide susceptibility in different areas of the

world. The physical-based models handle complex parameters

effectively, but these parameters can only be established by

executing problematic experiments to apply to larger areas

(Pradhan and Kim, 2016; Bui et al., 2017). Heuristic

approaches are used by geomorphologists to examine aerial

photographs or to perform site surveys. Heuristic models are

usually indelicately scaled (Ruff and Czurda, 2008).

Due to the enhancement of GIS technology and easier access

to land surface remote sensing images and digital earth surface

elevation models, data-driven or ML models are extensively

applied in landslide susceptibility mapping. The most

frequently used models include the Multivariate Adaptive

Regression Spline (Wang et al., 2015), the Naïve Bayes Tree

(Tsangaratos and Ilia, 2016), the Adaptive Neuro-Fuzzy

Inference System (Chen et al., 2019b), Random Forests (Hong

et al., 2016b), Kernel Logistic Regression (Bui et al., 2016),

Artificial Neural Networks (Pradhan and Lee, 2010; Pham

et al., 2016b; Wang et al., 2016), Logistic Regression (LGR)

(Süzen and Kaya, 2012; Umar et al., 2014; Trigila et al., 2015),

Decision Trees (Saito et al., 2009; Pradhan, 2013), Support Vector

Machine (SVM) (Yao et al., 2008; Marjanović et al., 2011; Xu

et al., 2012; San, 2014; Pham et al., 2016b; Shirzadi et al., 2017;

Pawluszek et al., 2018), and Linear regression (LR) (Onagh et al.,

2012a; 2012b). Analysis of the literature reveals that every model

has its benefits and limitations conditional on the characteristics

of the study area and the variation of used datasets. The behavior

also fluctuates accordingly among different models. Therefore,

comparisons among different models are highly desired to assess

landslide susceptibility.

Muzaffarabad district, situated in the state of Azad Jammu

and Kashmir and falls in the lower Himalayas of Northern

Pakistan, is encompassed geologically by Hazara–Kashmir
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Syntax. The main boundary thrust (MBT) and Bagh-Balakot and

Fault, recognized for tectonic uplift and crustal deformation,

dissect this region (Kazmi and Jan, 1997; Saba et al., 2010). In

Muzaffarabad city and the areas around the city, the

2005 earthquake disrupted several slopes and prompted

158 landslides (Kamp et al., 2008; Khan et al., 2011).

Previously, the region has been subjected to numerous

earthquakes of various extents (Rossetto and Peiris, 2009). In

the future, there is a chance for a high-magnitude earthquake

(Wallace et al., 2005; Raghukanth, 2008). Therefore, for

activating the landslides in this region, rainfalls and

earthquakes are regarded as the two major contributory

processes (Owen et al., 2008).

There have been a few studies targeting this region in the past

concerning the mapping of landslides. Most of the studies are

confined to the landslides that resulted from the 2005 earthquake,

or they just targeted the 2005 earthquake region. Moreover, most

of these studies have used conventional statistical or decision-

making methods to map landslide susceptibility. For example,

Kamp et al. (2008) conducted a study for mapping landslide

susceptibility in the 2005 earthquake region using a GIS-based

multi-criteria evaluation method by exploiting eight landslide

triggering factors. A few other studies that involved the

assessment of landslide hazards targeting the same area are

Owen et al. (2008); Khattak et al. (2010); Saba et al. (2010).

Therefore the present study tried to fill the research gap by using

conventional decision-making techniques and compared them

with the most prevalent ML techniques.

The current research aims to present the landslide

susceptibility analysis of the Muzaffarabad district using

Multi-Criteria Decision Making (MCDM) and Machine

Learning (ML) techniques. The methods used involves two

MCDM techniques, AHP and TOPSIS, and three ML

techniques, explicitly LGR, LR, and SVM. The purpose of

using these various techniques is to assess the performance of

each technique for the designated area. So far, several studies

have been carried out using a single or two techniques, and no

comparative studies have been carried out using five techniques

in the targeted area. Also, this study used a set of multiple datasets

derived from the latest available data; hence it provides the latest

landslide susceptibility mapping. Ultimately, this research

provides novel Landslide Susceptibility Maps (LSMs) and

identifies the results to see how much aerial overlap between

the models by susceptibility type. How much do these models

geographically agree? Do these areas overlap at all?

2 Study area

Muzaffarabad district is situated in the Pakistan-

administered territory of Azad Jammu and Kashmir. The

district has a very hilly terrain and is located on the banks of

the Neelum and Jhelum rivers. Muzaffarabad is the capital city of

the state of Azad Jammu and Kashmir having geographical

coordinates as 34° 21ʹ 30ʹʹ N and 73° 28ʹ 20ʹʹ E and covers an

area of 20665 m2. The Mansehra and Abbottabad district of

Khyber Pakhtunkhwa bounds the district on the Western side,

the Baramullah and Kupwara districts of the Indian-

administered Jammu and Kashmir are on the East, and the

North and South sides face the Neelum and Bagh Districts of

Azad Kashmir. The district of Muzaffarabad geologically lies in

the lower Himalayan region of Pakistan. The district is well

known for its deadliest 7.5 magnitude earthquake in 2005, killing

more than 80000 people (Kamp et al., 2008; Owen et al., 2008;

Saba et al., 2010). The climate of the district varies considerably.

December, January, and February happen to be cold months.

While June, July, and August are relatively warmer. The mean

maximum and minimum temperatures during January are 16°C

and 3°C, respectively, and the mean maximum and minimum

temperature during July are about 35°C and 23°C, respectively.

The annual average high and low temperatures are 22.3°C and

11.1°C, respectively. The average annual precipitation of the

district is 1,242.8 mm. During the monsoon spell from June to

September, the region receives the highest amount of

precipitation as in the rest of the months. July is the wettest,

with an average precipitation of 328.7 mm, followed by August,

which has an average of 229.9 mm. The region receives slight

rainfall from October to December, with the lowest average

observed in November (37.2 mm). The Muzaffarabad region

has experienced plenty of landslides yearly, especially after the

Kashmir 2005 earthquake, especially during the rainy monsoon

season in July and August (Kamp et al., 2008; Owen et al., 2008;

Khattak et al., 2010). Thus, taking immediate and effective

measures to counter landslide happenings is imperative.

Therefore, this study tried to focus on assessing landslide

susceptibility in the area, thus, paving the way for

policymakers to take precautionary measures to alleviate the

destruction caused by landslides (Figure 1).

3 Materials

3.1 Constructing a database of landslide
conditioning factors in Muzaffarabad

Because of the development and the complex nature of

landslides, there is no explicit agreement on their exact origins

(Hong et al., 2016a; Bui et al., 2016). However, several

conditioning factors, such as geological and topographical,

besides climatic conditions, and their association with

landslides have been studied by many scientists in the past

(Hong et al., 2017). Anthropogenic activities also greatly

influence the geological environment (Yang et al., 2017).

Consequently, established on former landslide susceptibility

investigations (Saha et al., 2005; Owen et al., 2008; Khattak

et al., 2010; Saba et al., 2010; Pourghasemi et al., 2012;
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Kanwal et al., 2017; Ali et al., 2019) and examination of the

features of the Muzaffarabad region (Kamp et al., 2008; Owen

et al., 2008; Khan et al., 2019), 15 landslide inducing factors

including slope, aspect, elevation, lithology, curvature, plan

curvature, profile curvature, flow direction, fault lines,

precipitation, Normalized Difference Water Index (NDWI),

Normalized Difference Vegetation Index (NDVI), distance

from roads, earthquake, and distance from waterways were

considered in this study.

In this study, the ASTER DEM with 30 m × 30 m resolution

was used. Six geomorphometric factors, like curvature, slope,

aspect, plan curvature, profile curvature, and elevation, were

extracted using the DEM. The factors of NDVI and NDWI

were extracted from Landsat 8 images with a spatial

resolution of 30 × 30 m. Landsat 8 images were downloaded

from https://earthexplorer.usgs.gov/(June 2022). NDVI was

calculated using infrared (IR) and red (R) bands with the help

of the following formula (Hong et al., 2016a; Chen et al., 2018b):

NDVI � IR − R
IR + R

(1)

NDWI was derived from green (G) and near-infrared (NIR)

channels. NDWI was calculated using the formula (Xu, 2006):

NDWI � G −NIR
G +NIR

(2)

Geological maps of Pakistan, at a scale of 1:2,000,000, were

used to produce the thematic maps of faults, earthquakes, and

lithology, and fault distance was calculated using proximity

analysis (Pavelsky and Smith, 2008). Pakistan Meteorological

Department (PMD) station data was used to construct the

precipitation map. The precipitation from the available data

was calculated using the following formula (Arnoldus, 1980):

P � ∑12

i�1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1.735 × 101.5×log

p2
i
p −0.8188⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

Where p is the average yearly rainfall while pi represents average

monthly rainfall. The annual precipitation was used to calculate

rainfall erosivity in this research. The reason for using rainfall

erosivity instead of direct rainfall was because rainfall erosivity

highlights the area whichmay be affected themost due to rainfall.

Topographic maps of Pakistan were used for the thematic maps

of distance to roads and distance to the waterway.

The standardization and normalization of all the factors were

done. All the maps of landslide trigging factors were transformed

into raster format with a resolution of 30 m × 30 m Lastly, all the

rasterized maps were reclassified based on the level of

susceptibility for inducing landslides into five categories. To

each category, a value was assigned, such as very high

influence was ranked as 5, the high influence was ranked as 4,

the medium influence was ranked as 3, the low influence was

ranked as 2, and very low influence was ranked as 1. For

categorical data like lithology, the reclassification was still

based on the rating of 1–5 in such a way that every class was

assigned a score based on their influence. Since all the factors

were reclassified into 1 to 5 classes, the weights were obtained for

each factor from the methods multiplied by its subclass weight to

get the total landslide susceptibility score to produce the LSMs.

3.2 Landslide inventory and data
distribution

The formulation of the aerial distribution of present landslide

areas is the primary phase in landslide susceptibility mapping

(Cevik and Topal, 2003). For probabilistic analysis of landslide

susceptibility, precise recognition of the landslide’s locality is very

significant. To find the landslide distribution over the area and to

produce a statistical database of landslides for the individual

division of the landslide activating factors, a landslide inventory

map was generated. Several researchers’ used satellite and aerial

photographs to prepare the landslide inventory map (Pradhan

et al., 2009; Pradhan, 2010; Choi et al., 2012; Umar et al., 2014). In

the current study, the past landslide areas (from 2000 to 2021)

were marked using satellite data (Landsat), and historical records

from official data of Pakistan. A similar methodology as of Aslam

et al. (2022) was adopted for the inventory preparation.

To implement the ML techniques, both landslide and non-

landslide locations are needed to produce the LSMs (Ballabio and

Sterlacchini, 2012; Chen et al., 2017). Therefore, 606 past landslide

locations (the center points of landslide polygons) were marked as

“1,” and the same number of randomly sampled non-landslide

locations was marked as “0”. Moreover, for the implementation of

ML models, landslide inventory is split into testing and training

datasets. The training dataset is used to build the model. The

models examine the factors such as topographical, lithological, and

hydrological from the training dataset. The testing data is used to

validate the training of the model. This whole procedure, as a

result, assists in proposing the weightage of individual factors. A

total of 1212 datasets were used, which were randomly divided into

the ratio of 2/3 and 1/3, which means 70% of the dataset was

arbitrarily designated as training samples. The remaining 30% was

used for testing purposes. The ratio of 70/30 is a generally accepted

way of splitting data (Wang et al., 2016; Chen et al., 2018a; Wang

et al., 2019).

4 Methodology

For the specified objective various topographical,

geomorphological, lithological, and hydrogeological factors were

used, which were selected relying on the studies that were

conducted formerly and the study area’s characteristics.

Historical data, satellite images, and official data from the state

departments were exercised to formulate a landslide conditioning
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factors database for the study area. The LR, SVM, and LGR models

were constructed using the training dataset. R programming

language was used for the implementation of ML techniques.

The models were constructed using 10 cross folds to prevent

over-fitting and reduce inconsistency. Tuning of models was

done to increase the accuracy of models. The accuracy was

calculated among the predicted and actual points in testing

datasets for all three ML models. The weights of individual

factors were the outcome of the ML models. The weights were

also obtained from the two MCDM methods. These weights were

then used to prepare the final LSMs in ArcGIS using weighted

overlay analysis. The produced LSMs were reclassified into five

susceptibility classes, i.e., very high, high, moderate, low, and very

low. These classes were generated based on equal intervals for each

class. This was done based on the field visit and considering the

landslides from the past. A correlation was also computed between

the LSMs and the historical landslide locations to check for the

accuracies of LSMs. A comprehensive overview of the methodology

is shown in Figure 2. The practicedmethods are discussed as follows:

4.1 Multicollinearity analysis

Multicollinearity analysis was used to evaluate the correlation

among landslide conditioning factors. It is a statistical

phenomenon in which a high-level relationship exists between

two or more variables in a multiple regression model (O’brien,

2007). To detect multicollinearity among conditioning factors,

the tolerance (TOL) and variance inflation factor (VIF) was

utilized in this study. Let X = {X1, X2, . . ., XN} describe a

given independent variable set and R2
j signify the coefficient of

determination when the jth independent variable Xj is regressed

on all other variables in the model. The following Eq. 2 was used

for the computation of the VIF value:

VIF � 1
1 − R2

j

(4)

The reciprocal of the VIF value gives the TOL value. The TOL

value signifies the degree of linear correlation between

FIGURE 1
Map of the study area showing the elevation and the rivers of the area.
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independent variables. If the TOL value is less than 0.1 and the

VIF value is greater than 10, the corresponding factors show

multicollinearity and ought to be eliminated from further

analysis (Wang et al., 2019).

4.2 Support vector machine

The basic theory for SVM is the statistical learning theory

(Cortes and Vapnik, 1995). The SVM reduces together model

complications and the error test. SVM uses support vectors to

define the margin of the hyperplane. The number of support

vectors held from the first dataset is information subordinate. It

differs, considering the information unpredictability caught by

the information dimensionality and class distinguishableness.

SVM used different kernel functions to map the data into higher

dimensional space. The most popular kernel functions are linear,

polynomial, radial, and sigmoid kernel functions. However, the

present study used the radial basis function. The used kernel

function is shown in Eq. 3 below:

Radial basis Function: K(xiyi) � e−γ(xi−x2j ) (5)

Where, r is the bias term, d is the polynomial degree, and r is the

gamma term.

FIGURE 2
Methodology flow chart.
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4.3 Logistic regression

It is a classification algorithm that assigns observations to a

discrete set of classes using the logistic or sigmoid function to

transform its output. Its concept is based on probability and

predictive analysis algorithms. A relationship between some

dependent factors and a categorical variable is clarified by this

model, which might be categorical, binary, or continuous

variables (Hong et al., 2016a). Using the algorithm has the

advantage that there is no need for the normal distribution of

variables (Pradhan and Lee, 2010). Binomial, multinomial, and

ordinal are types of LGR. Independent variables that denote the

landslide presence and absence in the LGR were designated as

1 and 0, respectively. The equation used for LGR is shown below

(Hong et al., 2016a; Aslam et al., 2022):

Y � b0 + b1x1 + b2x2 + . . . + bnxn (6)

where, Y is the dependent variable (landslide occurrence), b0 is

the intercept, all the b’s are expectation of the target variable

(weights), and all the x’s are the independent variables. This study

used a sigmoid activation function.

4.4 Linear regression

It is a supervised ML algorithm with a constant slope and is

used to predict a continuous output. It reveals how the changing

standard deviation of predictors and independent variables

changes the dependent variable. The used equation for LR is

shown below (Onagh et al., 2012a; Aslam et al., 2022):

L � b0 + b1X1 + b2X2 + b3X3 . . . + bmXm + ε (7)
where, L is the occurrence of landslides, all the X’s represent the

independent variables (factors), all the b’s represent the estimated

coefficients (weights), and ϵ represents the model error. The used

LR type in this study was multiple linear regression. The best fit

line during the implementation of LR was computed using mean

squared error.

4.5 Analytical hierarchy process

AHP is an MCDM technique comprising a pair-wise

assessment of numerous factors contributing towards a

certain cause and establishing ranks of these factors. A

pair-wise comparison matrix is developed as proposed by

Saaty (1990) and Saaty and Vargas (2001) for estimating the

weights of different factors for solving a problem. Another

tempting attribute of the AHP is the aptitude to appraise pair-

wise rating variation. It allows the pair-wise relative

comparison between every factor, and afterward values

from 1 to 9 are assigned based on the relative importance.

The following steps are very important to execute AHP: 1) to

break the composite problem into different parts; 2) to

assemble the conditioning factors into hierarchic order; 3)

to allocate the numerical values to evaluate the comparative

significance of each conditioning factor; 4) to constitute a

comparison matrix and provide weights to every factor (Saaty,

1990). The implementation of the AHP was adopted from

Maqsoom et al. (2021).

4.6 Technique for order of preference by
similarity to ideal solution

Hwang and Yoon (1981) introduced TOPSIS, an MCDM

technique that assesses the dilemma in an n × m matrix (m

criteria and n alternatives). This method is founded on the

notion that each designated factor must have the maximum

detachment from the negative ideal (the least important factor)

and the least detachment from the positive ideal (the most

critical factor) (Lin and Wu, 2004). The basic principle of

TOPSIS is that the decision would be the nearest to the best

result and remotest from the non-ideal result. It assumes that

each factor is uniformly increasing or decreasing, making it

visually easy to locate the best and worst selection.

Normalization is important because the factors are

inconsistent in dimensions. After normalization, positive and

negative ultimate results are measured. Then the detachment

from the ultimate result is calculated. Lastly, the preference

value is assigned to each factor (Rao and Davim, 2008; Krohling

and Pacheco, 2015; Najafabadi et al., 2016; Razavi and Shirani,

2019). The implementation of the TOPSIS method was adopted

from Najafabadi et al. (2016).

4.7 Model validation

It is essential to evaluate the validity of the used models in

landslide susceptibility analysis since they, without validation,

lack scientific significance (Pradhan and Kim, 2016). The ML

models were validated by calculating their accuracy using their

confusion matrixes (Deng et al., 2016; Maria Navin and Pankaja,

2016). However, for checking the logical consistency in pair-wise

comparisons, the AHP method integrates an operative practice.

Consistency Ratio (CR) (Saaty, 1980) is a tool that articulates the

compatibility of the matrix of paired comparisons of all the

parameters involved. The CR value less than 0.1 indicates that the

matrix outcomes are satisfactory (Saaty, 1980); otherwise, the

judgments need to be reviewed. Moreover, a logical procedure

was adopted for the performance assessment of the TOPSIS

method. The relative closeness coefficient (cli+) to the ideal

solution was calculated for each alternative. The best

alternatives are those with higher values (Krohling and

Pacheco, 2015; Najafabadi et al., 2016).
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5 Results

5.1 Relative importance analysis of
conditioning factors

The importance of all the landslide conditioning factors

was assessed utilizing the training set centered on

multicollinearity analysis. The outcomes of the

multicollinearity analysis of landslide conditioning factors

are presented in Table 1. The factor of roads was found to

have a VIF value that is considerably larger than the rest of the

factors, but still, it is less than 10. None of the factors were

found to have a VIF value larger than the threshold value of 10.

Therefore, none of the factors was removed from the further

processes.

5.2 Thematic maps of conditioning factors

The aspect was classified into Flat, North, Northeast, East,

Southeast, South, Southwest, West, and Northwest (Figure 3A).

Most of the exploratory area lies in the Northern and Southward

orientations. The value of −0.0000001 is all the flat or no aspect

pixels, 45 breaks between North and East, 135 breaks between

East and South, 225 breaks between South and West, and

315 breaks between West and North. These orientations were

reclassified into five categories to understand better the

contribution level in triggering landslides. Based on the

reclassification, the class intervals of −1 to −0.00000001 were

weighted as 1, 0–45, and 315–360 equal to 2, 45–135 equivalent to

3, 135 to 225 equal to 4, and 225–315 equal to 5. Furthermore, the

elevation was divided into five classes, from the lowest class of

575–1000 m to higher elevated areas of 1000–2000 m,

2000–3000 m, 3000–4000 m, and 4000–4438 m (Figure 3B). It

can be observed that the Southwest area is low elevated while the

Northeast has a higher elevation.

This region is seismically very active and has several faults

in the region. Areas nearer to the fault lines have a higher

potential for landslides, while as the remoteness from the fault

line increases, the level of landslide susceptibility also

decreases gradually. So, a buffer of 0–300 m was ranked as

5 since this region has a higher potential of landslide

susceptibility while 300–600 m as 4, 600–900 m as 3,

900–1200 m as 2, 1200–1500, and >1500 m as 1

(Figure 3C). In addition to the faults, the flow direction is

also among the key contributing factors in landslide

susceptibility because it shows which direction the soil

slush will flow. The higher the flow direction value, the

higher the susceptibility potential, and vice versa. So based

on this fact, it was divided into five categories depending on

the possibility of susceptibility. 64–128 was ranked as 5 while

32–64 as 4, 8–32 as a 3, 2–8 as 2, and 1–2 as 1 (Figure 3D). The

Northward flow has a higher susceptibility. In the considered

study area, the flow is from North to South. Thus, more slopes

are cut to Northward flow, resulting in higher landslide

susceptibility.

The slope is also a foremost contributing factor in the

landslide because steeper slope areas have a higher chance of

rockfall than the gentle slope area. Hence five categories

depending on the potential of susceptibility were

established. >16° slopes were ranked as 5 while 12°–16° as 4,

8°–12° as 3, 4°–8° as 2, and <4° as 1 (Figure 3E). Additionally, the
level of precipitation in the area increases gradually from North

to South. Since higher levels of precipitation have a greater

potential of triggering landslides than lower levels of

precipitation, therefore the region was categorized based on

the precipitation potential as 1259–1323 mm is ranked as

5 while 1203–1259 mm as 4, 1136–1203 mm as 3,

1070–1136 mm as 2, and 983–1070 mm as 1 (Figure 3F).

Moreover, just like faults, areas nearer to the roads have a

higher potential for landslides because the roads are

constructed by cutting the toes of slopes, making them

unstable. As the remoteness from the roads increases, the level

of susceptibility also declines gradually. So, a buffer of 0–300 m

was ranked as 5 while 300–600 m as 4, 600–900 m as 3,

900–1200 m as 2, and 1200–1500 and >1500 m as 1 (Figure 3G).

Soil moisture has a direct influence on soil compactness and

rock strength. Higher soil moisture has the potential to cause

landslides as compared to lesser moisture. Thus, the area with a

higher NDWI value was ranked the highest (a rating of 5) and

vice versa (Figure 3H). Like faults and roads, areas nearer to the

water bodies have a higher potential for landslides. At the same

time, as the distance increases from the water bodies, the level of

TABLE 1 Outcomes of Multicollinearity analysis.

Landslide
conditioning factors

Statistics

TOL VIF

Aspect 0.276 3.623

Curvature 0.962 1.04

Earthquake 0.892 1.121

Elevation 0.722 1.385

Flow 0.803 1.245

Lithology 0.727 1.376

NDVI 0.596 1.678

NDWI 0.753 1.328

Plane Curvature 0.587 1.704

Precipitation 0.793 1.261

Profile Curvature 0.817 1.224

Slope 0.275 3.636

Faults 0.316 3.165

Roads 0.243 4.115

Waterways 0.461 2.16
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FIGURE 3
Input derived datasets: (A) aspects, (B) elevation, (C) faults, (D) flow direction, (E) slope, (F) precipitation, (G) roads, (H) NDWI, (I) waterways, (J)
earthquake, (K) lithology, (L) NDVI, (M) plan curvature, (N) profile curvature, (O) curvature.
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susceptibility also decreases gradually. So, a buffer of 0–300 m

was ranked as 5 while 300–600 m as 4, 600–900 m as 3,

900–1200 m as 2, and 1200–1500 and >1500 m as 1

(Figure 3I). Furthermore, earthquakes have a direct role in
causing landslides, as landslides occur after ground shaking.
The region is in a subduction zone where seismicity is very
high. The Northern portion of the exploratory area lies in a
highly high seismic zone. Since this region receives larger
magnitude earthquakes hence this region was classified as very
high (a rating of 5), high (a rating of 4), and medium only (a
rating of 3) (Figure 3J).

A larger part of the study area comprises limestone, and other

prominent lithologies are slate, volcanic rock, and quartzite

(Figure 3K). Limestone and slate are an example of weak

lithologies. Based on the strength, these lithologies were

ranked from 1 to 5 during the reclassification. The positive

NDVI value shows a high concentration of vegetation, while

the negative value depicts no vegetation. High vegetation covers

on the slope surface reduce soil erosion and slope failure. In

contrast, no vegetation on the slope increases the chances of

failure as it is exposed to the atmosphere. This logic was adopted

FIGURE 4
Landslide susceptibility derived from LGR.

TABLE 2 Resulted weights of the contributing factors from different
techniques.

Dataset SVM LGR LR AHP TOPSIS

Aspect 5 4 6 8 4

Curvature 8 10 9 5 8

Earthquake 3 5 4 6 7

Elevation 11 12 12 12 12

Flow direction 10 9 11 8 10

Lithology 10 8 10 12 11

NDVI 5 7 6 5 9

NDWI 8 10 9 8 7

Plane Curvature 4 6 5 4 3

Precipitation 13 10 10 11 14

Profile Curvature 2 1 1 1 1

Slope 12 13 9 13 10

Faults 5 2 4 3 1

Roads 2 2 2 2 2

Waterways 2 1 2 2 1

Total 100 100 100 100 100
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TABLE 3 Division of different landslide susceptibility classes for different methods.

Model type Susceptibility class

Very low Low Moderate High Very high

LGR Area m2 834 4726 8892 4819 1394

Area % 4.04% 22.87% 43.03% 23.32% 6.75%

LR Area m2 404 3457 9431 6164 1209

Area % 1.95% 16.73% 45.64% 29.83% 5.85%

SVM Area m2 219 2624 8713 7446 1663

Area % 1.06% 12.70% 42.16% 36.03% 8.05%

AHP Area m2 1892 5353 7538 4275 1607

Area % 9.16% 25.90% 36.48% 20.69% 7.78%

TOPSIS Area m2 1786 6465 7204 4030 1180

Area % 8.64% 31.28% 34.86% 19.50% 5.71%

FIGURE 5
Landslide susceptibility maps derived from (A) LR (B) SVM (C) AHP and (D) TOPSIS.
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during the reclassification process. The NDVI value for most of

the study area is high, which is consistent with the high

vegetation coverage observed for the mountainous area

(Figure 3L).

The curvature value represents the morphology of

topography. The curvature proposes information about the

flow’s divergent or convergent and accelerated or

deaccelerated character. The convexity (positive curvature) or

concavity (negative curvature) of the earth’s surface greatly

influences the soil’s moisture-holding capacity, which in turn

affects the slope stability. This fact was based for the

reclassification of different curvature types. For plan

curvature, the concave surfaces are shown by the positive

values, and the convex character of the surfaces is signified by

the negative values (Figure 3M). However, for profile curvature,

the negative curvature value relates to the concave slope, and the

positive curvature value relates to the convex slope (Figure 3N).

The research area is diversely dominated by convex, straight, and

concave slopes. The convex slope is related to the positive

curvature value, and the concave slope is associated with the

negative curvature value (Figure 3O).

5.3 The comparative significance of
conditioning factors for considered
models

From Table 2, it can be perceived that a similar controlling

element can have a varied influence according to distinct models.

For the SVM model, flow direction, elevation, and precipitation

have the highest contributions of 13%, 12%, and 12%. As per the

SVM model, the remaining conditioning factors contribute less.

For the LGR, LR, AHP, and TOPSIS models, the influences of the

landslide controlling elements are very much alike. Flow

direction, elevation, lithology, precipitation, and slope have

extreme impacts based on these four models, but the effects of

the remaining factors varied slightly.

5.4 Landslide susceptibility maps

The developed LSM (Figure 4) of the considered area after

the application of the LGRmodel illustrates that an area of 4.04%

is classed as very low and 22.87% as low susceptible zones,

predominantly located on the Northeast side of the region.

The moderate susceptible area covers 43.03% of the total area,

and 23.32% of the total area is sorted as a high susceptible zone, as

evident from Table 3. The very high susceptible area is 6.75%, and

these zones are mainly located in the Southwest of the region.

Whereas the LR model’s generated LSM (Figure 5A) shows that

the very low susceptibility class encompasses 1.95%, and the low

susceptibility class covers 16.73% of the considered area, which is

less than the LGRmodel’s respective classes. 29.83% and 5.85% of

the explorative area come under the high and very high

susceptibility classes, respectively, and these zones are

primarily located in the central and southwest parts of the

area. An area of 45.64% falls in the moderate susceptibility

class, which is slightly higher than the moderate class area of

both other ML models, as can be seen from Table 3. SVM-based

susceptibility map shows that 42.16% of the area is under

moderate susceptibility (Figure 5B). It can be viewed from the

SVMmodel generated LSM that the very high susceptibility class

comprises 8.05% of the considered area, and it is more as

compared to all other used models. The high and low

susceptibility classes encompass 36.03% and 12.70% of the

explorative area. The percentage of the research area that

accounts for very low susceptibility is 1.06%, and it is the least

percentage of area in this class than other models, as shown in

Table 3. The zones in the extreme North of the region have the

lowest susceptibility. The spatial distribution of the susceptible

areas according to the ML models produced LSMs is somewhat

the same, but it differs in proportions of area.

The LSM (Figure 5C) generated by exercising the AHP

technique illustrates that 9.16% of the area is very low,

whereas 25.90% is under low susceptibility. These two classes

are mainly concentrated on the Southeast side of the region,

TABLE 4 Confusion matrixes for Machine Learning models.

Confusion matrix for logistic regression

0 1

0 481 111

1 125 495

Confusion matrix for linear regression

0 1

0 435 135

1 171 471

Confusion matrix for support vector machine

0 1

0 445 161

1 116 490

TABLE 5 Validation results of Machine Learning models.

Model type Validation accuracy

LGR 80%

LR 75%

SVM 84%
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which is different from the results of ML models in which these

two classes are majorly positioned in the extreme North. The

moderate susceptibility class encompasses 36.48% of the

deliberated area. Besides this, 20.69% of the research area

accounts for the high susceptibility, and the very high

susceptibility represents 7.78% of the total area. Both these

classes are concentrated on the central and Northwest sides of

the region. The pattern of susceptibility classes is comparatively

different from the results of ML models. As portrayed in Table 3,

the results of the AHP show that the percentage of the

exploratory area subjected to high susceptibility is more than

the results of the TOPSIS. The generated LSM (Figure 5D) by the

TOPSIS technique also exhibits similar trends as the AHP

method LSM. The very low susceptibility class represents

8.64% of the research area. The low and moderate

susceptibility classes comprise 31.28% and 34.86% of the study

area, respectively. Finally, 19.50% of the considered area comes

under the high susceptibility class, and the portion of the

investigative area falls into the very high susceptibility class

is 5.71%.

5.5 Validation of models

In the current research, the obtained value of CR was less

than 0.1, which validated the AHP technique. For TOPSIS

technique, the values of cli + ranged from 0 to 1. An option

with a score close to 1 was considered the best. For all three ML

models, SVM, LGR, and LR, the accuracy was calculated using

the predicted and actual results for the testing dataset. The higher

accuracy value demonstrates that the model calculations are

precise. The confusion matrixes used to calculate the accuracy

of all three models are shown in Table 4.

The results of the LGRmodel showed that out of 1212 points,

481 non-landslide and 495 landslide points were accurately

predicted. In comparison, 125 non-landslide and 111 landslide

points are wrongly predicted by the model. As seen from Table 4,

out of 1212 points, the LR model accurately predicted 435 non-

landslide and 471 landslide points, while 135 non-landslide and

171 landslide points were wrongly predicted. The confusion

matrix for the SVM model reveals that, out of 1212 points,

the SVM model accurately predicted 445 non-landslide and

490 landslide points, while 161 non-landslide and

116 landslide points were wrongly predicted. The calculated

accuracy of the models based on the confusion matrix is

presented in Table 5. The accuracy of the SVM model (84%)

is more than the remaining two models, followed by LGR with

80% and LR with 75% accuracy (Table 5).

6 Discussion

The Muzaffarabad district of Azad Kashmir in Pakistan has

been subjected to devastating landslides. There is a risk of future

landslides due to the high precipitation levels, steeper slopes, high

mountains composed of weaker lithology, etc. Therefore, it is

vital to assess the landslide susceptibility of the region. In this

study, for mapping the landslide susceptibility in the area, the

landslide susceptibility maps (LSMs) were generated by

exercising three ML techniques: SVM, LR, and LGR, besides

two MCDM techniques: TOPSIS and AHP. Based on the

literature review and the geographical setting of the area,

15 influencing factors were selected for mapping the landslide

susceptibility.

Insights into the relative importance of inducing factors as a

landslide susceptibility indicator are essential. Table 2 shows that

all the models have marked slope and elevation as the most

significantly impacting factors on landslide occurrence, followed

by lithology, precipitation, flow direction, and NDWI. The

elevation of an area controls the profile curvature, slope angle,

and aspect of a geographical area. Thus, it is an important

parameter. Slope plays an essential role in initiating landslides.

Therefore, it is used frequently to prepare LSMs (Lee, 2005; Saha

et al., 2005; Pourghasemi et al., 2012). According to the produced

LSMs, landslide susceptible regions are majorly those with

elevations ranging from 575 to 2000 m and steep slopes.

Precipitation is a crucial landslide triggering factor, and this

region receives a significant amount of precipitation over a year,

varying from an average of 983–1323 mm at different places.

Precipitation triggers unexpected floods, which also produce

shallow landslides. Water infiltrates rapidly into the soil due

to higher levels of precipitation and thus increases the degree of

saturation of the soil (Mandal and Mandal, 2018). Saturated soil

has the potential to slide easily. NDWI is the amount of moisture

in the soil which has a more significant role in initiating

landslides. Soil water content disturbs soil cohesion and thus

changes the shear strength of the soil (Del Gaudio et al., 2013; von

Ruette et al., 2013). When the moisture increases, the material

composition of the slope becomes loose, and the risk of slipping

increases.

Lithology offers material support for the incident of

landslides and forms the foundation of landslide development.

Many studies have considered lithological features as an

influencing factor for landslide susceptibility mapping

TABLE 6 Accuracy assessment of produced landslide susceptibility
maps.

Model type Map accuracy (%)

LGR 79

LR 83

SVM 87

AHP 80

TOPSIS 78
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(Pourghasemi et al., 2012; Chen et al., 2016b; Wang et al., 2016).

The weaker lithologies are responsible for causing landslides

because they do not possess enough strength to withstand the

higher precipitations and can easily slip away. The pondered area

in this research receives a considerable amount of rainfall, and

most of the landslides that have occurred were positioned near

the rivers and were debris flow (Saba et al., 2010). The Jhelum

river drains the study area and its two tributaries, the Neelum and

Kunhar rivers. These rivers flow North to the West, developing

profound antecedent valleys before gushing Southwards

alongside wider ones valleys to the Indo-Gangetic Plain

(Kamp et al., 2008). The flow of the rivers is very swift owing

to the area’s topography, thus cutting the slopes and causing

debris flow while flowing from North to South. This makes the

flow direction a critical factor for mapping landslide

susceptibility. All these factors are related, and their combined

effect can cause landslides in areas where they are present.

For every produced map as an application of the five

methods, it can be seen that for landslide susceptibility, the

categorized five classes vary in their percentages and locations

in the area (Figures 4, 5). Overall, the spatial distribution of

landslide susceptibility zones reveals vital training data selection.

Table 3 displays the comprehensive outcomes of all the practiced

models in statistical form. The accuracy of the produced LSMs

was assessed using the data of previous landslide locations. The

established data of landslide locations were compared with the

LSMs for performing the accuracy assessment. The results

disclosed acceptable conformity amid the LSMs and the

previously present data on landslide positions, as evident from

Table 6. For the landslide susceptibility mapping, the SVMmodel

based LSM outperformed the other models. The SVM model

based LSM accomplished the maximum implementation

accuracy, which is 87%, followed by the LR model (83%),

AHP (80%), LGR model (79%), and lastly, TOPSIS (78%).

In general, the performance ofML techniques was better than

the performance of MCDM techniques. The results are quite like

the results of different studies carried out previously in different

parts of the world using a range of ML and MCDM models. For

mapping landslide susceptibility at the Haraz watershed, Iran

Pourghasemi et al. (2012) applied two MCDM techniques, Fuzzy

Logic, and AHP, and evaluated the performance of both models.

The results showed that the Fuzzy Logic model, with an accuracy

of 89.7%, performed better than AHP, which showed an accuracy

of 81.1%. The results of bothMCDM techniques are considerably

different in the mentioned study. But in the present case, there is

a marginal difference between the two practiced MCDM

techniques. This can be due to conditioning factors, as the

study area’s geographic location controls them. Erener et al.

(2016) used the GIS-based MCDM method (AHP), Association

Rule Mining (ARM), and LGR to carry out a comparative study

for landslide susceptibility mapping for Şavşat in Artvin Province

(NE Turkey). The authors found that ARM and LGR methods

are more accurate than GIS-based MCDM for landslide

susceptibility mapping. These results are as per the results of

this study. In the present study, the LGR model also performs

better than AHP. Razavi and Shirani (2019) used Frequency

Ratio (FR), entropy methods, and an MCDM method (TOPSIS)

for landslide hazard zoning for the Fahliyan basin, Fars. The

results exhibited that the statistical methods entropy (91%) and

FR (87.7%) have better accuracy than TOPSIS (84%). In the

current analysis the accuracy of TOPSIS also turns out to be the

least as compared to the other models.

In another study by Tsangaratos and Ilia (2016), a

comparison between the performances of NB and LGR was

made for the landslide susceptibility mapping in Greece, and

the validation results showed an accuracy for NB at 82.61% and

LGR at 87.50%. The study conducted by Pham et al. (2016a) for

the evaluation of the performance of five ML methods SVM,

LGR, NB, Fisher’s Linear Discriminant Analysis (FLDA), and

Bayesian Network (BN) applied for landslide susceptibility

assessment demonstrated that SVM has the highest accuracy

compared to the other methods. Goetz et al. (2015) used multiple

statistical andML techniques for the landslide hazardmapping of

the province of Lower Austria. They used LGR, SVM, WOE, RF,

Bootstrap Aggregated Classification Trees (bundling) with

Penalized Discriminant Analysis (BPLDA) and Generalized

Additive Model (GAM) method. The authors found that all

methods gave similar accuracy and results, but the BPLDA,

WOE, and RF had marginally better accuracy.

In these previously mentioned two studies, SVM performed

better in one, but in the other study, the accuracy of SVM was

marginally less. So, it can be concluded that the performance

varies from location to location and depends on the conditioning

factors. The results of previous studies also show that the ML

techniques perform better than the MCDM techniques. Thus,

indicating that the generated results of this study are acceptable.

Even though the employed models in this research produced

reasonable results; however, it must be perceived that the

landslide position statistics, that is, the landslide inventory

map, directly affect the reliability of the results.

An essential aspect of data-driven methods is that they are

most prevailing for landslide susceptibility mapping since they

contain less subjectivity. The accuracy of the SVM can be affected

by the training sample selection, indicated by the fact that the

best hyperplane is fitted by the SVM model that can detach non-

landslides from landslides efficiently, even though specific

complexity could come across for non-detachable landslide

factors in fitting the hyperplane (Ballabio and Sterlacchini,

2012; Bui et al., 2016). High-dimensional data does not affect

the workability of SVM, which means that it can handle the high

number of landslide conditioning factors (Mountrakis et al.,

2011; Kavzoglu et al., 2014). SVM accuracy is less affected by

categorical influences, for instance, lithology and land use. The

purpose is that the number of designated landslides might not

differ among different classes when deciding on different

landslide training data subsets. However, more effects can be
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witnessed in continuous elements such as slope and altitude as

the values differ relentlessly.

In contrast, for training data selection, the LGR model was

observed to be less complex. To the landslide inventory data,

the LGR model strives to fit a linear location and might usually

place the landslide sites among classes as high and very high

susceptibility. It was determined that the LGR model

undoubtedly highlights the interrelation present between the

occurrence of landslides and instability factors. Besides the

SVM and LGR, the LR method has been used due to the

ease of data attainment and examination and less time

consumption.

TOPSIS and AHP are the most rational and extensively used

among all the MCDM methods (Rao and Davim, 2008; Achour

et al., 2017; RAZAVI and Shirani, 2019; Bahrami et al., 2020;

Maqsoom et al., 2021). An optimal result can be produced by

their combination, provided that the strengths of one model can

offset the weaknesses of another model (Rao and Davim, 2008).

Unfortunately, TOPSIS is unreliable in its valuation of decisions

and lacks weights, according to the stated purpose, to determine

the relative importance of different indicators; this technique

requires a workable procedure. The AHP method also delivers

such a practice (Rao and Davim, 2008). A rating system based on

expert opinion is used for the conventional AHP model. In fact,

for solving composite problems like landslides, expert opinion is

very beneficial. However, to some extent, views may be imperiled

by cognitive restrictions with partiality and vagueness. They may

vary for every individual expert. Therefore, the analysis of spatial

relationships is important amongst landslide locations and the

landslide activating factors. Though the AHP technique is

primarily centered on professional judgment, it is supposed

that the choice of landslide activating factors based on

landslide incidences can neutralize the partiality perception in

this technique (Achour et al., 2017; Maqsoom et al., 2021).

A detailed comparison of the results in terms of area under

different susceptibility classes, as shown by the susceptibility

maps, is provided in Figure 6. In contrast with all the other

methods, the LR model’s generated LSM shows that the

maximum area is in the moderate susceptibility class

(>9000 m2). The SVM model outcomes show that the least

area is under the very low susceptibility class compared to the

other models. The representation shows that the area under low

susceptibility is higher for the TOPSIS model (>6000 m2) than

the area of other models. However, the area under the high and

very high susceptibility class of SVM is considerably higher than

the results of TOPSIS and AHP. The overall results of the models

indicate that primarily the investigative area has moderate

landslide susceptibility, which comprises approximately 40%

of the considered area.

All the LSMs (Figures 4, 5) show that the high and very high

susceptibility classes are in the lower elevation areas, including

the floodplains of the main rivers. This is because most of the

landslides in the study area occur along the rivers and are debris

flows. Due to this, the models have predicted high susceptibility

in the lower elevation areas, including the floodplains of main

rivers. Moreover, the practiced models in this research have

computed very low or low susceptibility in the Northern region

with a cluster of landslide points. This shows the limitation of the

practiced conventional ML and MCDM techniques. Therefore, it

is suggested that future researchers should practice

contemporary deep learning techniques the evaluate the

landslide potential in this study area.

7 Conclusion

There are several advised practices for landslide

susceptibility mapping. However, in this study, to assess the

FIGURE 6
Landslide susceptibility class division in terms of area for different methods.
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landslide susceptibility of the Muzaffarabad district, a

comparison was made between the results of three ML

techniques, LGR, LR, and SVM, and the results of two

MCDM techniques, TOPSIS and AHP. Based on the

landslide’s physical mechanics in the study area and other

related knowledge, selected slope, profile curvature, aspect,

plan curvature, elevation, lithology, curvature, flow direction,

fault lines, precipitation, NDWI, NDVI, distance from roads,

earthquake, and distance from waterways as landslides

inducing factors for this study. A total of 1212 data points,

606 landslide locations, and 606 randomly selected non-

landslide locations were used for the analysis. 70% of the

data was used as training and 30% as testing data. The

training data was used to train the ML models, and the

testing data was used for checking the validity of trained

SVM, LGR, and LR models. All the methods ranked slope,

precipitation, elevation, flow direction, and lithology as the

most critical landslide-inducing factors, but the assigned

weights differed. The accuracy assessment of produced maps

showed that the performance of all the methods was relatively

decent. Still, the accuracy of the SVMmodel-produced map was

somewhat higher (85%), followed by LR (83%), AHP (80%),

LGR (79%), and TOPSIS (78%). By offering the LSMs, this

study provides a baseline for decision-makers for effective

countermeasures that can be practiced for the study areas’

susceptible zones, including drainage measures, revetments,

stabilizing piles, anchor bolts, and long-term monitoring.

This can, as a result, help reduce the loss of life and

property in diverse situations.
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