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Excessive levels of organic matter in water threaten ecological safety and

endanger human health. As the water resource environment is deteriorating,

accurate and rapid determination of water quality parameters has become a

current research hotspot. In recent years, the ultraviolet spectrometry method

has beenmorewidely used in the detection of chemical oxygen demand (COD),

which is convenient and without chemical reagents. However, this method

tends to use absorbance at 254 nm to measure COD. It has a good detection

effect when the composition of pollutants is single, but in real life, the complex

composition of pollutants will seriously affect the accuracy of measurement.

Therefore, a COD prediction model based on ultraviolet-visible (UV-Vis)

spectrometry and the convolutional neural network (CNN) is proposed.

Compared with other traditional COD prediction models, this model makes

full use of the absorbance of all ultraviolet and visible wavelengths, avoiding the

information loss caused by using specific wavelengths. Meanwhile, this model is

constructed based on the shallow CNN, using convolutional layers with

different step lengths instead of the traditional pooling layers, which reduces

computation and enhances the capture of spectral feature peaks. Additionally,

with the powerful feature extraction capability of the CNN, this model reduces

the reliance on pre-processingmethods and improves the utilization of spectral

information. Experiments have shown that our model has better fitting results

and accuracy than other traditional COD prediction models such as the

principal component analysis (PCA), partial least squares regression (PLSR),

and backpropagation (BP) neural network. This study provides a better

solution for improving the accuracy of UV-Vis water quality COD detection,

which is conducive to real-time monitoring of the water quality, providing data

support of water pollution and its development trend for the government’s

water resource protection policy and promoting biodiversity development.
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Introduction

Water quality is vital to people because it is directly related to

the quality of human life and ecological security. Due to the

industrial emission of wastewater and the massive use of

pesticides and fertilizers, water eutrophication is becoming a

serious issue, leading to the decline of dissolved oxygen in the

water and the imbalance of ecosystem species distribution,

bringing challenges to water resource protection. Achieving

real-time monitoring of environmental quality is significant

for promoting species conservation and economic growth and

development (Bhatti et al., 2022a). Therefore, in order to

effectively monitor the water quality and take corresponding

measures in time, the optimization of the water quality detection

algorithm is imperative.

COD refers to the mass concentration of oxygen in the strong

oxidant consumed by dissolved substances and suspendedmatter

in water. As one of the significant parameters to evaluate the

pollution level of water bodies, COD is widely used to detect

water pollution. The higher COD value indicates a higher

concentration of reducing substances in water and the more

severe is the water pollution. Currently, the mainstream methods

for determining COD have been divided into chemical and

physical methods (Li et al., 2018). Chemical methods are

mainly titrimetric analysis and electrochemical analysis. The

process is complex, slow, and generally also needs to be

carried out in the laboratory, which makes it difficult to

achieve online detection. The primary physical method is

molecular spectroscopy. Spectroscopy is a method that

identifies substances and quantifies them by their emission or

absorption spectra (Barone et al., 2021). Among them, UV-Vis

spectrometry is widely used in the field of water quality

monitoring as an environmentally friendly monitoring and

analysis method because of its rapid determination and

convenience, low cost, high sensitivity, and the possibility of

online tracking (Chen et al., 2021). Improving the efficiency of

environmental quality monitoring will facilitate the government

in obtaining the distribution of pollution, tracking and removing

pollutants, and formulating environmental policies timely

(Bhatti et al., 2022b). Many scholars have carried out research

on spectroscopic methods and proposed various optimization

algorithms such as competitive adaptive reweighted sampling

(CARS), the successive projection algorithm (SPA), and particle

swarm optimization (PSO) to fuse into a new algorithm to select

the effective feature wavelength, which improves the accuracy for

the following prediction model (Hong-Qiu et al., 2019;

Jahandideh-Tehrani et al., 2020; Zhang et al., 2020). Zhao

et al. (2016) used the PCA algorithm to improve the efficiency

of water quality detection. Bhatti et al. (2021) used Gabor filtering

on hyperspectral images to improve the classification accuracy of

the images. Mingjin et al. (2019) built a correction model based

on PLSR for the main spectral regions of the UV receiver

spectrum for the determination of COD in water samples and

obtained a good coefficient of determination. Zhu et al. (2022)

developed a BP neural network based on elephant herding

optimization for COD prediction, which effectively removed

the biased data and improved the ability of the algorithm to

find the optimal value.

However, the current COD detection algorithms are still

inadequate; PLSR has less deviation information on

independent variables and larger matching errors, so its

prediction accuracy still needs to be improved. The PCA

calculation process is complicated and vulnerable to the

complexity of organic pollutants, so it is difficult to predict the

dynamically changing organic pollutants. BP networks have

limitations such as slow convergence speed and easy falling into

local extremes. The CNN, a common type of the deep learning

model, has better self-learning and self-adaptive capabilities than

other traditional prediction models and can better deal with

nonlinear problems (Croce et al., 2018). Meanwhile, the CNN

can provide better prediction accuracy even without spectral

preprocessing due to its powerful feature extraction capability

and sample mapping of local features (Zhao et al., 2018).

This article constructs a COD prediction model based on the

CNN andUV-Vis spectroscopy to improve the accuracy, inputs the

spectral data into the CNN, extracts the high-dimensional

information in the spectral information by multi-layer

convolution and activation operations, then reduces the

dimensionality of the feature map by downsampling, and finally

outputs the predicted COD value. The feature extractor used in this

algorithm uses a convolutional layer with a step size of 2 instead of

the pooling layer of the traditional CNN. It uses convolutional

kernels and step size to smooth the one-dimensional spectral data,

making it easier for the model to extract more important spectral

region information and thus reducing the COD prediction error.

Experiments show that this algorithm can effectively predict COD

with high accuracy. It has a smaller error than other COD

prediction models and provides a better solution to improve the

accuracy of UV-Vis water quality COD detection, which is

conducive to the real-time online detection of water resources

and provides data support for the protection of water resources

and the formulation of environmental policies.

Related work

Principle of chemical oxygen demand
detection by ultraviolet-visible
spectrometry

UV-Vis spectroscopy is a commonly used spectroscopic

analysis method based on absorption spectra generated by

electron leaps within molecules. Most of its research objects

are in the near UV range of 200–380 nm and the visible range of

380–780 nm. The UV-Vis absorption spectrum corresponds to a

short electromagnetic wavelength and high energy, reflecting the
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valence electron energy leap in the molecule, and the sensitivity

of its determination depends on the molar absorption coefficient

of the molecule producing light absorption. The absorption of a

molecule in the UV-Vis region is closely related to its electronic

structure, and molecules with different structures produce

electron jumps of different energies, which are reflected in the

UV-Vis absorption spectra and result in specific characteristic

peaks, and the structural information on the sample to be

measured can be deduced from the position and intensity of

the characteristic peaks (Li and Hur, 2017). This principle allows

UV-visible spectroscopy to detect COD in water. The detection

principle is shown in Figure 1.

The detection system consists of two parts: a

spectrophotometer and a computer system. The

spectrophotometer inputs the absorbance data on the organic

pollutants to be measured in the water sample into the computer

by checking the spectral changes of the light source after passing

through the sample solution, and a computer system processes

the absorbance data through the COD prediction model to finally

predict the COD value of the sample.

The COD prediction model is extremely important for the

accuracy of the prediction. With further research, more innovative

data pre-processing algorithms have been proposed to improve the

validity of the data, and a variety of efficient water quality prediction

models have been proposed to improve themodel’s accuracy. These

research studies have provided a theoretical foundation for the

efficient and accurate detection of the water quality (Guang et al.,

2019; Passos and Saraiva, 2019; Sun et al., 2021).

Principle of the convolutional neural
network

A typical CNN consists of three parts: convolutional layers,

pooling layers, and fully connected layers. Its structure is shown

in Figure 2.

Here, the neurons in the convolutional layer are locally

connected to their feature surface in the input layer

(Baltrušaitis et al., 2018). This locally weighted sum is passed

to the activation function to obtain the output value of each

neuron in the convolutional layer. The pooling layer reduces the

number of connections between the convolutional layers,

decreasing the dimensionality of the feature map and the

computational complexity of the model. The fully connected

layer can integrate the local information with category

differentiation in the convolutional and sampling layers

(Basha et al., 2020). The output values of the last fully

connected layer are passed to the output layer, and finally,

classification is achieved by softmax regression.

The CNN can fit multidimensional mapping problems, and

the neurons in a multilayer feature extractor can provide enough

complexity to simulate the nonlinear nature of the mission. The

local connectivity, weight sharing, and pooling operation features

of the CNN can reduce the number of training parameters and

effectively reduce the complexity of the network while making

the model invariant to translation, distortion, and scaling to a

certain degree, improving robustness and fault tolerance. Based

on these superior properties, it performs better than standard

fully connected neural networks in a variety of signal and

information processing tasks which have achieved good results

in the fields of computer vision, natural language processing,

medicine and health, and environmental protection (Bhatti et al.,

2019; Olmedilla et al., 2022; Serna et al., 2022).

The proposed method

Data building

Due to the huge variation between water quality samples

from different regions and practical water samples that cannot

fully cover all valid points in the range of concentrations, the

model uses a range of standard COD solutions of 50–500 mg/L,

according to the national standard, and then obtains the spectral

data on the samples at 200–900 nm through the COD

measurement system.

The COD standard solution was prepared according to the

national standard of China (GB19914-89) by accurately weighing

1.2754 g of pre-dried, high-purity potassium hydrogen phthalate

(HOOCC6H4COOK) in heavy distilled water using a BS243S

electronic balance, transferring it to a 1000-ml volumetric flask,

and diluting it to the standard line with heavy distilled water to

obtain a COD value of 1,500mg/L of the solution. Then, the COD

standard solution was diluted proportionally to obtain a total of

90 samples of 500–50mg/L of the COD solution decreasing in a

5mg/L gradient.

The core of the water quality measurement system is the

Maya 2000 Pro spectrometer manufactured by Ocean Optics,

which is composed of a deuterium–halogen light source,

FIGURE 1
COD detection principle using the UV-Vis method.
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attenuator, sample holder, spectrometer, and PC with acquisition

control software being installed; the specific principle is shown in

the Figure 3.

To avoid the influence of ambient light on the test results and

to ensure the consistency of the acquisition environment, a

special sample holder was used to avoid light throughout the

measurement. The integration time was set to 80 ms and the

average number of scans to 10; each sample collected previously

was tested five times, and the spectral data on 200 nm–1000 nm

of 450 standard COD solutions were obtained. The spectral data

on the samples are shown in Figure 4.

Network model building

Generally speaking, convolutional neural networks can

achieve feature extraction of the original data through

convolution, activation, and pooling operations, extracting

and obtaining important spectral region information,

weighing and summing the output of the features from the

previous layer through fully connected layers, inputting the

results to the activation function, and finally completing the

classification of the target (Baltrušaitis et al., 2018). However,

considering that the spectral information obtained through

experiments is limited, the training of convolutional neural

networks usually requires a large amount of data, while deep

neural networks are often prone to overfitting (Roelofs et al.,

2019). This article adopts a shallow 1D CNN to construct the

COD prediction model, and the specific structure of this model

is shown in Figure 5.

This model extracts spectral data features through five

feature extractors in series and then implements the

prediction of COD through fully connected and activation

layers. The feature extractor uses the structure of

convolutional, activation, and downsampling layers in series.

In each convolutional layer, the convolutional kernel size is

9 × 1, 7 × 1, 5 × 1, 3 × 1, and 3 × 1. The convolutional kernel

convolutes the feature map output from the previous layer and

constructs the output feature map using the nonlinear activation

function. The output of each layer is the result of convolutions of

multiple input features, and the convolution process is shown in

Eq. 1

yj � f⎛⎝∑n
i�1
wijpxi + bi⎞⎠ (1)

where * denotes the convolution operation, yj denotes the layer j

output feature map, xi denotes the layer i input feature map, wij

FIGURE 2
Typical structure of the convolutional neural network.

FIGURE 3
Water quality COD measurement system.
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denotes the convolution kernel in this layer, and bi denotes the

bias of the layer i feature map.

The activation layer is located after the convolution layer.

Leaky ReLU is a variant of the ReLU activation function, the

output of which has a small slope for negative inputs and reduces

the appearance of silent neurons due to the non-zero derivative,

which solves the problem of neurons not learning after ReLU

enters the negative regions. Its expression is shown in Eq. 2

LeakyReLU(x) � {x (x> 0)
αx (x≤ 0) (2)

The downsampling layer is located after the activation layer;

since ResNet, many scholars have gradually used a convolutional

layer with a step size of 2 instead of a pooling layer with a size of 2.

Both can achieve the operation of downsampling the feature

map, but for one-dimensional spectral data, instead of using a

FIGURE 4
UV-visible spectra of the samples.

FIGURE 5
CNN model structure.
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pooling layer, smoothing the data using a convolutional kernel

and a step size can make the model easier to use for identifying

important spectral regions (Acquarelli et al., 2017). Therefore, in

this article, we use a convolutional layer with a step size of 2 and

an activation layer instead of the traditional pooling layer to

achieve downsampling.

The training and optimization of the convolutional neural

network rely on the loss function, which calculates the error

between the predicted value and the true value, back-propagates

the error from the last layer to each layer of the network, and

updates the weights by a back-propagation algorithm. The

updated parameters continue to participate in the training,

and the cycle repeats until the loss function value is

minimized. In this article, our model uses the mean square

error as the loss function, and the expression is shown in Eq. 3:

Lmse � 1
n
∑n
i�1
(Yi − Ŷi)2 (3)

where Yi denotes the theoretical COD value of sample i and Ŷi

denotes the predicted COD value of sample i.

Network model training

The experimentally obtained spectral sample data are divided

into training and test sets by 4:1 while ensuring that the training

and test sets are equally distributed. The network learning

optimizer used the Adam optimizer, the initial value of the

learning rate was set to 0.001, and the learning rate was

reduced to the original 0.95 after each training epoch. The

batch size was set to 32, and the network model is trained on

a TensorFlow 2.3 platform with a GeForce GTX 2080 GPU

computer until the loss of the network model on the test set no

longer decreased. The flow chart for this study is shown in

Figure 6.

Experiments and analysis

Evaluation indicators

To objectively evaluate the COD prediction effect of our

model, the coefficient of determination R2, root mean square

error (RMSE), mean absolute percentage error (MAPE), and

mean absolute error (MAE) are adopted as the performance

evaluation indexes of the model prediction accuracy. Among

them, R2 illustrates the proportion of the variance that can be

interpreted by the independent variables and is used to evaluate

the fit of the model; the closer its value to 1 means the better the

model fits. RMSE indicates the error between the predicted and

theoretical values, which is more sensitive to outliers. MAPE

indicates the relative error between the average predicted and

theoretical values on the experimental data set. RMSE, MAE, and

MAPE all reflect the error between the theoretical and predicted

values. The smaller these values are, the better is the prediction

accuracy of models. The calculation formulas of each evaluation

index are as follows:

R2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −

∑n
i�1
(Yr(i) − Yp(i))2

∑n
i�1
(Yr(i) − Yp)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 100% (4)

RMSE �
����������������
1
n
∑n
i�1
(Yr(i) − Yp(i)2

√
(5)

MAPE � 100%
n

∑n
i�1

∣∣∣∣∣∣∣∣Yr(i) − Yp(i)
Yr(i)

∣∣∣∣∣∣∣∣ (6)

MAE � 1
n
∑n
i�1

∣∣∣∣Yr(i) − Yp(i)
∣∣∣∣ (7)

where �Yr � 1
n ∑n
i�1
Yr(i), Yr(i) denotes the theoretical COD value

of sample i, and Yp(i) denotes the predicted COD value of

sample i.

FIGURE 6
Flowchart of the study.
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Model performance analysis

After completing the training of the COD prediction network

model through the aforementioned experiments, the spectral

data on 90 test sets were input to the network to get the COD

prediction of the model. After statistics, the average error of the

prediction of the COD concentration from the test set data on the

model reached 0.9168%. Part of the prediction results is shown in

Table 1.

Based on the results of the test set, a comparison curve

between the predicted and actual COD values of the model was

plotted, as shown in Figure 7.

The comparison curve between the predicted and actual

COD values shows that the model has a small error for the

prediction of COD. Meanwhile, as the COD concentration of the

water sample increases, there is no obvious trend of error growth

in this model, which indicates that the model has a uniform error

distribution and has high prediction accuracy and precision in

the range of 50–500 mg/L. The experiments show that our

algorithm effectively utilizes the spectral information on all

wavelengths in the UV-visible spectrum.

In order to compare the prediction accuracy and the

degree of fit of this algorithm with other COD prediction

models, this experiment compared the COD prediction results

of three prediction algorithms, BP (Zhu et al., 2022), PAC

(Zhao et al., 2016), and PLSR (Mingjin et al., 2019), on

90 samples from the test set. The coefficient of

determination R2 was used to evaluate the degree of fit of

the COD prediction model. RMSE, MAPE, and MAE were

used to evaluate the model accuracy. The mean values were

obtained after five repeated experimental tests. The results are

shown in Table 2.

Table 2 shows that our model has a better fit than PLSR,

BP, and PCA using the same dataset, with a goodness of fit R2

of 0.996, which indicates that the feature extraction ability

and local feature mapping of this model are stronger and can

better fit the non-linear relationship between the spectral data

and COD. The PLSR has a lower fit of 0.985, which indicates

that the PLSR cannot fully fit the non-linear relationship

between the spectral information and the COD. In terms of

model accuracy, the RMSE, MAPE, and MAE of our model

are all superior compared to the other three methods, with the

RMSE reaching 3.899, the MAPE reaching 0.042, and the

MAE reaching 2.154, which demonstrates the high accuracy

of the model for COD prediction. The RMSE of the PCA is

larger, reaching 4.653, indicating that the PCA has a larger

prediction error for individual deviation points in the spectral

data, and its robustness needs to be enhanced. The large

MAPE of the BP algorithm is due to the large relative error it

produces, showing that the tendency of BP to fall into local

extremes may affect the overall prediction effect of BP.

Overall, the algorithm shows good results in terms of both

the degree of fit and prediction accuracy, which demonstrates

that our method can make full use of the information in the

spectrum and fit the non-linear relationship between the

spectral information and the COD values to achieve

accurate prediction.

TABLE 1 Prediction results of our network model.

Statistics Concentration of COD (mg/L)

Theoretical value 175.0 240.0 160.0 410.0 335.0 385.0 60.0 165.0 275.0 405.0

Predicted value 172.7 237.7 160.4 410.8 333.6 385.1 60.8 159.0 274.8 404.7

FIGURE 7
Comparison curve between predicted and actual COD
values.

TABLE 2 Evaluation of the model prediction effect.

Method R2 RMSE MAPE MAE

BP 0.991 4.382 0.063 3.158

PCA 0.989 4.653 0.056 4.227

PLSR 0.985 5.542 0.075 5.650

OURS 0.996 3.899 0.042 2.154
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Conclusion

In this article, a method for water COD prediction using the

CNN and UV-visible spectroscopy is proposed. The COD

prediction value can be acquired by feeding the one-

dimensional spectral data on water into the model. To avoid

overfitting of the model, it uses a shallow CNN to build the

backbone. To make the model extract more representative

spectral feature peaks and improve the prediction accuracy,

this model adopts the convolutional kernel and step size to

smooth the one-dimensional spectral data instead of the

pooling layer of the traditional CNN, which reduces the

complexity of the model while also enhancing the extraction

of information.With the powerful feature extraction capability of

the CNN, this model reduces the dependence of traditional COD

models on pre-treatment methods. The experiment indicates that

our model has a better fitting effect and higher prediction

accuracy, which provides a better solution to realize the fast

detection of COD. This method can be implemented for the real-

time measurement of the water quality, which can help the

government to grasp the pollution situation to make

environmental policies and take further measures to protect

the ecological environment. However, the robustness of the

model could be further improved due to the discrepancy

between the experimentally obtained water samples and the

actual water samples from different regions. In the future, the

robustness of the model can be further optimized by collecting

data from actual water samples and compressing the size of the

model to adapt it to embedded devices to improve the

convenience of real-time monitoring devices.
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