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Each grapevine cultivar needs a certain amount of cumulated heat over its

growing season for its grapes to ripen properly. In the 20th century’s Bordeaux

vineyard, the average growing season temperature was not always sufficient,

thus higher than usual summer temperatures were on average linked with

higher grape andwine quality. However, over the last 60+ years, global warming

gradually increased the vineyard’s temperatures up to the point where

additional growing season heat is not required anymore, and can even

become detrimental to wine quality: hence the positive effect of higher-

than-usual summer temperatures has progressively vanished. In this context,

it is unknownwhether any weather variable is still a good predictor of a vintage’s

quality. Here we provide a predictive model of wine prices, based only on

weather data. We establish that it predicts a vintage’s long-term quality more

accurately than a world-class expert rating this same vintage in the year

following its production. We first design a corpus of features suited to the

grapevine lifecycle to extract from them the most powerful drivers of wine

quality. We then build a predictive model that leverages Local Least Squares

kernel regression (LLS) to factor in the time-varying nature of climate impact on

the grapevine. Hence, it is able to outperform previous models and even

provides a better predictive ranking of successive vintages than the grades

given by world-famous wine critic Robert Parker. This predictive power

demonstrates that weather is still a very efficient predictor of wine quality in

Bordeaux. The two main features on which this model is built—following

grapevine’s phenological calendar and using an LLS architecture to let the

input-output relationship vary over time—could help model other agricultural

systems amidst climate change and adaptation of production processes.
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1 Introduction

Viticulture is particularly sensitive to the effect of climate, as

the weather has been ranked as a better explanatory variable of

grape quality variations than soil or grape variety (van Leeuwen

et al., 2004). The effects of individual weather variables on

grape—and thus wine quality, have been subject to many

attempts of quantification, particularly so in Bordeaux

(France) where researchers can draw on an abundant corpus

of data. The average temperature during the grapevine (Vitis

vinifera) growing season, from April to September, has been

identified as the main driver of wine quality in Bordeaux before

the year 2000 (Jones and Davis, 2000; Ashenfelter, 2008), as is the

case in other regions (Byron and Ashenfelter, 1995; Haeger and

Storchmann, 2006; Corsi and Ashenfelter, 2019; Biss and Ellis,

2021). Indeed, low temperatures are linked with low sugar levels,

which often coincide with poor vintage ratings in Bordeaux

(Gambetta and Kurtural, 2021). Thus we could talk about a

lower temperature threshold for vinegrowing. This threshold has

been overcome in Bordeaux by the substantial warming of the

last 60 + years, and the average growing season drew closer to an

optimum where vintage qualities would be more consistently

good. But further warming increases the frequency of very high

temperatures that can have deleterious effects on wine grape

composition, including decreases in anthocyanins (Gambetta

and Kurtural, 2021), molecules that enhance wine color and

ageing capacity (Pérez-Magariño and González-San José, 2006).

Hence, some consider that quality in Bordeaux has reached a

plateau (Gambetta and Kurtural, 2021). As a result, Almaraz

(2015) provided statistical evidence that over the last decades,

average growing season temperature has lost a major part of its

explanatory power for wine quality in Bordeaux. The question is

thus still open, whether a vintage’s weather is still a strong

determinant of the quality of Bordeaux wine or not.

But how should wine quality be measured? Prices and critical

ratings are the two main proxies of quality. The 1855 Bordeaux

ranking classified the Grands crus according to their average

price (Ashenfelter, 2008). In the scientific literature, quality has

been alternatively measured through auction prices (e.g. Jones

and Storchmann, 2001; Jones et al., 2005; Haeger and

Storchmann, 2006) or critical ratings (e.g. Baciocco et al.,

2014; Almaraz, 2015). The system of primeur, used for two

centuries as the main route to market for Bordeaux premium

wines, is the first way of aligning prices, ratings, and long-term

quality: in April following the year of production, wine is tasted

in its prime—thus the word primeur- and the barrels of future

wine are bought by traders long before the end of the production

process. At that time, the young Bordeaux Grands crus are

typically too tannic and have not reached their optimal taste

(Jones and Storchmann, 2001), thus their true, long-term quality

is unknown. Therefore, there is a gap between short and long-

term prices, which can be exploited with additional information.

This is why critical grades published by experts at primeurs,

although they are only a temporary evaluation of a vintage’s

future quality, have a strong impact on the price, as evidenced by

Ali et al. (2008). Then over the next decade, owing to the ageing

of wine which progressively reveals its quality, prices and ratings

partially realign towards the true long-term quality, for instance

through auction sales where demand regulates price

(Storchmann, 2012). In this study, we show that quantitative

models based on a vintage’s weather can provide more reliable

information about its quality than primeur critical grades. First,

despite the decline of the average temperature as a predictor of

wine quality, we show that other weather parameters are

meaningful enough to have a quantifiable impact on long-

term prices. Based on these predictors, we then develop a

model for the prediction of long-term prices of vintages. This

model achieves state-of-the-art predictive performance and even

beats the predictive accuracy of early critical grades.

2 Materials and methods

2.1 Data collection

2.1.1 Selecting a corpus of study
Roberts and Reagans (2007) show that the more a particular

wine is exposed to critical ratings, the steeper the relationship

between ratings and prices is; which we interpret as a stronger

relationship between prices and quality: following this logic, our

corpus of study consists of top Bordeaux wines. The sources used

for selecting these wines were the 1855 ranking, the Graves

ranking, the Saint-Emilion ranking, and prices for Pomerol

wines. As the winemaking process differs between red and

white wines, considering that more of the former are included

in the different rankings across Bordeaux, the corpus was

restricted to red wines. Finally, to reduce the price variability

due to very localized events such as hail, only vineyards above

areas of 5 ha were included in the corpus. The resulting corpus

includes 59 different Bordeaux red wines, which belong to four

Appellations d’Origine Contrôlée, henceforth named appellations.

The complete list can be found in the Supplementary Appendix

Table S1, and it is represented in Figure 1.

2.1.2 Long-term wine prices
The long-term auction prices for 59 Bordeaux red wines over

53 different vintages were collected from the auction website

IDealwine1, which provides an index of average prices from the

last auction sales. The data collection starts from vintage 1960, at

which price records are available for a large majority of wines,

and it ends at vintage 2013. The wines with more than five

missing entries since 1960 were removed from the lists, leaving a

1 https://www.idealwine.com/, personal communication.
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total of 39 wines (see Supplementary Appendix Table S1). These

prices will be our representation of the bottle’s long-term prices

since each price point is an actualized price for a vintage over

9 years old. Figure 2 displays the evolution of average bottle

prices over all vineyards of the four appellations.

2.1.3 Vinegrowing calendar data
Following Jones and Davis (2000), each vintage was

divided according to the different phenological events,

which are the milestones of the grape’s development.

Indeed, the same weather condition can have a different

impact on the grapevine depending on its growth phase,

which can be captured only when partitioning the calendar

in a physiologically relevant way. The most important

phenological events, given here with their code on the

BBCH scale (Lancashire et al., 1991) are budbreak (BBCH

07), flowering (BBCH 65), véraison (BBCH 85, the onset of

ripening, marked by the changing of color of the grapes).

These events can occur earlier or later across different

Bordeaux appellations or for different grapevine varieties

(e.g. Merlot is generally earlier than Cabernet), so the

records obtained mention approximate dates. Even though

the harvest is not a phenological event, harvest dates have also

been included in the calendar, because they mark the end of

the climate’s impact on the grapes. These historical dates

were compiled from the records of Château Latour and the

FIGURE 1
Map of selected vineyards. Squares are individual vineyards, color areas are the appellations.
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FIGURE 2
Evolution of average bottle prices for the four appellations for vintages 1960–2013. Y-scale is logarithmic.

TABLE 1 Vinegrowing calendar, from 1960 to 2017.

Event Description Average date Std dev Trend (days/year)

Budbreak First records of visible leaf tips in the vineyard 27/03 (day 86) 9.31 −0.061 (0.057)

First flowers First records of flowering grapes in the vineyard 01/06 (day 151) 8.29 −0.128 (0.049)

End flowering Nearly all grapes have flourished 11/06 (day 161) 8.66 −0.142 (0.051)

Half-véraison 50% of the berries have changed color 12/08 (day 223) 8.12 −0.118 (0.048)

Beginning harvest First vineyards start their harvest 22/09 (day 266) 9.11 −0.238 (0.049)

End harvest Harvest is finished in nearly all vineyards 14/10 (day 287) 7.41 −0.067 (0.045)

FIGURE 3
Vinegrowing calendar.
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University of Bordeaux, to establish an approximate calendar

of phenological events spanning the timeframe 1960–2017

(Table 1 and Figure 3).

The phenological events of each vintage provide a natural

partition of the growing season in specific intervals:

• Budbreak—flowering: from budbreak to the first flowers

• Flowering: from the first flowers to the complete flowering

• Flowering—véraison: from the complete flowering to half-

véraison

• Véraison—harvest: from half-véraison to the beginning of

the first harvests

• Harvest: from the beginning of the first to the end of the

last harvest

These intervals will be used to aggregate the weather data

collected in the next subsection.

2.1.4 Weather data
The weather data was gathered from the SAFRAN

reanalysis of Météo France (Vidal et al., 2010), available in

8 km grid points, with daily granularity since 1958. The

vineyards of each appellation were assigned weather data

from one grid point: Saint-Émilion (Lon: −0.14, Lat: 44.91),

for the Saint-Emilion and Pomerol appellations, Pauillac

(Lon: −0.767, Lat: 45.182) for Médoc, and Léognan (Lon:

0.542/Lat: 44.756) for Pessac-Léognan. The selected weather

variables shown are of classical use in the literature as

predictors of wine quality. Based on van Leeuwen and

Darriet (2016) who showed a highly significant correlation

between wine quality and water deficit, the variable Water

Deficit (WD), is calculated based on the simplified grapevine

transpiration formula (Riou et al., 1994):

WD � k*ET0 − P (1)

with ET0 the Penman evapotranspiration, P the precipitations,

and k = 0.3 from budbreak to flowering and 0.6 after flowering

(van Leeuwen et al., 2004).

These weather parameters are then averaged over the five

phenological intervals defined in the previous subsection

to yield. Five different predictor features each. For instance,

P (Precipitations) provides five different features: P:

budbreak—flowering (average daily precipitations from

budbreak to the beginning of flowering), P: flowering (average

daily precipitations during flowering), P: flowering—véraison, etc.

The same goes with all parameters of Table 2, except for Frost days:

this parameter is not averaged over five phenological intervals but

summed only over the phenological interval Budbreak—flowering.

2.1.5 Critical grades
As an accuracy benchmark against which to compare our

predictive model, we collect critical primeur grades. The most

influential critic in recent decades was without a doubt Robert

Parker. His primeur grades were collected for the vintages

1994 through 2013, for 19 vineyards (list in Supplementary

Appendix Table S2). Hence, our models will be evaluated on

vintages 1994 to 2013 (20 vintages). Provided the tasted wines

TABLE 2 Weather variables.

Name Label Detail Unit

Precipitations P Daily cumulated solid and liquid precipitations mm

Temperature Tm Daily average temperature °C

Minimal temperature Tn Daily minimum temperature °C

Maximal temperature Tx Daily maximum temperature °C

Sunlight Sun Daily cumulated visible sunlight J/cm2

Diurnal Temperature Range DTR Difference between daily max/min temperatures °C

Water deficit WD k * ET0 - P mm

Frost days F Count of days with Tn below 0°C days

FIGURE 4
Spearman correlation between Wine Advocate primeur
ratings and 2021 prices across vintage windows.

Frontiers in Environmental Science frontiersin.org05

Roucher et al. 10.3389/fenvs.2022.1020867

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1020867


were young and still poised to evolve, each grade was only given as an

interval and updated later to a single grade: as the goal here is to

provide a benchmark of predictive performance, a unique grade is

created by averaging the lower and upper bounds.

On our corpus of wines, average Spearman correlations between

ratings and 2022 prices exhibit an increase across vintages (Figure 4),

which is confirmed by a Kendall-Tau test (trend: 0.179, p-value:

0.0002): this means that the correlation of prices with ratings is

stronger for recent vintages. It could be that there is a recent trend of

relying more on expert opinion. But this more likely suggests that

ageing vintages progressively decorrelate in value from early ratings,

which we attribute to the fact that wine reveals its true quality with

age, as mentioned by Storchmann (2012). This impact on early

prices, and ulterior partial decorrelation, tends to confirm the short-

term self-fulfilling prophecy effect of ratings already described in the

literature (Ali et al., 2008). This side effect arguably boosts the

performance of critical grades for price prediction, making it

harder for predictive models to compete.

2.2 Predictive modeling

The goal of this part is to provide a predictive model of long-

term wine prices.

2.2.1 Model evaluation: Log specification, ex-
ante testing, and metrics

Literature on hedonic wine price functions generally

recommends using the logarithm specification for the price

(Oczkowski, 1994; Schamel and Anderson, 2003), which is

supported by the better correlation of this specification with

critical ratings (Oczkowski and Doucouliagos, 2015), hinting that

it has a linearly more consistent variation with quality: as a result,

the log specification is used hereafter. As our goal is to build a

predictive model of wine prices, the real evaluation setting must

be reproduced, in which the model must predict a previously

unseen data point (here, the logarithm of a vintage’s price), and

can only access data points from previous years. This is a case of

ex-antemodel testing, where the testing timeframe is posterior to

the training timeframe, which prevents the model from accessing

future trends during its training (Aristodemou and Tietze, 2018).

Previous literature has only used in-sample testing instead to

present their results (Jones and Davis, 2000; Jones and

Storchmann, 2001; Jones et al., 2005; Ashenfelter, 2008;

Baciocco et al., 2014; Corsi and Ashenfelter, 2019), meaning

that the model was tested on the same data that it was trained on:

this explains important performance gaps between their models’

results in this paper and previous evaluations. In the rest of this

study, for the prediction of vintage v, each model is trained on a

timeframe starting with the first available vintage (1960) and

ending at vintage v-1, as displayed in Figure 5A. Each model is

tested on the 1994–2013 time range (20 vintages), thus implying

different training windows: for instance, vintage 1994 is predicted

by models trained with the data from the years 1960–1993, and

vintage 2004 is predicted based on the years 1960–2003.

Evaluation metrics used are the Mean Absolute Error (MAE),

the coefficient of determination, noted R2, and the Spearman

rank correlation noted ρS (definitions can be found in the

FIGURE 5
Intuition for the LLS model. Each line is a training setting for predicting the vintage marked as the small red bar. Relative weights of training data
points are figured as green bars. (A) Equal weights for all training datapoints: OLS model. (B). High weight for recent vintages, low weights for older
vintages: LLS model. The weights are determined by a kernel function.
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Supplementary Appendix Table S3). It is important to note that

the coefficient of determination can be negative for all models in

the setting of out-sample prediction, as mentioned e.g. by Chicco

et al. (2021).

2.2.2 Feature selection
This section aims at selecting, out of all weather variables

built in Section 2.1, a set of the best predictors of wine quality. To

this end, the available weather variables for all vineyards are

normalized, then concatenated into one cross-vineyard

ensemble. The same is done for prices, which allows to

compute statistics between any weather variable and overall

prices. The Pearson R correlation with prices is computed for

all weather variables, and the strongest correlations in absolute

value are displayed in Table 3.

WD: flowering - harvest has the clearest correlation with

prices. This is coherent with previous research where moderate

water deficit is often associated with high-quality wine (Fraga

et al., 2013; van Leeuwen and Darriet, 2016; Alem et al., 2019;

Fayolle et al., 2019) because it leads to an increased grape tannin

and anthocyanin content in various varieties (Duteau et al., 1981;

Matthews and Anderson, 1988; van Leeuwen et al., 2009; Blank

et al., 2019), as well as increased sugar concentration in fruit

(Castellarin et al., 2007; Zsófi et al., 2011). Thus we will include

this weather variable in our predictor set. The next most strongly

correlated feature is P: véraison - harvest, which we will not

consider for inclusion in our predictor set because it is too

strongly correlated with WD: flowering—harvest (Pearson

correlation: −0.75).

DTR: véraison - harvest has a strong positive correlation with

prices. A high diurnal temperature range has already been linked

to high quality (Gladstones 1992; cited in Jones et al., 2005),

because it would be a sign of both a high diurnal temperature

(crucial for berry ripening), and cool night temperatures enabling

the production of the secondary metabolites associated with

high-quality flavors (Tonietto and Carbonneau, 2004).

However, this assertion has not been supported yet by any

data, with some studies even concluding the opposite: it is

therefore still debated to our knowledge (de Rességuier et al.,

2020), and would necessitate further investigation to be a proven

point. Nonetheless, as in the present case, the variable seems to

have a strong positive impact on prices, it could have another

relationship with prices, e.g. high DTR could only imply that the

nights are cool, which could have a positive influence on quality.

It will thus be used as a predictor of prices.

Finally, the negative correlation of P: flowering with prices

makes sense. Flowering precipitations have been documented to

cause climatic coulure and thus reduce yield (Blank et al., 2019).

Prior literature displays little evidence of a reduction of quality,

probably because an assessment of this impact is made more

difficult by the lack of accessible phenology calendar data, but

from our discussions with vintners in the Bordeaux area, the

occurrence of strong rain during the flowering period is a very

bad signal for the vintage’s quality.

The three variables:WD: flowering - harvest, DTR: véraison -

harvest, and P: flowering have low multicollinearity, and they

match the literature: they will thus be used as a set of inputs for

predictive modeling, named S1. Growing season temperature has

not been retained as a predictor, contrary to Ashenfelter (2008),

because in line with the findings of Almaraz (2015), it did not

exhibit a strong correlation with prices in recent years.

We also consider a classical set of variables used in literature

(Ashenfelter, 2008), which we name S2. The third set S3 includes

the square of the average growing season temperature, to allow

for a second-order impact of temperature and capture a potential

bell-shaped answer of quality to temperature following Jones

et al. (2005). Table 4 summarizes the sets of weather variables

used for predictive modeling.

2.2.3 Linear regression models
Owing to the very nature of an agricultural yield prediction

problem, where input-output couples can only be obtained once

per harvest, the data at hand is sparse. This increases the risk of

overfitting, namely the phenomenon by which a flexible model

would adapt too much to the dataset variance and be unable of

generalization (Hawkins, 2004). The Ordinary Least Squares

model (Goldberger, 1962), noted OLS, has no hyperparameter

and reduced flexibility, which reduces the probability of

overfitting the training data. But its main advantage resides in

the clear explanation that it gives of the relationships between

predictor variables and the output: this is probably why this

model is used in the overwhelming majority of econometric

models in the literature (Jones and Davis, 2000; Esteves and

Manso Orgaz, 2001; Jones and Storchmann, 2001; Jones et al.,

TABLE 3 Top weather variables ranked by absolute correlation with
prices.

Pearson R p-value

WD: flowering—harvest 0.606559 1.49E-79

P: véraison—harvest −0.54564 1.03E-61

DTR: véraison—harvest 0.488752 4.48E-48

P: flowering −0.43983 3.09E-38

GDD10: budburst—flowering 0.380832 2.52E-28

ETP: budburst—flowering 0.323926 1.64E-20

TABLE 4 Sets of predictors.

Set Variables

S1 WD: flowering - harvest, P: flowering, DTR: véraison - harvest

S2 winter Rain, August Rain, Growing Season Tm

S3 Growing Season Tm, (Growing Season Tm)
2
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2005; Haeger and Storchmann, 2006; Ashenfelter, 2008; Corsi

and Ashenfelter, 2019).

2.2.4 Local least-squares kernel regression
The environment of a grapevine cultivar is described through

the french word Terroir as the intricate relationship between

climate, soil, and production methods (Seguin, 1986). For

Bordeaux Grands crus, although the soils and cultivars remain

mostly unchanged, deep evolutions are ongoing in both climate

and production methods.

The 2.5°C increase in average growing season temperature in

Bordeaux between 1960 and 2017 (illustrated for Saint-Emilion

in Supplementary Appendix Figure S1), undoubtedly has

significant effects on the plants, for instance causing

phenological events to happen earlier (van Leeuwen and

Darriet, 2016). On the side of the vine-growing methods,

literature lists a myriad of innovations (see Gutiérrez-Gamboa

et al., 2021 for a recent review), which seem to also have had a

tangible effect, for instance by allowing the vineyard to maintain

high fruit and wine quality until now (Gambetta and Kurtural,

2021) despite previous predictions of decline (Jones et al., 2005;

Hannah et al., 2013).

Due to these long-term changes in the grapevine’s growing

conditions, Almaraz (2015) evidenced that the impact of average

growing season temperature on wine quality in Bordeaux has

evolved over the last decades. We extrapolate this finding to

hypothesize that other weather variables also have an evolving

effect.

Then according to this hypothesis, in order to model the

impact of certain weather parameters on wine quality, models

with time-invariant effect cannot perform on long vintage series.

Thus we want to find a model that can adapt its coefficients for a

time-varying impact. However, the scarcity of the data at hand

also raises the necessity of always keeping a memory of the oldest

data points. Local Least Squares (LLS) kernel regression solves

this dilemma, while still presenting the desirable properties of

explainability and adversity to overfitting presented above. The

goal of this method is to improve linear regression by applying

more weight in the training to temporally close data points. This

intuition is represented in Figure 5.

The problem of wine quality modeling is expressed as an

extension of Equation 1 for several weather parameters. The

logarithm of price of vintage v, noted yv, is estimated by the

multivariate local linear estimator:

yv � αv + ∑
i∈[1, m]

βi, v *xi,v

with {βi,t}i∈[1, m] the coefficients associated with each parameter.

In the setting of LLS regression, we calculate the coefficients α

and β used in the prediction of vintage v as the solution to the

following optimization problem, which is simply a least-squares

loss function, with the key difference that each term is attributed

a different weight. This weight is determined by a kernel function

K that decreases with the distance v – t between the predicted

vintage v and the training data point of vintage t, and this

distance is rescaled by a bandwidth parameter h:

α̂K, h, v,
̂{βK, h,v}i∈[1, m] � argmin

α∈Rn , β∈Rn*m

∑
t

⎛⎝yt − αt − ∑
i ∈[1, m]

βi, t*xi,t
⎞⎠2

*K(v − t

h
)

To solve this equation, we write it in matricial form, with the

intercept α̂K, h, v and coefficients β̂K, h, v integrated into a single

matrix β̂K, h, v:

β̂K, h, v � argmin
β

(Yv − βXv)TWK, h, v(Yv − βXv)

With Yv the column matrix containing all training prices, the

matrix of weather parameters X � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 x1, t min / xm, t min

..

. ..
.

1 ..
.

1 x1, t max / xm, t max

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, the

coefficient matrix β � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
αv min β1, t min

/ βm, t min

..

. ..
.

1 ..
.

αv max β1, t max
/ βm, t max

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , and WK,h, v

the diagonal matrix of weights diag(K(v−t minh ), K(v−(t min+1)h ), . . . , K(v−t maxh )).
Ruppert et al. (1995) give the closed-form solution to this

optimization problem:

βK, h, v � (XT
vWK, h, vXv)−1XT

vWK,h, vYv

Which in turn yields the estimated price:

fK, h, v � βK, h, vXv � (XT
vWK, h, vXv)−1XT

vWK,h, vYvXv

Note that in the above equation, WK,h, v depends on a scalar

bandwidth parameter h, which must be chosen depending on

the data available—and in our setting, the prediction of each

vintage v has access to data up to vintage v − 1. We follow the

cross-validation criterion, introduced by Clark (1977), which

outperforms competitors in the case of multivariate prediction

on small datasets (Köhler et al., 2014) as is the case here. Thus,

the bandwidth hK, v for prediction of vintage v with kernel

function K is set as the minimiser of the leave-out square

error:

hK, v � argmin
h∈R

∑
t

(βK, h, t,−tXt − yt)2
With βK, h, t,−t the leave-out estimator for year t, calculated from

all available years except year t to prevent overfitting.

2.2.5 Baseline: Widely used machine learning
models

Widely used machine learning models have also been

implemented to represent a panel of commonly used methods

as a baseline against which to compare the OLS and LLS

predictions. A simple Decision Tree (Quinlan, 1986), Random
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Forest (Breiman, 2001), Gradient Boosting (Friedman, 2001),

and Single Value Regressor (Vapnik, 1995). All these

implementations use the Python Scikit-learn package

(Pedregosa et al., 2011). These models have been selected

because they can provide decent performance on small

datasets (here, the worst case is the prediction of vintage

1994, where training uses the 34 vintages from 1960 to 1993).

But none of these models have been used yet -to our knowledge-

in an academic study on grape price or yield prediction, and we

do not expect them to yield good performance.

3 Results

The models are trained and tested on each of the vineyards

mentioned in part 2.1.2 Long-term wine prices. The median

value across all vineyards for the three metrics discussed in part

2.3.1 are displayed in Table 5. For the sake of clarity, only the

versions of models trained on the S1 set of variables (see) are

displayed for most models, as they yield the best performance.

Comparing the relative performance of different predictor sets

on the samemodels proves that tailoring themodel to the phenology

of the grapevine helps achieve good predictive accuracy: for the OLS

model, the S1 set of variables, aggregated along the phenological

stages of the grapevine, outperforms by large the classical sets S2 and

S3 (Welch t-test: p-value < 0,05 on all three metrics).

For all three metrics, LLS outperforms all other models, and

the performance difference with the second runner-up, the OLS

model, is significant (Welch t-test: p-value < 0.05 on all three

metrics). Embedding the time-variation of coefficients into the

architecture of the model gives it a strong advantage over fixed-

coefficient models.

TABLE 5 Compared model scores, 1994–2013 timeframe.

Metric OLS OLS S2 OLS S3 DT RF GB SVR LLS

MAE 0.231 0.264 0.289 0.315 0.257 0.277 0.244 0.201

R2 0.088 −0.421 −0.582 −0.690 −0.234 −0.332 −0.037 0.241

ρS 0.535 0.003 −0.035 0.354 0.457 0.477 0.469 0.612

aFor each line, the best results are in bold characters. Model names: OLS, ordinary linear least squares; OLS, S2 and S3 = OLS, with predictor sets S2 and S3; DT, decision tree; RF, random

forest; GB, gradient boosting; SVR, support vector regressor; LLS, local least squares. By default, the results shown for all models are for predictor set S1, since it was the top performer.

FIGURE 6
(A) Compared LLS model predicted and true price, vineyard Château Calon-Ségur (B) Compared LLS model predicted and true rank, vineyard
Château Calon-Ségur. Compared predicted and true prices for the LLS model, all vineyards, colored by vintage (C) and vineyard (D).
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Figures 6A, B compare predictions and real prices for one of

the vineyards, Château Calon-Ségur. The price comparison of

Figure 6A, representative of the model behaviour on several other

vineyards not displayed here, shows that although the model

efficiently captures most of the price variations, it has more

difficulty predicting some of the highest prices. This could be an

indication that for some of the top vintages, prices can go far

higher than their quality alone would indicate.

Figure 6 shows the fit between true and predicted prices.

As we can observe on the left chart, the fit seems to be better

in recent years, which we could attribute to the training set

using a longer time series of data.

The best-performing LLS kernel regression model has

also been compared to the primeur grades of critic Robert

Parker on the timeframe 1994 to 2013 when they were

available. The grades are written on a scale of 0–100, and

the relationship of this scale with quality is hard to linearly

quantify. Therefore, following the example of Cyr et al.

(2019), we use the Spearman rank correlation: how well do

predicted prices on one side, and ratings on the other, rank

compared to real prices. For a selected set of individual

vineyards, Robert Parker’s ratings have a median score of

0.630, while the LLS model beats them with a higher median

score of 0.678 (see Supplementary Appendix Table S2).

4 Discussion

4.1 Outcomes and discoveries

Upon comparing the relative performance of different

models (Table 5), two components are observed to improve

the predictive accuracy of the model. The first improvement,

evidenced by the better performance of the phenology-

adapted S1 set of variables compared to the calendar-based

S2 and S3 (see Table 4 for a description of the variables used

in each set), is the usage of phenology-adapted features, as

introduced by Jones and Davis (2000). The necessity of using

phenology-adapted features stems from the different needs of

the grapevine across different periods of its lifecycle. For

instance, the ultimate impact of temperature stress on yield or

reproductive fitness depends on the developmental stage at

which it occurs (Hatfield and Prueger, 2015; Gray and Brady,

2016). Distinguishing between these different lifecycle

periods allows for capturing the changing needs of the

grapevine. The weather predictors with the strongest

positive impact on prices are the water deficit between

flowering and harvest and the diurnal temperature range

during the ripening phase (véraison to harvest). The

parameter with the strongest negative impact was the

precipitation during flowering; to our knowledge, it is the

first time in an academic study that flowering precipitation is

identified as a significant negative factor.

The second improvement of the model’s predictive accuracy

was brought about by using a time-varying model. It is proven by

Almaraz (2015) that the positive impact of a higher-than-average

growing season temperature had progressively been waning over

the last decades. This author postulates that this time variation in

the impact of weather variables on wine quality is due partly to

climate change, and partly to the adaptation of production

methods. As a result of this variation, properly embedding

time variation into a predictive model should improve its

performance. We confirm this hypothesis by using the LLS

regression model, which provides better performance than

fixed-coefficient models.

The predictive model using these two features achieves

state-of-the-art performance in the Bordeaux region for the

prediction of wine prices, by even beating the predictive

accuracy of early primeur grades from world-renowned

Robert Parker, with the additional advantage of being

available earlier i.e., directly after the harvest rather than

next April. By proving that publicly available weather

parameters can be combined to perform better prediction

than the critic who had a defining impact on the Bordeaux

vineyard, with the additional advantage of being available

earlier, this study opens the way for the usage of quantitative

models in premium wine price determination.

4.2 Limitations

This study was constrained by the hypothesis of ex-ante

testing, where we wanted to reproduce the real use case of a

price prediction model. For the prediction of vintage v, the

predictive model was trained with the 2021 prices of vintages

up to v - 1. But this is not completely representative of the real

setting, where training cannot use long-term price data for

recent vintages, because it is not available yet: this gives an

edge to the predictive model. It is also important to keep in

mind that Robert Parker’s critical grade, originally given as a

lower and upper bound, was averaged in this study into a

unique grade so as to obtain a single quality prediction. This

removes some of the information he expressed but does not

distort his general prediction of quality, which is still beaten

by the predictive model. And anyway, the correlation between

critical grades and prices is strongly artificially increased by

the auto-fulfilling prophecy character of the primeur ratings

mentioned in the literature (Ali et al., 2008) and evidenced in

Part 2.1.5.

4.3 Directions for future research

This study opens ways for further research. Knowledge of the

impact of weather features on quality could be refined by

contrasting different cultivars or soils, although gathering
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granular phenology data is difficult. Extension to other regions,

wherever the necessary historical records of the phenological

calendar can be obtained, would allow comparing the variation of

the impact of different weather parameters, along with the

different stages of warming experienced in the region.

Owing to the changing needs of the grapevine throughout its

cycle, this study drew on teachings from previous papers to

design features aggregated according to the phenological

calendar of the grapevine. These features yield a better

predictive result than features aggregated over a yearly-

invariant timeframe. As many crops similarly undergo very

contrasted phenological phases, the principle of using

phenology-adapted features could have interesting

generalizations.

The outperforming of critical ratings and other models by

LLS regression brings a novel contribution to the field of

agricultural systems modeling. Due to systematic changes in

both climate and production methods, many weather

parameters have a varying impact on grape quality over time:

as a result, including a time-varying component in the modeling

of this agricultural system improved predictive performance.

This novel introduction of a time-varying model could yield

insightful results when applied to other wine regions similarly

undergoing strong adaptation to climate change, such as Napa

Valley (California, United States) or New South Wales

(Australia).
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