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Carbon emissions based on land use change have attracted extensive attention

from scholars, but the current land use carbon emission accounting model is

still relatively rough. Despite the continuous promotion of China’s ecological

civilization strategy, whether green economic development promotes carbon

emission reduction remains to be studied. This study uses the Exploratory

Spatial-temporal Data Analysis (ESTDA) framework system to revise the land-

use carbon emission accountingmodel; it integrates theNDVI adjustment index

and systematically analyzes the spatial and temporal patterns and evolutionary

path characteristics of carbon emissions from 2000 to 2020 for 130 prefecture-

level cities in the eastern coastal region of China, a high carbon emission region.

The spatial econometric model is further used to explore the impact of green

economy development on carbon emissions. The results show that the spatial

distribution of carbon sources and sinks in the eastern coastal cities

demonstrates a year-on-year increase during the study period. The spatial

distribution of carbon sources is higher in the north than in the south, and the

economically developed regions are more elevated than less developed

economic areas. Net carbon emissions show prominent spatial clustering

characteristics. The south has a more stable internal spatial structure than

the north, and the inland has a more stable internal spatial structure than the

coast. Green economic development can significantly reduce carbon emission

intensity and has a significant spatial spillover effect. The findings imply that

policy-makers need to consider the spatial and temporal distribution and spatial

correlation of carbon emissions among cities; they can achieve carbon

emission reduction by formulating a more reasonable green economy

development approach and implementing regional linkages.
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Introduction

As a responsible country facing the grim reality of global

warming caused by greenhouse gas emissions, China has pledged

to strive toward “carbon peaking” by 2030 and “carbon

neutrality” by 2060, that is, to attain the “dual carbon goals”

(Wang and Yi, 2022). As the core area of China’s comprehensive

development strategy, eastern coastal cities are pioneering; they

are exemplary in economic development, urban management

level, and residents’ living standards. However, coastal cities do

not belong to an apparent geographic unit, though they act as a

bridge connecting land and sea. Through close geographic

linkages, they have gradually formed a new urban (belt)

system that spans provincial regions and connects with cities

worldwide (Chen et al., 2020). Therefore, carbon peaking and

carbon neutrality in coastal areas can promote the sustainable

development of coastal regions, significantly support the green

and low-carbon transformation of the national economy, and

enhance competitiveness at an international level. The coastal

areas referred to in this paper include all prefecture-level cities in

Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, Fujian,

Guangdong, Guangxi, and Hainan Provinces (except Sansha),

as well as three municipalities directly under the central

government of Beijing, Tianjin, and Shanghai (Figure 1). In

2020, with 13.6% of the land area, the study region gathered

56.4% of the national GDP, 46.5% of the resident population,

68.2% of the R&D expenditure, 62.2% of local fiscal revenue,

71.2% of the full-time equivalent of R&D personnel, 75.0% of

domestic patents granted, and 83.1% of total imports and

exports, with energy consumption accounting for 49.31% (Fu

and Liu, 2021). The share of carbon emissions in the coastal

region accounted for 45%–50% of the country from 2005 to 2019

(Fu et al., 2022). Although the share of carbon emissions in

coastal areas started to decline in 2017, its large base share is still a

great challenge for China to achieve the goal of “carbon

neutrality” and “carbon peaking.” Given the significant

differences in energy structure and socioeconomic

development in coastal regions, how to scientifically and

reasonably measure the differences in the spatial and temporal

evolution of carbon emissions between different areas is vital for

formulating carbon emission reduction policies that address the

unique characteristics of each region.

Land-use change is an essential factor driving changes in

carbon sources and sinks. Studies show that land-use change

contributes significantly to the dramatic increase in atmospheric

CO2 concentrations and is second only to fossil fuel combustion

(Zhang Z. et al., 2022). Scholars have studied the impact of land-

use change on the increase in atmospheric CO2, concentrating on

FIGURE 1
The location of study areas.
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provincial (Xu et al., 2016; He et al., 2018), state (Houghton et al.,

1999; Zhang et al., 2018), national (Piao et al., 2016; MacLean

et al., 2021), regional (Achard et al., 2004; Houghton and

Hackler, 2006; Zhao et al., 2013; Hinge et al., 2018), and

global (Tian et al., 2021) spatial scales to account for land-use

carbon emissions. Research perspectives are dominated by a

single ecosystem or land-use type (Houghton and Hackler,

1999; Baumann et al., 2017). Some of the more widely used

methods include the Invest model (Arcidiacono et al., 2015;

Adelisardou et al., 2022), the Bookkeeping (BK) model

(Houghton and Hackler, 1999; Houghton, 2003; Andersen

et al., 2016), the Denitrification-Decomposition model (Li

et al., 1992; Jiang et al., 2017) and the IPCC’s recommended

method (Paustian et al., 2006). Although similar studies were

begun later in China, they have gradually grown and achieved

many results. However, most studies on land-use carbon

sequestration assume that the carbon sequestration intensity

of productive land is homogeneous among different areas

(Zhu et al., 2021), which is obviously inconsistent with the

actual situation. Therefore, this paper innovatively introduces

the normalized difference vegetation index (NDVI) adjustment

index to optimize the spatial distribution of carbon sequestration

intensity based on the degree of vegetation cover. At the same

time, most studies use land-use data from statistical yearbooks,

and statistical errors and differences in statistical caliber cause

large data errors.

The factors influencing carbon emissions are complex and

diverse. The current academics mainly focus on economic

growth, industrial structure changes, technological progress,

energy efficiency improvement, urbanization, transportation,

openness to the world, and capital investment (He et al.,

2015; Zhang et al., 2017; Meng et al., 2018; Wang et al., 2019;

Yang et al., 2019; Wang S. H. et al., 2020). Besides, there are still

some studies focusing on factors of trade-related embodied

carbon including female labor share, production structure,

trade structure and so on (Wang S. et al., 2020; Wang et al.,

2021). Studies on the impact of green economy development on

carbon emissions are concentrated within certain sectors or

industries. Romano and Yang (2021) propose that the Chinese

ministry of transport define the whole coastline as a Domestic

Emission Controlled Area (DEAC), where the sulphur limit is set

to 0.5%. This strict limit requires ships to use a low sulphur

biofuel or use conventional fuel oil with a emission cleaning

system. That can help for reducing carbon emission. Yin et al.

(2021) indicate that multimodal freight transport features low

pollution and high efficiency. It can minimize transportation

time and carbon emission by optimal allocation of transportation

resources. Peng et al. (2019) study that shore-side electricity

technology can replace the auxiliary diesel engines with

electricity power supplied from shore so that the air quality

and carbon emissions will be improved and reduced. The Central

Economic Work Conference in December 2020 proposed

“continuing to fight the battle against pollution and achieve

synergistic effects in reducing pollution and carbon

emissions.” The 14th Five-Year Plan of the National

Economic and Social Development of the People’s Republic of

China and the Outline of Vision 2035 also emphasized the

importance of synergy in “reducing pollution and carbon.”

Pollution reduction means reducing pollution emissions,

conserving resource consumption, and enhancing

environmental governance while maintaining sustained

economic growth with a goal of achieving green economic

development. Carbon reduction means achieving a continuous

decrease in total carbon emissions while maintaining sustained

economic growth, requiring a constant decline in carbon

emission intensity. Therefore, determining the degree of

response of carbon emission intensity to the level of green

economic development can provide a reference for the

government to formulate and improve the “pollution

reduction and carbon reduction” synergy decision.

The previous research results have laid a good foundation.

The possible contributions of this study are threefold. First, the

latest sink carbon value accounting is based chiefly on the “China

Terrestrial Ecosystem Service Value Equivalent Factor Table”

and ignores the potential influence of vegetation level on the

carbon sink process. NDVI can reflect the vegetation status in the

region and characterize the carbon sink level of the same land-use

type in different study units, enabling the classical land use

carbon emission accounting model to be fine-tuned. Second,

although researches have used geography to analyze the spatial

differentiation of carbon emissions, most studies focus on the

spatial distribution differences of carbon emissions; there are

fewer studies on the spatial correlation characteristics and

dynamic transfer law of carbon emissions. Third, few studies

have considered the influence mechanism and spatial spillover

effect of green economic development on carbon emissions. This

paper analyzes the spatial mechanism of urban units’ “pollution

reduction” level on the “carbon reduction” level from three

perspectives: environmental efficiency, resource efficiency, and

governance capacity.

The remainder of the paper is organized as follows. The

second section presents the methodology and data sources used

in this study. Subsequently, the third section gives and analyzes

the results and finally, the fourth section presents the conclusion

and policy implications.

Methodology and data sources

Methodology

Land-use carbon emission accounting model
Land is the second largest source of emissions after energy

activities. Unlike other sources of carbon emissions, land is both a

carbon source and a carbon sink. Carbon sources mainly include

arable land and construction land. Forestland, grassland, water,
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and unused land are expressed as carbon sinks, which perform

carbon sequestration and absorption in the overall carbon cycle.

In this paper, carbon emissions are accounted for in both direct

and indirect ways, with the former indicating the net carbon

emissions from different land types and the latter referring to

carbon emissions from human activities, mainly energy

consumption (Zhu et al., 2021). The model based on the

IPCC inventory is the most widely used method for

estimation. The difference in vegetation cover on vegetated

land types can result in the same kind of land providing

significantly different carbon sink services (Gutman and

Ignatov, 1998). Therefore, this study uses the NDVI to reflect

the intraregional state and revise the study unit’s carbon sink

services. The IPCC inventory estimation model accounts for the

construction site’s carbon emissions from energy consumption

(Houghton, 2007). The specific equation is set as follows:

Cn � ∑ ei � ∑4

i�1Si × αi × Rik + S5 × α5 + Cb

� ∑4

i�1Si × αi × Rik +∑mj × βj × γj (1)

Rik � NDVIik
NDVIi

(2)

Here, Cn represents the net carbon emissions (t) of city

n. eirepresents the carbon sources (carbon sinks) (t) of

different types of land. Si represents the area of

forestland, grassland, water, arable land and unused land

(m2). αi represents the carbon sequestration coefficient of

different site types (kg_m−2_a−1) (Table 1). Rik is the revised

coefficient of the carbon sink of land type i in city k. NDVIi
represents the average NDVI of land type i. NDVIik
represents the average NDVI of land type i in city k. mj

represents fossil energy consumption (t). βj is the standard

coal conversion factor (kgce/kg, kgce/(kw_h)), and γj
represents the carbon emission factor (kg/kgce) (Table 2,

taken from the IPCC-EFDB software platform, version

2019). The energy consumption statistics of each caliber

are not specific to prefecture-level cities. This paper

calculates urban energy consumption by multiplying the

total energy consumption of each province by the

proportion of the number of above-scale industrial

enterprises of each prefecture-level city to the total

number of above-scale industrial enterprises of the

province.

Exploratory spatial-temporal data analysis
(ESTDA)

Analysis of the characteristics and differences in carbon

emission spatial patterns focuses on cross-sectional

characterization. Exploratory spatial-temporal data analysis

(ESTDA) incorporates the temporal dimension into the

traditional static exploratory spatial data analysis (ESDA)

framework, including the global spatial autocorrelation

index (Global Moran’s I), local spatial autocorrelation

index (LISA), LISA time path, LISA spatial-temporal leap,

spatial Markov chain and other techniques and methods. This

analysis can realize the continuous expression of local space

TABLE 1 Carbon emissions and sequestration coefficients of different site types.

Scale scholars Arable land Forestland Grassland Water Unused land

country Tang et al. (2018) −75.2000 −7.0400

Feng and Wang (2016) 0.0497 −0.0581 −0.0021

Sun et al. (2015) 0.0422 −0.0578 −0.0021 −0.0252 −0.0005

Man-Qi et al. (2016) 0.0460 −0.0613 −0.0021 −0.0253 −0.0005

Liu et al. (2018) 0.0461 −0.5052 −0.0949 −0.0253 −0.0005

watershed Zhang et al. (2022a) 0.0497 −0.0581 −0.0021

city Shi et al. (2012) 0.0497 −0.0581 −0.0021 −0.0253 −0.0005

Zhang et al. (2013) 0.0422 −0.0644 −0.0021 −0.0253 −0.0005

Sun (2012) 0.0497 −0.0613 −0.0021 −0.0410 −0.0005

adopted 0.0497 −0.0581 −0.0021 −0.0253 −0.0005

TABLE 2 Standard coal conversion factor of energy.

Energy
type

Coal Coke Crude
oil

Gasoline Kerosene Diesel Fuel
oil

Natural
gas

Electricity

standard coal conversion factor
(kgce/kg)

0.7143 0.9714 1.4286 1.4714 1.4714 1.4571 1.4286 1.2143 0.4040

carbon emission factor (kg/kgce) 0.7559 0.8550 0.5857 0.5538 0.5714 0.5921 0.6185 0.4483 0.7935
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dependence from “static scene” to “interactive scene” (Rey

and Janikas, 2006). LISA time paths characterize the pairwise

movement of urban net carbon emissions and their spatially

lagged values in the Moran scatter plot to explain the spatial

and temporal interaction dynamics of net carbon emissions at

the local scale. The specific equation is set as follows:

Γi � n × ∑T−1
t�1 d(Li,t , Li,t+1)

∑n
i�1 ∑T−1

t�1 d(Li,t , Li,t+1) (3)

Δi � ∑T−1
t�1 d(Li,t , Li,t+1)
d(Li,1, Li,T) (4)

Here, T represents the time interval. Li,trepresents the

LISA coordinate of carbon emissions of city i in year t

d(Li,t, Li,t+1) means that LISA coordinates the moving

distance from year t to year t+1. A more considerable

relative length value indicates that the local spatial

dependence of net carbon emissions has less stable moving

paths. Larger curvature values suggest that the net carbon

emissions of cities are more influenced by their neighbors,

while their own carbon emissions also fluctuate dramatically

with time migration.

LISA spatial-temporal leap represents the transfer of

local spatial association types of cities on the LISA scatter

diagram in the time direction. There are four types of shifts:

Type Ⅰ indicates that both the city itself and the neighboring

cities have not shifted; Type Ⅱ demonstrates that only the

neighboring cities have shifted and the city itself remains

unchanged; Type Ⅲ is the opposite of Type Ⅱ; Type Ⅳ
indicates that both the city itself and the neighboring

cities have shifted. The spatial stability of Moran’s I can

be calculated according to the following equation:

St � Fk,t

n
(5)

Here, Fk,t represents the number of cities in which each leap

type k occurs in period t. n is the number of all cities involved in

the leap, and the value of n ranges from 0 to 1.

The comprehensive evaluation system of the
green economic development level

In accordance with existing studies (Meng et al., 2019; Weng

et al., 2020), this paper selects three criteria-level indicators,

environmental efficiency (ED), resource efficiency (RC) and

governance capacity (EP), to represent the overall level of

green economic development, which includes eight specific

indicator-level indicators. We use the entropy value method to

assign objective weights. It should be noted that this study takes

electricity consumption per unit of GDP as a positive indicator

and considers that electric energy can replace primary energy

(coal, oil, natural gas) in end consumption. The weights are

shown in Table 3.

Spatial econometric model
This paper uses a spatial econometric model to explore the

utility of the level of green economic development on carbon

emissions. The ratio of net carbon emissions obtained from the

previous calculation to GDP is chosen as a proxy variable for

carbon intensity. The smaller its value is, the more it indicates

that the city is at a low-carbon economy level (Sun and Huang,

2022). The general spatial econometric model form is shown

below:

⎧⎪⎨
⎪⎩

Y � ρW1Y + Xβ + θW2X + μ
μ � λW3μ + ε
ε ~ N(0, σ2I)

(6)

Here, Y represents the explained variable. X represents the

matrix of mⅹn order explanatory variables, where m is the

number of study units and n is the number of explanatory

variables. W1Y defines the spatial lag term of the explained

variable. ρ is the spatial lag term coefficient. β is the

explanatory variable coefficient. θ denotes the spatial lag effect

of the explanatory variable, and λ is the degree of spatial

dependence of the error term. W1, W2, and W3 are spatial

weight matrices. If λ = 0, it is the SDM; if λ = 0 and θ = 0, it

is the SLM; and if ρ = 0 and θ = 0, it is the SEM.

TABLE 3 Economic green development level evaluation index system.

Target layer Guideline layer Indicator layer Properties Weights Unit

green development level Environmental efficiency (ED) Wastewater emissions per unit GDP − 0.30 Tons/million yuan

SO2 emissions per unit GDP − 0.30 Tons/million yuan

Industrial smoke emissions per unit GDP − 0.40 Tons/million yuan

Resource efficiency (RC) Water consumption per unit GDP − 0.50 Tons/yuan

Electricity consumption per unit GDP + 0.50 kWh/yuan

Governance Capacity (EP) Greening coverage of built-up areas + 0.07 %

Industrial pollution treatment cost as a proportion of GDP + 0.83 %

Harmless treatment rate of domestic waste + 0.10 %
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Data sources

Land-use data for 2000, 2005, 2010, 2015 and 2020 for coastal

cities in eastern China were obtained from the Resource and

Environment Science and Data Center of the Chinese Academy

of Sciences (https://www.resdc.cn), with an overall interpretation

accuracy of more than 94% (Fang et al., 2022). Referencing the

standard of the Chinese Academy of Sciences’ “Classification of

Current Land Use” (GB/T21010-2017), this paper reclassified the

original data into six categories: arable land, forestland,

grassland, construction land, water and unused land by Arcgis

10.2, tailored by coastal city administrative boundary.

Energy consumption and city socioeconomic data were

obtained from the China Energy Statistical Yearbook, China

Urban Statistical Yearbook and provincial and municipal

statistical yearbooks from 2001 to 2020, respectively. The

normalized difference vegetation index (NDVI) for

2000–2020 was extracted from SPOT/VEGETATION and

MODIS remote sensing images. The data were obtained from

the Data Center for Resource and Environmental Sciences,

Chinese Academy of Sciences.

Results

The overall characteristics of land-use
carbon emissions

The carbon emission level (carbon source) of the social

system and the carbon absorption carrying capacity of the

natural ecosystem (carbon sink) have regional differences. If

the carbon emission intensity exceeds the maximum level of the

local natural ecosystem carrying capacity, a carbon deficit (net

carbon emission >0) occurs, indicating that the natural-

economic system is in an uncoupled and coordinated

development state.

According to the results, the total carbon sources in the

study area maintains a steady growth trend from 2000 to

2020, from 5.7 × 108 tons to18.3 × 108 tons, with an average

annual growth rate of 6.0% and an average annual value of

13.3 × 108 tons. The total amount of carbon sinks turns from

growth to decline in 2015, with an average yearly value of

44.7 million tons maintaining minimal changes. The overall

difference of one order of magnitude between carbon sources

and carbon sinks leads to a change in net carbon emissions

from land use that is basically consistent with carbon sources

(Figure 2). The annual growth rate of net carbon emissions is

6.3%, with an average annual value of 12.8 × 108 tons. In

2010, both carbon sources and net carbon emissions exceed

multiyear averages. The carbon deficit level shows an obvious

expansion, indicating that the carbon absorption capacity of

productive land cannot dissipate carbon emissions generated

by energy consumption. Net carbon emissions are closely

related to the carbon sources and sinks of different land types.

The carbon sink of forestland accounts for more than 90% of

the total carbon sink. However, this sink declines slowly over

time with slight fluctuations, at 42–43 million tons. The

primary carbon source is construction land, with

contributions rising from 93% in 2000 to 98% in 2020. In

contrast, the proportion of carbon emissions from cropland

decreases yearly; this value also shows a decreasing trend,

with an average annual growth rate of −0.36%.

FIGURE 2
Carbon sources/carbon sink/net carbon emissions of coastal
regions.

FIGURE 3
Evolution of the carbon deficit in eastern coastal provinces
and cities from 2000 to 2020 (million tons).

Frontiers in Environmental Science frontiersin.org06

Pan et al. 10.3389/fenvs.2022.1018372

https://www.resdc.cn
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1018372


Spatial pattern of carbon emissions

The results of the net carbon emission calculation by

province are shown in Figure 3. The high-value areas are

mainly concentrated in Jiangsu Province, Shandong Province,

Hebei Province, Liaoning Province and other traditional heavy

industry and agricultural development provinces, as well as in the

economic province of Guangdong. The carbon deficit in

Shandong Province has remained the highest in the coastal

region for 20 years, but the overall growth rate has gradually

slowed to 15%, 7%, 2%, and 1% in the four periods. The

adjustment of Shandong’s coal-based energy structure has

contributed to the slowdown of net carbon emissions (Deng

and Dong, 2016). During the study period, both Guangdong

Province and Jiangsu Province were carbon deficit “fermenting”

growth regions, with average annual growth rates as high as 12%

and 7%, respectively. The carbon deficit gap gradually widened,

however, showing serious differences and imbalances.

Under different scales of administrative units, the spatial

distribution characteristics of net carbon emissions change with

the zoning scale. Cities at the prefecture level and above are

responsible for the jurisdiction of the central and provincial

administrative units upward and many administrative units

such as counties, districts and townships downward. They are

the center of regional economic development and ecological

protection, as well as the backbone of China’s administrative

system. Therefore, further analysis and research on the carbon

emissions of urban units in coastal areas can realize the

development pattern and trend at a multilevel zoning scale.

According to the calculation results, carbon sources and sinks

in 2000 can be classified into five levels, from low to high,

according to the natural interruption point method. The

remaining years are classified with reference to 2000 (Figures

4, 5). To facilitate comparison, the net carbon emissions are

classified according to the carbon source classification, and the

level of less than 0 (carbon surplus) is added, so the net carbon

emissions are classified into six classes (Figure 6). ArcGIS is used

to present the results.

In general, the carbon sources of each city differ significantly,

showing obvious high-high and low-low clustering patterns

(Figure 4). Carbon emissions are high in the northeast and

low in the southwest, with particularly high carbon emissions

in the Bohai Sea city cluster and the Yangtze River Delta city

cluster. In 2000, among the 130 cities in the eastern coastal

FIGURE 4
Spatial and temporal distribution of carbon sources from 2000 to 2020 (million tons).
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region, the average value of the carbon source is 4.4 × 108 tons,

and the standard deviation is 5.7 × 108 tons. The carbon sources

of 43 cities exceed the average value of regional cities, mainly in

the Bohai Rim and the Yangtze River Delta region. There are

10 cities with higher carbon sources, 24 with medium levels, and

52 and 44 cities with low and lower carbon sources, respectively.

As shown in Figure 7, the mean and standard deviation of carbon

sources of 130 urban units demonstrates an apparent upward

trend from 2000 to 2020, indicating that while the scale of carbon

sources of urban units is expanding, the gap between carbon

sources of urban units is also expanding. By 2020, the mean value

of carbon sources rapidly grows to 14.1 × 108 tons, and the

standard deviation is 14.2 × 108 tons. The carbon sources exceed

the regional average by four cities compared to 2000, with the

Pearl River Delta region as the leading region. There are 35 and

29 cities with high- and higher-level carbon sources, respectively,

29 cities with medium-level, and 20 and 17 cities with low- and

lower-level carbon sources, respectively, with a significant

increase in cities with carbon sources above medium level.

The high-level area gradually shifts from north to south.

The spatial distribution pattern of carbon sinks is generally

opposite to that of carbon sources. A spatial pattern is formed in

which high carbon sink areas are centered in the northeast,

southeast and southwest and spread in all directions. The

southern areas of Hebei Province, Shandong Province and

Jiangsu Province have low forest coverage, and the land

types are mainly arable and construction land; hence, the

carbon sink services are relatively low. Compared with 2000,

in 2020, 55 out of 130 cities achieve a net increase in total

carbon sinks, but the rise in carbon sinks is slight. Only

Zhangjiakou, Tangshan, Chaoyang, Fuxin, Shenyang and

Guigang achieve a jump in rank.

Zero is used as the division benchmark for the carbon deficit

and carbon surplus (Figure 6). In 2000, among 130 urban units in

the eastern coastal region, 10 cities have a carbon surplus,

including Shaoguan, Meizhou, Qingyuan, Heyuan, Baise,

Hechi, Baoting Li and Miao Autonomous County,

Qiongzhong Li and Miao Autonomous County, Baisha Li

Autonomous County, and Ledong Li Autonomous County;

these cities are concentrated in Guangdong, Guangxi and

Hainan Provinces. Industrial energy-consuming cities such as

Shenyang, Nantong and Shijiazhuang and capital-intensive and

technology-intensive cities such as Beijing, Shanghai and Tianjin

are at the top among the cities with carbon deficits. In contrast,

FIGURE 5
Spatial and temporal distribution of carbon sinks from 2000 to 2020 (million tons).
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the carbon deficit range gradually spreads from north to south,

and the high-value areas of the carbon deficit are mainly

concentrated between 31°N and 39°N.

Spatial and temporal evolution trends of
net carbon emissions

Trends in the evolution of the overall spatial
pattern

The spatial and temporal evolution of net carbon emissions

from 2000 to 2020 is analyzed by calculating the overall regional

coefficient of variation and the globalMoran’s I index (Table 4). As

shown in Table 4, the coefficient of variation shows a “U-shaped”

trend of decreasing and then increasing, dropping to the lowest

value (1.03) in 2015 and then rebounding. This means that the net

carbon emission differences among areas generally show an initial

decrease and then an increase. The global Moran’s I index is

calculated using ArcGIS 10.2. All of the indices are significant at

the 1% level, with z-statistics greater than 2.58. The average value

of the global Moran’s I index for multiple years is 0.27, indicating a

significant spatial correlation among different urban units.

Moran’s I values show an overall increasing trend over time,

which means that spatial clustering became increasingly evident.

Trends in the evolution of local spatial patterns
More than 40% of cities have relative movement lengths of

time paths greater than or equal to the mean value (mean value of

FIGURE 6
Spatial and temporal distribution of net carbon emissions from 2000 to 2020.

FIGURE 7
Mean and standard deviation of carbon sources from 2000 to
2020.
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1), indicating that the overall spatial pattern of net carbon

emissions has strong stability. From Figure 8A, it can be seen

that, in general, the relative length of LISA time paths gradually

decreases from north to south and from sea to land, indicating

that the north has a more dynamic local spatial structure than the

south and the coast than the inland. The areas with high relative

lengths are concentrated in Beijing-Tianjin-Hebei, Shandong

Peninsula, Yangtze River Delta city circle and Pearl River

Delta city circle. Among the 130 urban units, 10 cities with

relative lengths over 2.06 include Shenyang, Weihai, Yantai,

Jining, Heze, Foshan, Shenzhen, Guangzhou, Zhongshan, and

Dongguan. Thirty-eight cities in Hainan, Guangdong, Guangxi,

Zhejiang, Fujian, and Jiangsu have relative lengths below 0.45.

Cities with relatively stable spatial structures tend to have stable

industrial structures and economic development patterns, so they

should increase the use of clean energy and enhance the carbon

absorption capacity of ecosystems through ecological

remediation, restoration and protection. Regions with strong

spatial structure dynamics should eliminate backward

production capacity, promote industrial transformation and

upgrading, and promote the construction and operation of the

low-carbon circular economy.

In terms of curvature (Figure 8B), the curvature of the time

path for all 130 urban units between 2000 and 2020 is greater

than one, indicating a strong spatial dependence of net urban

carbon emissions. As shown in Figure 8B, Tianjin, Hebei, the

Yangtze River Delta, and the Pearl River Delta show lower

curvatures of net carbon emissions. These cities and

neighboring cities simultaneously have higher net carbon

emissions growth processes. The fluctuations of spatial

dependence influence and hold each other, resulting in a

smaller curvature. Areas with high values of curvature mainly

appear in the Liaodong Peninsula (Dalian), Shandong Peninsula

(Zibo, Weihai, Jinan, Yantai, Weifang, Qingdao) and eastern

TABLE 4 Net carbon emissions global Moran’s I.

2000 2005 2010 2015 2020

Coefficient of variation 1.27 1.13 1.11 1.03 1.20

Moran’s I index Index value 0.26*** 0.28*** 0.27*** 0.28*** 0.27***

Z value 4.89 5.10 4.86 4.98 4.83

FIGURE 8
Relative length (A) and curvature (B) of net carbon emission time paths.

Frontiers in Environmental Science frontiersin.org10

Pan et al. 10.3389/fenvs.2022.1018372

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1018372


Guangxi (Guigang, Guilin, Wuzhou, Yulin) and are concentrated

in the junction zone between high and low net carbon emission

areas. The spatial dependence variation process is more dynamic

and subject to neighboring cities’ spatial spillover or polarization.

The results of the spatial-temporal leap are shown in Tables

5, 6. The spatial correlation pattern of net carbon emissions of

urban units in coastal areas is more stable. The probability of

occurrence of the four spatial-temporal leap types is Type I

(0.860) > Type II (0.073) > Type III (0.057) > Type IV (0.010),

indicating that the probability of no spatial association pattern

shift in 20 years is 86.0%. The spatial-temporal leap shows a path-

locking solid characteristic. The highest probability in Type I is

LL→LL (0.426). In Type II, the most stable spatial association

transfer probability is HH→LH (0.031), which indicates that the

spatial association of net carbon emissions changes from “double

high” to “depression”. Some cities with high net carbon emissions

achieve a continuous reduction through the spatial transfer of

high carbon emission industries. The cities with the lowest

probability of spatial association leap are HL→LL (0.008) and

LL→HL (0.008). It is difficult for cities to shift their own carbon

emission level under their neighbors’ firm low carbon emission

control. In Type III, the highest probability is HL→HH (0.017),

reflecting the significant spatial spillover effect of high carbon

emission cities. The neighbors with low carbon emissions are

influenced by a high carbon emission pull. In type IV, the highest

spatial leap probability is LL→HH (0.006), and the lowest is

HL→LH (0.000) and HH→LL (0.000).

Response from carbon emission intensity
to green economic development

Spatial autocorrelation test
The analysis of the spatial characteristics of carbon emissions

shows that carbon emissions present prominent geospatial

clustering characteristics. Therefore, this paper selects the

0–1 adjacency weight matrix (W1) for empirical testing and

analysis and the Euclidean inverse distance spatial weight matrix

(W2) for robustness testing.

Because of the unavailability of data for some cities in

Hainan, only panel data containing 114 urban units are

introduced into the SDM in this paper. Stata 16.0 is used to

calculate the univariate global Moran index of carbon emission

intensity (CI) of coastal cities from 2000 to 2020 and its

bivariate global Moran index with economic green

development level (EG), environmental efficiency (ED),

resource efficiency (RC) and governance capacity (EP)

(Table 7). It can be seen that the Moran indices of the

variables all passed the significance test. This indicates that

the choice of a spatial econometric model for the empirical

study is reasonable.

Model test
Given that this paper uses only five time series of the panel

data, a number much smaller than the 130 cross-sectional cells

and typical of short panel data, there is no need to conduct unit

root tests and cointegration tests (Chen, 2010).

The results of the spatial autocorrelation test determine that

a spatial econometric model should be used; however, the

specific type of spatial econometric model that should be

constructed still needs further testing. First, the Lagrange

multiplier test (LM) is used to determine that the spatial

Durbin model (SDM) should be selected. Second, the

Hausman test is used to determine that a fixed-effects model

should be constructed. Third, the LR likelihood ratio test is used

to determine that the SDM model could not degenerate into an

SAR model or SEM, which again verifies the reliability. Finally,

the LR test determines that the SDM model with individual

fixed effects should be selected. The specific test results are

shown in Table 8.

Analysis of the estimation results of the SDM
Through correlation tests, this paper determines that the

individual fixed-effect SDM model can be used to study the

spatial influence effect of the impact of green economic

development on carbon emissions in the eastern coastal

region. The following SDM models are constructed.

TABLE 5 Spatial and temporal leap matrix of net carbon emissions.

t/t+1 HH (Deep press) HL (Polarization) LH (Depression) LL (Shallow pressure)

HH (Deep press) Type Ⅰ (0.244) Type Ⅲ (0.013) Type Ⅱ (0.031) Type Ⅳ (0.000)

HL (Polarization) Type Ⅲ (0.017) Type Ⅰ (0.038) Type Ⅳ (0.000) Type Ⅱ (0.008)

LH (Depression) Type Ⅱ (0.027) Type Ⅳ (0.004) Type Ⅰ (0.153) Type Ⅲ (0.011)

LL (Shallow pressure) Type Ⅳ (0.006) Type Ⅱ (0.008) Type Ⅲ (0.015) Type Ⅰ (0.426)

TABLE 6 Types of spatial and temporal leaps in net carbon emissions.

Type Type Ⅰ Type Ⅱ Type Ⅲ Type Ⅳ

probability 0.860 0.073 0.057 0.010
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CIit � β0 + β1EGit + β2CoLit + β3WijCIit + β4WijEGit

+ β5WijCoLit + μi + εit (7)
CIit � α0 + α1EDit + α2RCit + α3EPit + α4CoLit + α5WijCIit

+ α6WijEDit + α7WijRCit + α8WijEPit + α9WijCoLit + μi

+ εit

(8)

Here, i, t, and CI represent city, year and carbon emission

intensity, respectively. EG, ED, RC, and EP represent the

economic green development level, environmental efficiency,

resource efficiency and governance capacity, respectively. Col

represents the control variable. αi andβi are parameters to be

estimated. μi is the individual city fixed effect. εit is the random

error term.Wij is the spatial weight matrix. Based on the existing

studies combined with available data, Gross Domestic Product

(GDP, million yuan), GDP per capita (RGDP, yuan/person),

total population at the end of the year (10,000 people), the

proportion of primary, secondary and tertiary industries in

GDP (%), energy consumption (million tons of standard

coal), and population urbanization rate (%) are selected as

control variables (Meng et al., 2018; Yang et al., 2019).

TABLE 7 Moran index calculation results.

Variables/year 2000 2005 2010 2015 2020

Moran’s I Z value Moran’s I Z value Moran’s I Z value Moran’s I Z value Moran’s I Z value

CI 0.531*** 8.833 0.434*** 6.854 0.421*** 7.356 0.376*** 5.953 0.363*** 5.240

EG 0.341*** 5.621 0.197*** 3.294 0.018 0.459 0.074* 2.139 0.384*** 6.022

ED 0.271*** 4.845 0.038 0.836 0.040 0.913 0.038 0.836 0.075*** 2.666

RC 0.175*** 3.019 −0.008 0.042 −0.005 0.268 −0.008 0.042 −0.010 −0.104

EP 0.068 1.267 0.090** 2.447 0.180*** 3.058 0.090** 2.447 0.154*** 2.873

TABLE 8 Related test results.

Model Test type Original hypothesis Significance Results

Total model LM test SEM 66.868*** SDM

SEM (Robust) 182.236***

SAR 97.647***

SAR (Robust) 225.135***

Hausman
test

Random effects 9.410* Fixed effects model

LR test SDM can be reduced to SEM 47.750*** Refuse to simplify

SDM can be reduced to SAR 48.780***

Individual fixed-effects models outperform individual time-double fixed-effects
models

5.870 Individual fixed- effects
model

Time fixed-effects models outperform individual time-double fixed-effects
models

400.560***

Individual fixed-effects models outperform time fixed effects models −394.690

Decomposition
model

LM test SEM 63.034*** SDM

SEM (Robust) 185.148***

SAR 97.892***

SAR (Robust) 225.537***

Hausman
test

Random effects 70.130*** Fixed effects model

LR test SDM can be reduced to SEM 48.990*** Refuse to simplify

SDM can be reduced to SAR 48.350***

Individual fixed-effects models outperform individual time-double fixed-effects
models

4.770 Individual fixed- effects
model

Time fixed-effects models outperform individual time-double fixed-effects
models

390.640***

Individual fixed-effects models outperform time −385.870
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TABLE 9 Regression results of OLS and spatial Durbin model.

OLS W1 W2

VariablesModel (3)Model (4)Model (5)Model (6)
Variables Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

EG −6.485*** (0.00) −3.297*** (0.00) −3.288*** (0.00)

ED 2.283*** (0.00) 1.203*** (0.00) 1.158*** (0.00)

RC −3.330 (0.10) −2.327 (0.15) −2.309 (0.18)

EP −1.565*** (0.00) −0.764** (0.01) −0.833*** (0.01)

GDP −0.000 (0.22) −0.000 (0.22) −0.000** (0.03) −0.000** (0.03) −0.000*** (0.01) −0.000*** (0.00)

GDP per capita −0.000*** (0.00) −0.000*** (0.00) −0.000 (0.23) −0.000 (0.18) −0.000 (0.81) −0.000 (0.77)

Total population 0.001** (0.01) 0.001** (0.01) 0.001*** (0.00) 0.001*** (0.00) 0.001** (0.01) 0.001** (0.01)

Percentage of primary production 0.012*** (0.00) 0.012*** (0.00) 0.014*** (0.00) 0.013*** (0.00) 0.013*** (0.00) 0.012*** (0.00)

Percentage of Secondary Production 0.003 (0.28) 0.003 (0.27) −0.001 (0.60) −0.001 (0.58) −0.001 (0.64) −0.001 (0.58)

Percentage of tertiary production −0.000 (0.96) −0.000 (0.97) 0.000 (0.60) 0.000 (0.61) 0.000 (0.53) 0.000 (0.51)

Energy consumption 0.000 (0.97) 0.000 (0.89) 0.000*** (0.00) 0.000*** (0.00) 0.000*** (0.00) 0.000*** (0.00)

Urbanization rate of population 0.234 (0.14) 0.240 (0.13) 0.099 (0.42) 0.093 (0.45) 0.163 (0.18) 0.158 (0.19)

W*EG −0.899 (0.46) −2.120 (0.21)

W*ED 0.706 (0.22) 1.559* (0.09)

W*RC 2.772 (0.26) 3.175 (0.41)

W*EP −0.040 (0.92) −0.153 (0.85)

W*GDP −0.000 (0.27) −0.000 (0.25) −0.000 (0.91) −0.000 (0.83)

W* GDP per capita 0.000 (0.27) 0.000 (0.19) −0.000 (0.75) −0.000 (0.89)

W* Total population −0.000 (0.17) −0.000 (0.17) 0.001 (0.12) 0.001 (0.11)

W* Percentage of primary production −0.008* (0.06) −0.008** (0.05) −0.007 (0.24) −0.008 (0.20)

W* Percentage of Secondary Production 0.003 (0.33) 0.003 (0.38) −0.000 (0.99) −0.000 (0.97)

W* Percentage of tertiary production −0.000* (0.09) −0.000* (0.09) −0.000 (0.36) −0.000 (0.43)

W* Energy consumption −0.000* (0.09) −0.000* (0.07) −0.000 (0.23) −0.000 (0.20)

W* Urbanization rate of population 0.266 (0.21) 0.226 (0.29) 0.645* (0.05) 0.588* (0.08)

rho 0.555*** (0.00) 0.558*** (0.00) 0.647*** (0.00) 0.645*** (0.00)

sigma2 0.061*** (0.00) 0.061*** (0.00) 0.061*** (0.00) 0.061*** (0.00)
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Money-based indicators are deflated at constant 2000 prices.

Equations 1, 2 are estimated using the great likelihood estimation

method. The regression results are shown in Table 9.

The OLS regression incorporates both time and individual two-

way fixed effects. As seen from Table 9, the results are basically

consistent for both the 0–1 adjacency weight matrix and the inverse

distance weight matrix, indicating that the results are more robust.

The results of the two spatial Durbin models are also consistent with

OLS. The signs and statistical significance of the main variables

remain unchanged. Only the magnitudes of parameter estimates are

somewhat different. The spatial panel weakens the influence of the

element of one’s own green economic development on carbon

emission intensity. It subsumes part of the influence into the

spatial lag variables indicating the spillover effect of neighboring

cities. Meanwhile, the spatial lag term of the total green economic

development indicator and the decomposition indicator are basically

insignificant. This may be due to the inclusion of the spatial lag term

in the SDM model, which ignores the feedback between adjacent

regions and the bias of the point estimate. Therefore, the effect of the

explanatory variable on the explained variable cannot be simply

characterized by the above regression coefficient (Li and Song, 2022).

This kind of effect needs to be decomposed into direct and indirect

effects. The results of the effect decomposition are shown in

Table 10. Under the individual fixed-effect SDM model, the

direct effect of EG on carbon emission intensity is significant.

The sign does not change, which is consistent with the previous

conclusion. This indicates that green economic development

generally benefits for the reduction in carbon emission intensity.

In addition, its indirect effect is significantly negative at the 5% level,

which indicates that green economic development can have a

diffusion effect on neighboring areas and thus promote their

carbon emission reduction.

To explore the specific path of the spatial spillover effect of the

green economic development level, this paper further introduces the

three component indicators of the economic green development

level, environmental efficiency, resource efficiency and governance

capacity into the spatial SDM model. As seen from Table 10, only

the indirect effect of environmental efficiency is significantly

positive, indicating that the environmental pollution intensity of

the region is not only positively related to the carbon emission

intensity of the region but also closely related to the carbon emission

intensity of the neighboring regions. On the other hand, the

governance capacity index is only positively correlated with

carbon emissions in the region. It does not significantly affect the

intensity of carbon emissions in the neighboring regions.

Theoretically, industrial carbon emissions and sulfur dioxide,

soot, nitrogen oxides and other pollutants have the same origin, and

the intensity of environmental pollutant emissions is positively

correlated with carbon emissions intensity. Meanwhile, the high

level of green economic development can reflect lower pollution

emissions, higher resource utilization efficiency and higher

environmental governance capacity. They can reflect an increased

ability to reduce carbon emissions. The ability comes primarily from

technology innovation including production and environmental

technology, industrial structure upgrading, optimal allocation of

production elements, clean energy usage and increase of vegetation

area (Peng et al., 2019; Romano and Yang, 2021; Yin et al., 2021). In

terms of indirect effects, the production and pollution control

technology innovation of the city can drive technology

improvement of neighboring cities through technology-related

effect and spillover effect. The technology-related effect refers to

if one enterprise carries out technological innovation, those

enterprises in related industries are requires to adopt

technological innovation activities. The technology spillover effect

refers to that the technology innovation of enterprises has a great

inspiration and promotion effect on other enterprises in related

industries. Besides, the government in neighboring cities will take

strict market regulation instruments to enhance environmental

quality based on political considerations, promoting optimal

allocation of elements, industrial structure upgrading and clean

usage. Obviously, the governance capacity (EP) indicators have

only a relatively significant negative direct effect. The indirect

effect does not pass the significance test, indicating no spatial

spillover effect of governance capacity. This result indicates that

once pollution and CO2 are released into the natural environment,

the effect of governance is limited extremely.

Conclusion and policy implications

By using the panel data of 130 urban units in the eastern coastal

region from 2000 to 2020 and introducing the NDVI adjustment

TABLE 10 Decomposition of the spatial spillover effect of ecological protection elements.

Variables 0–1 adjacency matrix Inverse distance matrix

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

EG −3.774*** (0.00) −5.460** (0.02) −9.235*** (0.00) −3.757*** (0.00) −11.427*** (0.01) −15.184*** (0.00)

ED 1.452*** (0.00) 2.790** (0.03) 4.242*** (0.00) 1.417*** (0.00) 6.222** (0.02) 7.639*** (0.01)

RC −2.252 (0.14) 2.644 (0.59) 0.392 (0.95) −2.331 (0.13) 3.663 (0.71) 1.333 (0.90)

EP −0.828** (0.01) −0.864 (0.22) −1.692* (0.06) −0.885*** (0.01) −1.534 (0.43) −2.419 (0.24)
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index to modify the land-use carbon emission accounting model, this

study measures the carbon source, carbon sink and net carbon

emission levels. Then, we adopt the exploratory spatial-temporal

data analysis (ESTDA) to analyze the spatial pattern of carbon

emissions in the coastal region from the spatial-temporal

interaction perspective. Finally, the spatial econometric model is

introduced to analyze the effect of green economic development

on carbon emission intensity in 114 urban units. The following

conclusions are drawn: 1) from 2000 to 2020, both the carbon

source and net carbon emissions in the eastern coastal region

show yearly growth trends, with average annual growth rates of

6.0% and 6.3%, respectively. The annual average value of the carbon

sink is generally maintained at approximately 45 million tons, with

relatively small changes. Carbon sources and net carbon emissions

show that the north has larger emissions than the south, and

economically developed regions have larger emissions than

economically less developed regions. The distribution pattern of

carbon sinks is roughly opposite to their trend. The carbon deficit

gradually spreads from north to south, and the carbon surplus

decreases from 10 in 2000 to 0 in 2020. The carbon balance of

regional ecosystems is severely out of balance. 2) The coefficient of

variation of net carbon emissions and Moran’s I index show an

increasing trend. The net carbon emissions of each urban unit have a

very significant spatial autocorrelation characteristic, and the spatial

agglomeration characteristic becomes increasingly apparent. The

curvature of the LISA time paths is higher in the south and lower

in the north. The temporal path curvature in the study area is greater

than one, indicating a strong spatial dependence of net carbon

emissions. 3) Both the direct and indirect effects of the economic

green development level on carbon emission intensity are significantly

negative, indicating that the economic green development level

effectively plays a role in reducing carbon emission intensity. This

effect can cross interregional boundaries to achieve regional joint

emission reduction. Further analysis of the effect of the economic

green development level decomposition index on carbon emission

intensity shows that only environmental efficiency has a significant

spatial association with carbon emission intensity.

Seeking optimal paths for carbon emission reduction at

different spatial and temporal scales is a crucial issue for

achieving China’s green and low-carbon transition’s near-,

medium-, and long-term goals. Since spatial differences at small

scales are more sensitive to macroeconomic fluctuations, the

national task of achieving China’s carbon emission reduction

targets must be decomposed into regions (Zhang et al., 2021).

Especially for coastal regions with large energy consumption levels

and total carbon emissions, it is crucial to identify critical areas in

achieving carbon emission reduction targets and then adopt

targeted policies. Based on the above analysis, the main policy

implications of this paper are as follows.

First, the urban carbon deficit in coastal areas is expanding.

Ecosystem carbon sink services are far from being able to offset the

carbon emissions brought about by economic production.

Therefore, to maintain high-quality socioeconomic development,

the focus of emission reduction should be on optimizing the energy

consumption structure, upgrading energy utilization efficiency,

and actively developing green renewable energy. Industrial

restructuring should be accelerated for regions with a more

volatile spatial structure of net carbon emissions. However, for

regions with a more stable spatial structure, optimization of carbon

emission reduction technology is key. Second, this paper finds an

obvious positive spatial correlation regarding net carbon emissions

in coastal areas. This correlation should be taken into account in

future carbon emission reduction policy formulation. The

governance and monitoring of carbon emission intensity in key

regions should be strengthened. A joint working group on carbon

emission reduction can be established for urban clusters with high

carbon emission intensity, such as Beijing-Tianjin-Hebei, Yangtze

River Delta and Pearl River Delta, to coordinate regional carbon

emission reduction targets and implementation plans. Third, in the

eastern coastal region of China, we should focus more on carbon

reduction in the production process rather than adopting carbon

sink means after carbon emissions are generated. The government

should increase support for research institutes, universities and key

laboratories in renewable energy and adopt some pollution control

instruments to promote industrial structure upgrading and optimal

allocation of production elements. The focus should be on breaking

through crucial technical bottlenecks such as energy conservation,

low-carbon, energy storage and intelligence.
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