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Land fragmentation is one of the most important factors hindering the

mechanization and scale of agriculture. To further alleviate the negative

impact of arable land fragmentation, a more accurate model for measuring

arable land fragmentation is needed. Using 0.1 resolution UAV images and farm

survey data, we obtained spatial and tenure data of farming land in Baidu Village

through ArcGis and other software, and analyzed the results and correlations of

farming plot area, plot shape and plot dispersion indicators in the study area. A

road accessibility index that integrates terrain slope and road network is

proposed to characterize the dispersion of land parcels for the first time,

and is compared with two road accessibility models that do not take into

account terrain slope and road network. The results show that the dispersion

index of farm plots is themost influential indicator on the fragmentation of farm

plots, followed by the area index of farm plots, and finally the shape index of

farm plots; the new model of measuring the fragmentation of farm plots based

on natural surface elements and road networks is closer to the real situation and

more accurate in portraying the degree of fragmentation of farm plots.
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Introduction

With the advancement of economic globalization, the process of world urbanization is

accelerating. Currently, about 54% of the world’s population lives in urban areas, and this

proportion is expected to reach 66% by 2050 (UNDESA, 2014; Masini et al., 2018). The

large-scale transfer of agricultural labor to nonagricultural industries increases the

opportunity cost of agricultural labor (Kawasaki, 2011). The United Nations predicts

that by 2050, the world population is expected to reach 9.3 billion, and the global

population will reach 10.1 billion in 2100 (United Nations Population Division, 2011).

The continuously growing population, limited arable land resources, and dwindling

agricultural population have placed enormous pressure on world food security (Nair,

2014). To provide a maximum guarantee to meet the growing food demand of mankind, it

is necessary to improve the intensive utilization of cultivated land. The ability to achieve a
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certain scale benefit has become the key to promoting

agricultural development and ensuring food security. Land

fragmentation (LF) is a prominent feature of cropland use in

agricultural production in developing countries, and the supply

of cropland for food production is increasingly limited (Niroula

and Thapa, 2007; Di Falco et al., 2010). Under the influence of

many factors, such as natural environment and social economy,

LF in China is serious problem (Tan et al., 2006). LF refers to the

phenomenon that a farmer’s land resources are scattered and not

concentrated (Latruffe and Piet, 2014; Lu et al., 2018). Related

studies have focused on the basic plots of farming operations,

exploring the essential attributes of the plots and studying the

causes of LF (Janus et al., 2016). Also, basic characteristics of LF

are included, including the distribution of plots cultivated by

farmers, their proximity to households (Niroula and Thapa,

2005), the size of plots cultivated (Lu et al., 2018), the number

of plots (Wan and Cheng, 2001), and plot shape (Demetriou

et al., 2013).

LF is a pattern of arable land resource utilization that is

contrary to the scale of arable land management. This pattern

enriches the diversity of agricultural production in China and

reduces the risk of agricultural cultivation (Nguyen et al., 1996;

Van Hung et al., 2007; Tan et al., 2021). However, there are

certain negative effects, and affects the efficient use of land

resources and national food security. Disorganized,

interspersed, and scattered plot distribution is an important

aspect of cultivated plot distribution in China (Qi and Dang,

2018). This distribution can increase commuting costs (Latruffe

and Piet, 2014; Wang and Wang, 2010). When the number of

plots owned by farmers is large and scattered, the cost of

transportation and traveling time from the homestead to each

plot will increase (de Garis De Lisle, 2010; del Corral et al., 2011;

Niroula and Thapa, 2005). Farmers’ traveling time will increase

under the influence of terrain slope and distance traveled, which

not only causes invariance to material transportation and plot

irrigation management but also increases labor input, thus

reducing farmers’ economic returns (Niroula and Thapa,

2007; Kawasaki, 2010). Considering these conditions, farmers

will pay less attention to remote and low-quality plots, and this

type of plot often has much higher input costs than net benefits,

and farmers will abandon these plots (Carter and Yao, 2002; de

Garis De Lisle, 2010; Lu et al., 2018). In addition, LF has a

hindering effect on agricultural mechanization and productivity

(Blarel et al., 1992; Wan and Cheng, 2001; Ali and Deininger,

2015). In the case of growing maize, late rice, and wheat, the

production efficiency decreases by 4%, 15%, and 17% when the

degree of cultivated land fineness increases by one unit,

respectively (Wan and Cheng, 2001). With the small size of

arable plots, farmers need to invest in more labor to increase

production value (Lu et al., 2018), and the increase in the number

of plots increases the amount of labor invested by farmers. In

addition, when plots are small and irregularly shaped, farmers

often will not develop advanced agricultural technologies and

may even abandon this land (Van Hung et al., 2007; Gónzalez et

al., 2007), which further limits productivity and hinders

agricultural modernization.

To mitigate these negative impacts of LF, the Chinese

government conducts policy control, and to fully manage the

impacts of LF, policy-makers and planners need scientific

indicators to measure the extent of LF (Igozurike, 1974;

Januszewski, 1968; Simmons, 1964). Based on the definition of

land fractionation above, we know that the plot dispersion, plot

size, and plot shape indicators ideally should be incorporated into

a comprehensive measurement model to accurately measure the

degree of LF. Currently there are more accepted ways of

evaluating parcel size and parcel shape, among these

indicators, plot area uses the Simpson index to combine the

number of plots and plot area, which accurately reflects the area

characteristics of plots. The plot shape index uses the standard

squares and circles as standard measure, which reflects the shape

characteristics of the plot to a certain extent. However, there are

no accurate indicators for the dispersion of plots in the academic

community, the current indicators characterizing the dispersion

of farmers’ plots include distances, such as the distance from

farmers’ homesteads to each of their plots as well as the distance

between plots. These distances are Euclidean distances or road

network distances. Other studies have used farmer’s commuting

time to reflect the fragmentation of plots (Ge and Zhao, 2019).

And calculating the shortest cumulative time from farmers’

homesteads to each of their plots through iteration, which is

the road accessibility of farmers. It uses commuting time to

combine two factors, namely distance and walking speed, to

more comprehensively and accurately reflect the dispersion of

parcels. Road accessibility refers to the ease of getting from the

starting point to the end point (Páez et al., 2012), the two main

factors in measuring road accessibility index are walking speed or

distance (Hess and Almeida, 2007; Higgins, 2019). Some studies

have used Euclidean distance, which ignores the distance of the

road networks formed by complex topographic environments

(Zhao, 2011; Ge and Zhao, 2019). Alternatively, walking speed

was set to the normal human walking speed (5 km/h) and was a

constant value (Ge and Zhao, 2019), which was determined

under the assumption of a flat walking plane and a constant

walking speed of 5 km/h. Although this planar approach is not

problematic in a two-dimensional and topographically flat study

area, this approach can overestimate (or underestimate)

walkability in a topographically diverse environment (Higgins,

2019). Because walking speed and terrain are not constant, in

addition to personal ability, time pressure, and other factors,

walking speed varies with the slope of the walking environment

(Lee et al., 2015; Aghabayk et al., 2021). Figure 1 shows the terrain

affects the road accessibility, and road accessibility is much lower

in areas with more undulating terrain (Figure 1A) than in areas

with flat terrain (Figure 1B). This is especially true in

mountainous areas, where the terrain is undulating and the

surface is rugged and broken. The slope of the pedestrian
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road has a significant impact on the walking speed of farmers,

thus affecting the commuting costs of farmers from their

homesteads to their plots. Therefore, use of the LF

measurement model without considering the terrain factor is

not suitable for mountainous areas.

To address the shortcomings of the LF measurement model,

and based on the previous research, we integrated the

topographic slope into the measurement model and integrated

natural surface elements and road networks to build an LF

measurement model that is more realistic and applicable to

plain or mountainous areas. We accurately portrayed the

degree of fragmentation of cultivated land and provided a

basic reference for academic research and policy formulation.

Materials and methods

General situation of the research area

The existing measurement model is applicable to the plain

areas, which are less spatially heterogeneous. To consider the

extent to which the fine fragmentation of mountainous cultivated

land is affected by topography, we selected a typical mountainous

cultivated area. Baidu Village, Jianhe County, Qiandongnan

Prefecture, Guizhou Province, is a typical mountainous village

(108°47′9 ″E–108°47′30 ″E, 26°4011 ″N–26°40′23 ″N) (Figure 2)
located on the banks of the Qingshui River. It is 30 km from

Nanzhai Town and has two natural villages: the Upper Baidu

Village and Lower Baidu Village. Under the jurisdiction of

27 village groups, the village is dominated by the Miao ethnic

group. In 2020, the total resident population had reached 1,655.

The economy of Baidu Village is mainly agricultural. The village

land area is 1241.216 hm2, the total arable land area is

113.407 hm2, the average arable land area is 0.067 hm2, the

forestland area is 186.667 hm2, and the per capita forestland

area is 0.112 hm2. It is a typical example of the fragmentation of

arable land in mountainous areas.

Research method

Village and farmer model construction
Rural farmland in China is generally dominated by farm

households’ contracting and management, and is also affected by

village contracting rights, land adjustment, and intra-village

transfer, which affect LF to some extent. For this reason, we

constructed LF models for farming land at the farm household

and village levels, respectively.

The main structure of the farm households model is as

follows: we selected the attribute indicators characterizing the

FIGURE 1
Schematic diagram of the distribution of homesteads and plots. Figure 1A shows that the road network is affected by the topography in the
mountainous areas. Figure 1B shows the road network in a flat terrain.
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fine fragmentation of farming land for inclusion in the model,

calculated the values of each characterizing attribute indicator,

and summed the values of each characterizing attribute indicator

to obtain the farmer’s land fragmentation index (FLFI),

according to the following equation:

FLFI � ∑n

i�1Fi (1)

where Fi represents each indicator of cultivated land fine

fragmentation; and n is the number of selected indicators. The

range of FLFI is (0, 3), and the larger the value is, the higher the

degree of fragmentation of farmers’ cultivated land.

The village model is calculated based on the cultivated FLFI

of each farming household. The village farmland fragmentation

index (VLFI) is the average value of each farming household’s

FLFI. The formula is as follows:

VLFI � ∑m
j�1FLFIj
m

(2)

where FLFIj is the cultivated land fragmentation index of farming

household j; and m is the number of farming households in the

village. The range of values of VLFI is (0, 3), and the larger the

value is, the higher the degree of cultivated land fragmentation in

the village.

Selection of evaluation indicators
The connotation of LF is reflected in the following four

aspects: fragmented distribution of arable land plots operated

by farmers, relatively large number of plots, relatively small

area of individual plots, and irregular shape of plots.

Therefore, we constructed a model to determine the

degree of fragmentation of cropland according to these four

aspects.

1. The plot accessibility index (F1) describes the degree of plot

dispersion, labor, and machinery accessibility. Plot dispersion

uses commuting time to combine two major factors: network

distance and walking speed. Thus, so plot dispersion is measured

by the cumulative walking time from the farmer’s home base to

the shortest network distance from each plot. Farm plot road

accessibility index (F1) is the ratio of the plot road accessibility

score to the maximum value of the village farm road accessibility

score.

F1 of farm plots is calculated as follows:

F1 � f1
f1max

(3)

where f1 is the road accessibility score of the plot; and f1max is the

maximum road accessibility score in the village.

The plot road accessibility score (f1) is calculated as follows:

f1 � ∑q
k�1

Sk
V

(4)

where q is the number of plots owned by the farmer; Sk is the

distance of the road network from the farmer’s home base to each

of his farming plots k; and V is the walking speed. The larger

values of f1 indicate higher commuting costs when the farmer

FIGURE 2
The study area.
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operates his farming plots, more dispersed plots, and higher

fragmentation of farming land.

V is calculated as follows:

By extracting the slope value α between the farmhouse and its

plot (Eq. 5), we calculate the walking speed V (km/h) under the

influence of slope α (%) (Eq. 6) (Tobler, 1993; Higgins, 2019).

α � (h1 − h2) ∕ l × 100% (5)
where h1 and h2 are the maximum elevation difference between

the farmer’s homestead and the plot; and l is the closest distance

from the homestead to the plot.

V � 6e−3.5|∝+0.05| (6)

2. The farmer’s plot area index (F2) is the number of plots and

plot area that directly affect the farming efficiency andmachinery

running cost (Lu et al., 2018). We used SI and calculated this

index by combining the number of plots and plot area. The

farmer’s plot area index (F2) is the ratio of the farmer’s SI score to

the maximum value of the farmer’s SI score in the village.

The farm plot area index (F2) is calculated as follows:

F2 � f2
f2max

(7)

where f2 is the farm household SI score; and f2max is the

maximum value of SI score in the village.

The plot area index (f2) is calculated as follows:

f 2 � 1 − ∑q
k�1A

2
k

(∑q
k�1Ak)

2 (8)

where Ak is the area of plot k. The larger the value of f2, the lower

the farming efficiency and the higher the degree of fragmentation

of cultivated land.

3. The farmers’ plot shape index (F3) influences the efficiency

of machinery operations (Bettinger et al., 1996). The farmer’s plot

shape index (F3) is the ratio of the parcel shape score to the

maximum village parcel shape score.

The farmer’s plot shape index (F3) is calculated as follows:

F3 � f3
f3max

(9)

where f3 is the parcel shape score; and f3max is the maximum

value of the village parcel shape score.

The plot shape index (f3) is calculated as follows:

f 3 �
∑q

k�1
Ck���
2πAk

√
q

(10)

where Ck is the perimeter of plot k; and Ak is the area of plot k.

The larger the value of f3 is, the lower the efficiency of machinery

operation and the higher the degree of fragmentation of the

farmer’s land.

4. The geographic detector model (Wang and Xu, 2017) was

used to analyze the degree of influence of the main influencing

factors on the FLFI. Where the q-value is used to represent the

degree of factor influence and the q-value is calculated as follows:

q � 1 − ∑L
h�1Nhδ

2
h

nδ2
(11)

where h = 1,2. . ., L is the stratification of variable y or factor x, which

is categorical or partition;Nh andN are the number of cells in layer h

and the whole area, respectively; and δ2h and δ2 denote the variance
of subregion h and thewhole regionA, respectively. The range of q is

[0,1]. The larger the value of q is, the more pronounced the spatial

divergence of the FLFI and the stronger the spatial determination of

the independent variable Fi on the FLFI.

Data source and processing
The data included sample farmer research data and unmanned

aerial vehicle (UAV) image data. First, we collected the high-

resolution remote sensing image map of Baidu Village with a

spatial resolution of 0.1 m by aerial photography with UAV, and

the image was pre-processed by ArcGIS10.2 and ENVI5.3 for

stitching and correction. Second, Figure 3 shows we extracted the

spatial information of house bases, cultivated land, and roads in

Baidu Village through visual interpretation: we obtained

171 households, 1,487 plots of cultivated land and 17,442 roads

such as main roads and field roads. The extracted homestead and

cultivated land plots are numbered separately. We used the Spatial

Analysis and Network Analysis tools of ArcGIS to build the road

network between the homestead and the cultivated plots in Baidu

Village. We performed topology checking and error handling on

the road network to realize the spatial connection from the

homestead to the cultivated plots and measured the distance of

the road network from the farmer’s homestead to his cultivated

plots. In addition, we calculated the straight-line distance from a

farmer’s homestead to the farmer’s plot using the ArcGIS analysis

tool point distance. We obtained the homestead and plot elevation

data of Baidu Village using 91 Satellite Map Assistant Software.

Through the above work we constructed a spatial information

database of cultivated land in Baidu Village.

In 2020, a participatory survey was conducted among village

officials and farmers in Baidu Village. Based on a basic

understanding of the village situation through interviews with

village chiefs and group leaders, a stratified random sample of

farmers in different village groups was interviewed, and 171 valid

questionnaires were obtained. Through the on-site identification of

farmers and questionnaire interviews, we obtained information on

the ownership of the completed numbered residential and farmland

plots, the composition of the farmers, the current status of farmland

utilization, and the input of production materials and labor. We

compared the acquired information on the ownership of farmers’

residential bases with the corresponding arable land plots and

evaluated the utilization of the plots one by one. Combined with

the aforementioned spatial information database of cultivated land,

we constructed a database of residential bases and cultivated land

use tenure and spatial information of farmers in Baidu Village.

Frontiers in Environmental Science frontiersin.org05

Su et al. 10.3389/fenvs.2022.1017599

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1017599


Results

Descriptive statistics of farm household
survey data

According to the basic characteristics of the plots of the sample

farmers in Baidu Village (Table 1), the scale of farmers’ operations

is relatively small, the area of plots is small, and the LF is serious.

Table 1 shows the average value of the total arable land of farmers

was 0.356 hm2 and the smallest farmland area was only 0.019 hm2;

the average value of farming plot area was 0.041 hm2 and the

smallest plot area was 0.001 hm2; and the average value of farming

plot was 8.72, the largest plot was 23, and the smallest plot was 2. In

addition, the spatial distribution of arable land varied greatly. The

mean value of elevation difference between farmers’ homesteads

and plots was −48.282 m; the minimum value was −462.297 m,

and themaximum value was 341.27 m. Themean value of the road

network distance from farmers’ homesteads to their plots was

1831.696 m, and the minimum value reached 46.233 m. It was

evident that the village did not have a concentrated distribution of

home sites and plots, with long distances for farming and high

commuting costs.

According to the Tobler function, we know that the walking

speed was not directly proportional to the slope (Figure 4); when

TABLE 1 Descriptive statistics of farming household survey data.

Survey item Minimum value Maximum value Mean value Standard deviation

Plot level/1487 plots

Plot size/hm2 0.001 0.363 0.041 0.035

Plot perimeter/m 10.336 883.515 132.860 89.649

Farmer level/171 households

Farmers farming distance/m 46.233 6004.930 1831.696 1119.222

Number of farming plots/piece 2.000 23.000 8.720 4.414

Total arable land of farming households/hm2 0.019 1.131 0.356 0.184

Farmers’ walking speed/km/h 0.039 5.990 3.7098 1.529

Farmers cultivate height difference/m −462.297 341.270 −48.282 137.332

FIGURE 3
The digitalization process of cultivated land space. (A–C) are homesteads, cultivated land, and roads, respectively, and human visual
interpretation corresponds to (A9), (B9), and (C9), respectively.
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the slope value was less than 0, it is downhill. When the slope

was −5%, the walking speed reached a maximum value of

5.999 km/h. When the slope was 0 (i.e., flat), the walking

speed was 5 km/h. This result showed that either uphill or

downhill slope had an effect on walking speed. Taking the

most normal human walking speed, which is 5 km/h on level

ground, as the node, walking speed became faster

when −10.136% < α < 0, slowed down when α > 0, and

hindered walking speed when α < −10.136%. Thus, slope

directly affected walking speed and had a significant impact

on travel time to work. Considering the slope of the terrain

and network distance, the one-way traveling time of commuting

from the farmer’s homestead to the farming plot (Figure 5)

showed that the traveling time of 0.12 h was mostly near the

homestead with a comparable slope and closer distance; however,

the traveling time increased as the slope between the homestead

and the farming plot increased and the distance was longer.

Land fragmentation of farmer

To quantitatively analyze the relationship between the status

quo values of each index and the index of fine fragmentation of

farmland, we selected the index of fine fragmentation of farmland

in Baidu Village as the dependent variable (y), and selected the

accessibility of farm plots (x1), the index of farm plot area (x2),

and the index of farm plot shape (x3) as independent variables.

We conducted the regression analysis one by one (Figure 6). Each

indicator (x1, x2, x3) was linearly and positively correlated with

FLFI (y), and the regression coefficients were 1.344, 1.736, and

0.8274. The coefficients of determination R were 0.748, 0.653,

and 0.055, the correlation coefficients r were 0.865, 0.808, and

0.236. The two-sided significance test probability p values were

less than 0.05. The best fit and the highest correlation were found

between the road accessibility index of farm plots and the index

of cultivated LF; the correlation between the index of farm plot

shape and the index of cultivated LF was lower. The fitted

regression equations were as follows:

FIGURE 4
Walking speed and pace by gradient per Tobler (1993) hiking
function.

FIGURE 5
Homestead to plot walking time.
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y � 1.344x1 + 1.292 (12)
y � 1.736x2 + 0.2276 (13)
y � 0.8274x3 + 1.217 (14)

We identified the relationship between each evaluation index and

FLFI using geographic probes, and the impact measures q of F1, F2,

and F3 on FLFI were 0.692, 0.617, and 0.085, respectively. Thus, the

road accessibility index of farm plots was the most influential

indicator on FLFI, followed by the area index of farm plots, and

finally the shape index of farm plots. The results of the correlation

analysis and the geographic detector showed no significant differences

in the effects of each indicator on FLFI, which indicated that the

results of the analysis have good reliability and objectivity.

Land fragmentation of village

Based on Eq. 2, the VLFI of Baidu Village was 1.678.

Equation 1 was used to calculate FLFI (Figure 7) of each farm

household in Baidu Village in 2020. With the increase in FLFI,

the number of farm households showed an olive shape,

increasing first and then decreasing. The cultivated FLFI of

farm households was concentrated between 1 and 2, with total

150 households accounting for 87.72% of all farm households,

among which 20 households were larger than 2, and only

1 household had FLFI of less than 1.

Comparative analysis of different plot road
accessibility index models

From the correlation analysis and geographic detector

synthesis, we concluded that the farm road accessibility index

was the dominant factor. To compare the accuracy of the

existing F1 index model, we compared the measurement model

that considers the natural features of the ground and the road

network with the model that does not consider the influence of the

terrain and the road network. To make the road accessibility index

FIGURE 6
Correlation analysis on FLFI.

FIGURE 7
Correlation analysis on FLFI.
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more intuitive to better reflect the convenience of road commuting

for farmers, we instead of applying the farmer road accessibility

index (F1) normalized by themaximum value, the road accessibility

value (f1), which directly reflects commuting time, was used. Three

major models were compared and analyzed: Model A refers to the

traveling time under the consideration of the terrain and road

network distance—that is, the new measurement model proposed

in this paper. Model B refers to the traveling time under the

consideration of the terrain influence but not the road network

distance using the straight-line distance. Model C refers to the

traveling time under the consideration of the road network distance

but not the terrain influence (Ge and Zhao, 2019).

The results obtained from these three farm-road-accessibility-

evaluationmodels followed a similar trend (Figure 8). Table 2 shows

the difference between these three indices was thatmodel A obtained

a higher value of 902.790, with a minimum value of 33.38 and a

mean value of 258.498.Model B obtained a lower value of 21.83, and

its maximum value was also the smaller of the three major models at

612.63, with a mean value of 163.015. The minimum value of model

C was greater than models A and B at 41.32, and the maximum

value was greater thanmodel B but less thanmodel A at 750.48, with

a mean value of 218.479. Therefore, the accuracy of model B for

measuring the road accessibility index in mountainous areas was

much lower than that of models A and C. In contrast, the lowest

values of bothmodel A andmodel C were found in the same farmer,

and model C was 7.94 smaller than model A. The maximum slope

between the cultivated land and the homestead of this farmer

was −6.441%, which was located in the downhill direction of the

homestead, and the slope was equivalent to a slightly downhill walk,

where the speed was slightly higher compared to the flat land

(Figure 4). The speed of model A was 95 m/min (Figure 2), and the

speed of model C was 83.330 m/min. The speed of model A was

greater than that of model C. Model A considered the walking speed

under the influence of terrain, whereas the speed of model C was a

constant value without considering the influence of terrain. In

addition, the difference between the two maximum values of

152.31 appeared in the same farmer (Table 3). This farmer has

21 plots of land, and plot 4 has a large difference between the two

models’ results. The plot and the farmer’s home base slope had a

difference of 31.264%, the speed of model A was 1.696 km/h

(28.267m/min), and the speed of model C was a constant value of

83.33m/min. Model C did not take into account that uphill would

slowed down the walking speed and the speed was constant, which

was not consistent with the actual situation. Model A was take into

account the resistance of road slope to walking, which slowed down

the walking speed and greatly increased the traveling time of the

farmer. This resistance was enhanced when the distance was larger.

The road accessibility index that considered the slope of the terrain and

the distance of the road network provided a more accurate portrayal.

According to these results, we found that the road accessibility

indicators of models B and C both underestimated the degree of

road accessibility. First, the distance of model B was Euclidean

distance, which underestimated the distance from the homestead

to the plot. Second, the walking speed of model C did not consider

the influence of topography, which was limited by the topography

in mountainous areas with large topographic relief and directly

affected the commuting time of farmers. Therefore, when

measuring the degree of LF, the Model A that integrated

terrain slope and road network better portrayed the real situation.

Discussion

In this study, we constructed a new LF measurement

model based on topographic slope and road network. This

model can more accurately determine the LF of farmers so

that decision-makers can accurately implement land

management policies. Currently, there are two major

perspectives for determining the degree of LF, one is based

FIGURE 8
Comparison of the values of the three plot road accessibility
indices.

TABLE 2 Results of three road accessibility scenarios.

Different road accessibility
scenario indices

Minimum value Maximum value Average value Standard deviation

Model A 33.380 902.790 258.498 168.675

Model B 21.830 612.630 163.015 102.991

Model C 41.320 750.480 218.479 129.290
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on the mesoscale regional landscape perspective (Liu et al.,

2019), which expands the concept of fractionalization to the

scale of landscape ecology and focuses on the degree of

fragmentation of land use types in surface patches. It

ignores the presence of multiple farmer operators in a

landscape patch. Another one is based on the micro-scale

farmer’s perspective and takes the basic unit plot of the

farmer’s farming operation as the object of study. Since the

main agricultural operators in China are farmers and the land

is mainly contracted and operated by farmers, the LF

measurement model is more relevant to the actual

situation based on the micro-scale farmers’ perspective.

The current micro-level indicators mainly include the

number of parcels, parcel area, shape, and the influence of

FIGURE 9
Road accessibility index for three different scenarios. (A) indicates a scenario where road network distances and terrain slope are considered, (B)
indicates a scenario where straight-line distances and terrain slope are considered, and (C) indicates a scenario where road network distances are
considered but terrain slope is not considered.

TABLE 3 Farmer sample data.

Farmers’
plot
serial
number

Road
network
distance
(m)

Straight
line
distance
(m)

Tillage
height
difference
(m)

Slope
(%)

Speed
(km/
h)a

Model
A

Model
B

Model
C

1 3635.000 2588.734 184.059 7.128 3.925 55.572 39.576 46.622

2 1282.760 787.446 −290.213 −39.646 1.785 43.129 26.476 18.394

3 4010.950 2850.686 134.457 4.722 4.269 56.367 40.061 51.133

4 1303.250 600.950 179.320 31.264 1.686 46.371 21.382 18.640

5 135.189 62.141 2.911 4.690 4.274 1.898 0.872 4.622

6 3644.710 2474.213 172.535 6.990 3.944 55.452 37.644 46.738

7 3953.600 2821.119 138.372 4.911 4.241 55.929 39.909 50.445

8 4158.290 2990.590 120.954 4.048 4.371 57.075 41.047 52.901

9 4172.940 3006.103 116.005 3.862 4.400 56.904 40.993 53.077

10 3653.450 2489.743 168.712 6.792 3.971 55.201 37.618 46.843

11 1954.850 1393.415 −107.800 −7.760 5.448 21.531 15.347 26.459

12 3079.600 2159.681 235.046 10.948 3.433 53.816 37.741 39.957

13 1299.220 770.802 −287.779 −40.245 1.747 44.609 26.465 18.591

14 1963.740 1395.690 −107.020 −7.691 5.461 21.576 15.335 26.566

15 1213.030 740.013 −292.381 −43.010 1.586 45.881 27.990 17.557

16 3880.240 2804.874 151.240 5.400 4.169 55.839 40.364 49.565

17 4209.610 3021.857 119.732 3.965 4.384 57.613 41.357 53.517

18 4042.930 2867.322 133.568 4.663 4.278 56.700 40.213 51.517

19 2082.730 1393.610 −79.444 −5.710 5.853 21.351 14.287 27.994

20 2056.220 1401.673 −87.571 −6.260 5.741 21.489 14.649 27.676

21 1555.020 1119.350 −110.675 7.128 5.048 18.483 13.304 21.661

aSpeed is the walking speed considering the effect of terrain slope and is also the speed of models A and B. The speed of model C is the normal walking speed of human and is a constant value

of 5 km/h.
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the degree of dispersion (Niroula and Thapa, 2005;

Demetriou et al., 2013; Lu et al., 2018), through correlation

analysis, the results indicate that the indicator of plot

dispersion carved using road accessibility is the dominant

factor, i.e., the commuting time of the farmer to the

homestead, scholars considered the road network distance

to break through the error generated by previous studies using

straight-line distance (Ge and Zhao, 2019), but did not consider the

impact of terrain slope on speed, walking speed of 5 km/h and a

constant value, which is not consistent with the actual situation. This

study integrates surface natural elements and road network distances

to consider walking speed under the influence of topography. Figure 9

shows three different scenarios of road accessibility are compared,

Figure 9A shows the scenario considering the terrain slope and the

road network, i.e., the scenario presented in this paper. Figure 9B is the

scenario considering terrain slope without road network. Figure 9C is

the scenario proposed by scholars considering the distance of road

network but not the slope of the terrain. The final result indicates that

the newmeasure proposed in this paper further portrays the degree of

dispersion of farmers’ plots.

To mitigate the effects of LF, in the context of China’s

strong advocacy of agricultural modernization, mountainous

areas have focused on improving agricultural infrastructure,

including the construction of farming road networks, such as

machine roads. As a result, the costs of farm commuting,

material transportation, and machinery running time have

decreased and agricultural mechanization and production

efficiency have increased. At the same time, when the slope

between the homestead and the plot is large and the distance

is far away, the input and income costs are integrated, and

land transfer and engineering management measures are

comprehensively used for plots that have better quality,

promoting the moderate-scale operation of agriculture. In

this study, to accurately extract the spatial information of

farmers’ homesteads, plots, and road networks, remote

sensing data must have high accuracy, which requires UAV

remote sensing images and high-precision satellite images.

Thus, understanding how to obtain high-resolution images of

large areas must be further explored.

Conclusions

Decision-makers need an accurate and comprehensive model

to quantify LF. We selected three indicators for inclusion in the

model: the road accessibility index of farm plots, the area index of

farm plots, and the shape index of farm plots. We used resolution

of 0.1 m remote sensing images and farm household survey data

to build a village road network and constructed a database of farm

household residential bases and farmland use tenure and spatial

information in Baidu Village. The topography was incorporated

into the metrological model, including the calculation of slope and

pedestrian walking speed. By obtaining the elevation of the

homestead and the plot, the shortest distance from the farmer’s

homestead to the corresponding plot, we determined the slope of

the homestead and the corresponding plot. By portraying the

farmer’s walking speed under the slope image, we obtained

accurate geospatial data for the model and measured the degree

of arable LF in Baidu Village. The results showed that it is necessary

to create a road network of house bases and cultivated land in

Baidu Village and to calculate the slope perception of pedestrian

accessibility. By measuring the degree of cultivated LF while

considering the walking speed of farmers with slope, we

obtained an effective model to measure cultivated LF.

The LF model generated by the model integrating speed

under the influence of road network distance and terrain slope

had the following characteristics: it integrated the three core LF

factors and was comprehensive; and it was flexible and context-

specific, as the model was applicable in both mountainous and

plain areas. Applying the model in an empirical study and

comparing the results with two existing indicators, the results

showed that the existing indicators underestimated (or

overestimated) the degree of LF because they ignored the

important variable of topographic slope. Therefore, the

existing indicators may provide misleading results for decision

making. In contrast, we verified that the present model provides a

more reliable and robust measure of LF, performing significantly

better than existing indices.
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