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Remote sensing is useful for quantifying water-quality parameters for

managing inland water systems. However, the single water-quality

retrieval model usually has poor applicability in large regions. To solve

the issue of low retrieval accuracy of water-quality parameters in inland

water, the study area herein is geographically divided into rural water and

urban water according to the proportion of land-use types in the riparian

zones. Furthermore, the machine-learning regression algorithms are used

to construct the retrieval models suitable for the total nitrogen (TN) and

total phosphorus (TP) concentrations based on the measured water-

quality data and the simultaneous Sentinel-2 Multispectral Imager (MSI)

images. Additionally, the optical retrieval models are applied to the MSI

images acquired on different dates to analyze the variations of TN and TP

concentrations in the water around Chaohu Lake of China. The results

show that the three accuracy indices of determination coefficient (R2),

mean square error (MSE), and mean absolute percentage error (MAPE) of

the TN concentration retrieval models for rural water and urban water were

0.67, 0.37 mg/L, and 36.81%, and 0.78, 0.34 mg/L, and 8.34%, respectively,

while those of the TP concentration retrieval model for rural water and

urban water reached 0.46, 0.0034 mg/L, and 38.60%, and 0.58, 0.018 mg/

L, and 37.57%, respectively. The accuracy of the TN and TP concentration

retrieval model constructed using geographical division is significantly

better than that which does not use geographical division. According to

the retrieval results from MSI images, the TN and TP concentrations in

urban water are higher than those in rural water. TN and TP concentrations

in urban water are stable throughout the year and peak in December, while

those of rural water are highest in March and lowest in November. The

method proposed in this study can provide a new idea for improving the

retrieval accuracy of water-quality parameters in different water bodies in a

large-scale region, and the relevant conclusion can provide a theoretical

basis for water pollution control and prevention strategies in agricultural

basins.
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1 Introduction

In recent years, the eutrophication of inland water has

become one of the major global environmental issues, mainly

due to the combined effects of lake overexploitation, watershed

surface pollution, and climate change. The excess amount of

nitrogen and phosphorus nutrients in water is the main cause of

eutrophication (Sinha et al., 2017; Álvarez et al., 2017; Ortiz-

Reyes and Anex, 2018; Liao et al., 2020). As rivers are the main

surface-runoff channels linking land and lakes, the high nitrogen

and phosphorus concentrations in the rivers entering lakes are

significant for lake eutrophication (Wang et al., 2011; Zhang

et al., 2015; Li et al., 2016; Wang et al., 2017; He et al., 2020).

Chaohu Lake is one of the three lakes with severe eutrophication

in China (Yin and Zhang, 2003; Yang et al., 2020), and its water’s

quality deterioration has restricted the sustainable development

of the region. Therefore, it is necessary to monitor the

spatiotemporal variations of nitrogen and phosphorus

concentrations in the water around Chaohu Lake to

comprehensively investigate the water pollution status of the

lake and effectively control it.

Field measurement and remote-sensing retrieval are two

primary methods for monitoring water quality parameters in

inland water. Field measurement has the high accuracy; however,

it requires a large amount of human and material resources, and

water-quality parameters can only be monitored at spatially

discrete sites. Remote-sensing retrieval establishes the

relationship between satellite-based remote-sensing reflectance

(Rrs) and water-quality parameters. Real-time dynamic

monitoring of water quality can be performed on a

macroscopic scale by remote sensing, providing an advanced

detection means for earth-resource investigation and

environmental-change monitoring. Thus, remote-sensing

retrieval has become an important method of monitoring

water-quality parameters in large-scale regions (Guo H. et al.,

2020; Huangfu et al., 2020; Lu et al., 2021; Qun’ou et al., 2021;

Yuan et al., 2020; Zhao et al., 2021).

Currently, the water-quality parameters quantitatively

monitored by remote sensing include chlorophyll a, turbidity,

suspended solids, and other indicators. Only a few studies have

been conducted on the remote-sensing retrieval of the total

nitrogen (TN) and total phosphorus (TP) concentrations (Gao

et al., 2015; Guo H. et al., 2020; Xiong et al., 2022). It is because

TN and TP, as non-optically active substances, do not have

notable spectral characteristics (Guo H. et al., 2020; Xiong et al.,

2022; Yang et al., 2022). Sentinel-2 Multispectral Imager (MSI)

images, with 13 multispectral bands, spatial resolution of up to

10 m, and a revisit period of 5 days (Drusch et al., 2012), can

provide a continuous and reliable data source for remote-sensing

retrieval of water-quality parameters. This type image is mainly

used in the retrieval of optically active substances such as

chlorophyll, turbidity, transparency, and fluorescent-dissolved

organic matter, but it is rarely used in TN and TP (Gao et al.,

2015; Ansper and Alikas, 2018; Peterson et al., 2020; Maciel et al.,

2021; Mansaray et al., 2021; Pérez-González et al., 2021; Aptoula

and Ariman, 2022; Caballero et al., 2022; Meng et al., 2022). Some

studies have shown that TN and TP are significantly correlated

with optically active substances (Gao et al., 2015; Sagan et al.,

2020; Zhang L. et al., 2021; Xiong et al., 2022), and some studies

have also achieved the remote-sensing monitoring of TN and TP

of water bodies using Sentinel-2 MSI image (Guo H. et al., 2020;

Huangfu et al., 2020).

Various methods, such as empirical, statistical, semi-

analytical, and machine learning, have been used to construct

the different forms of water-quality parameter-retrieval models

(Yuan et al., 2020; Aguilar et al., 2021; Lu et al., 2021; Zhao et al.,

2021; Xiong et al., 2022; Yang et al., 2022). Empirical statistical

and semi-analytical methods are mostly used to retrieve water-

quality parameters by analyzing the optical characteristics of the

water and depend on high-precision atmospheric-correction

algorithms (Li et al., 2021; Yang et al., 2022). Machine-

learning regression algorithms, driven by a large amount of

datasets, through multiple training, validation, and fitting to

construct complex nonlinear relationships among the

variables, have been widely used for remote-sensing

monitoring of water quality in recent years (Reichstein et al.,

2019). Recent studies also illustrated the advantages of machine-

learning algorithms in retrieving water-quality parameters in

eutrophic water (Huang et al., 2021; Xiong et al., 2022). Thus, this

type algorithm has a strong technical potential for the remote-

sensing retrieval of TN and TP concentrations in inland water.

The remote-sensing retrieval models of TN and TP

concentrations in the aforementioned studies are primarily

applicable to single inland water bodies such as lakes,

reservoirs, and certain river sections. Influenced by the

surrounding environment, there are spatial differentiations in

the water-quality parameters of different water bodies, resulting

in the poor applicability of the same retrieval model in large-scale

regions. However, there are few studies on the construction of

retrieval models for multiple water bodies in the same basin.

Land types in the riparian zone are extremely important

influential factors in the spatial difference of river water

quality (Kandler et al., 2017; Liu et al., 2017). TN and TP in

different rivers are present in different forms due to the land

composition of the riparian zone (Meneses et al., 2015; Giri and

Qiu, 2016; Zhang J. et al., 2020; Zhang Y. et al., 2021; Shu et al.,

2022). Related studies confirmed that the composition of TN and

TP in the Chaohu Lake Basin differed significantly among the
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different water bodies (Huang et al., 2013; Zhang et al., 2015; Guo

B. et al., 2020; Zhang L. et al., 2021), and the nutrients mainly

came from the soil (Yu et al., 2018). Considering the influence of

land type on the spatial differentiation of water quality in large-

scale regions (Ding et al., 2016; Li et al., 2018; Liu et al., 2021; Wu

and Lu, 2021), clustering analysis, a data-driven approach to

identify discrete subgroups of the dataset without a priori

labeling (Serafin et al., 2019; Dalmaijer et al., 2022), is applied

to the geographical division of the water bodies around Chaohu

Lake. Then, machine-learning algorithms are adopted in this

study to construct the TN and TP concentrations’ retrieval

models for different zones. Lastly, the spatiotemporal

variations and influencing factors based on TN and TP

concentrations retrieved from Sentinel-2 MSI images are

analyzed to provide the scientific references for preventing the

pollution and eutrophication of Chaohu Lake.

2 Materials

2.1 Study area

Chaohu Lake is located in the southeast part of Hefei city, the

central part of Anhui Province, China (Figure 1). The lake covers

an area of ~770 km2, with a maximum depth of 3.77 m and an

average depth of 2.69 m; the average annual air temperature is

16 ± 4°C; and rainfall is higher in the summer and lower in the

winter. Thirty-three rivers, including the Hangbu River,

Baishitian River, Pai River, Nanfei River, Tongyang River,

Zhegao River, and Zhao River, converge into the lake from

the south, west, and north and are injected into the Yangtze

River via Yuxi River.

According to the surface-water environmental quality

standard GB3838-2002 of China (Supplementary Table S1),

the water quality of Chaohu Lake is at the level of Ⅳ-inferior

V. The water in the western lake is more seriously polluted than

that in the eastern part (Yang et al., 2020; Zhang M. et al., 2020).

Recently, the government has introduced policies to restrict the

discharge standards of sewage pollutants in rivers (e.g., Nanfei

River), which improved the water quality of the western lake.

However, the water quality of the eastern lake has gradually

deteriorated and is now stable at Class IV (Yang et al., 2020).

2.2 Field measurement

Considering the seasonal differences in the water quality of

water bodies around Chaohu Lake, five field surveys were

conducted on 3 November 2019, 27 December 2019, 25 June

2020, 2 November 2020, and 25 March 2021, and a total of

FIGURE 1
Location of Chaohu Lake and distribution of the sampling sites. (A): China Map (B): The location of study area in china.
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156 water samples were collected (Figure 1). According to the

water-quality sampling technical regulations (SL187-96)

formulated by China, water samples were collected using a

small pump at a depth of 50 cm from the water surface, and

1-L water samples were sealed, refrigerated, and sent to an

environmental laboratory to measure TN and TP

concentrations. Meanwhile, the geographical location of each

sample point was recorded using a Trimble GPS receiver

(GEOXH 2008).

TN in water has various forms of nitrogenous compounds,

including nitrate, nitrite, ammonia, and organic nitrogen

(Qun’ou et al., 2021). The basic potassium persulfate UV

FIGURE 2
Flow chart of remote-sensing monitoring of the TN and TP concentrations.
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spectrophotometric method (HJ 636-2012) was used to determine the

TN concentrations herein. This study took 20-ml water from a sample

and added basic potassium persulfate and potassium persulfate, fixed

the volume, and then disintegrated it in an autoclave at 120°C for

30min. Then, we cooled the sample to 25°C, added hydrochloric acid,

fixed the volume, and shook it well for colorimetry. TP in water

primarily includes total dissolved phosphorus and particulate

phosphorus (Zhang et al., 2015). The TP concentration was

measured using the ammonium molybdate spectrophotometric

method (GB11893-89): 20-ml water from each sample was taken

and added to potassium persulfate, followed by digestion in an

autoclave at 120°C for 30 min. After cooling, the pH was adjusted

by adding a 2,6-dinitrophenol reagent until the solution became

slightly yellow, and the color was fixed by adding a molybdenum

antimony anti-reagent.

2.3 Remote-sensing images and other
datasets

The 14 scenes of Sentinel-2 Level-1C MSI images used in our

study, acquired on the sampling date (Supplementary Table S2),

were obtained from the ESA website (https://scihub.copernicus.eu/).

This type image contained 13 spectral bands from visible and near-

infrared to short-wave infrared, and its spatial resolutions were 10,

20, and 60 m, respectively. After removing the small amounts of thin

clouds present in the Sentinel-2 MSI images, the ACOLITE

atmospheric correction algorithm (Caballero and Stumpf, 2020;

Renosh et al., 2020) was used to radiometrically correct the

images, to obtain the band Rrs, and to resample the image

resolution to 10 m in this study. The Modified Normalized

Difference Water Index (MNDWI), proven to be more suitable

for the extraction of water bodies in eutrophic waters due to its

ability to easily distinguish shadows (Xu, 2005; Wang, 2017), was

calculated (Eq. 1) to extract the water region around Chaohu Lake

with a threshold of 0.1. GIS software was used to extract the bandRrs

from the Sentinel-2 MSI images according to the sample locations.

MNDWI � [ρ(Green)—ρ(MIR)]/[ρ(Green) + ρ(MIR)] (1)

where ρ(Green) and ρ(MIR) denote the Rrs in the green and

middle-infrared bands, respectively.

The land-use dataset was obtained from the Global 30 m Land

Cover Fine Classification System in 2020 (GLC_FCS30-2020),

which was obtained from the Earth Big Data Science Project

Data Sharing Service System website (https://data.casearth.cn/).

The meteorological dataset was obtained from the China

Meteorological Data Network website (https://data.cma.cn/).

3 Methods

The study area was divided into two zones according to the

land-type proportion of riparian zones by using the hierarchical

cluster method. The rivers with a high proportion of agricultural

land were divided into Zone A, and those with a high proportion

of urban land were divided into Zone B. Sensitive band analysis

was carried out based on the band Rrs and the measured TN and

TP concentrations, and machine-learning regression methods

were used to construct TN and TP retrieval models for zones A

and B, respectively. Then, the verification sites were selected

based on geographic locations of the sites to verify the accuracy of

the constructed retrieval models. Moreover, a comparison with

the accuracy of the retrieval model constructed without using

geographical divided strategy was also performed. Lastly, the

spatiotemporal variations and influencing factors of TN and TP

concentrations retrieved from Sentinel-2 MSI images were

analyzed (Figure 2).

3.1 Geographical division

The previous study in Chaohu Lake Basin has shown that

land use in the 1,000-m riparian zone has a significant impact

on river water quality (Zhang et al., 2011). Therefore, 1,000 m

was taken as a buffer distance of the rivers in this study, and

ArcGIS software was used to analyze the buffer zone of the

rivers around Chaohu Lake to establish the riparian zone and

to measure the proportion of agricultural land, urban land,

forest, and grassland in the riparian zone. Then, the

hierarchical cluster analysis method in SPSS software was

used to geographically divide the water around Chaohu

Lake according to the land-type proportion in the

riparian zone.

3.2 The retrieval model construction

The band Rrs and themeasured TN/TP concentrations at all the

sampling sites were used as the modeling dataset. Considering the

influence of the sampling site geographic locations on the model

accuracy evaluation, which was not considered in previous studies

(Isenstein and Park, 2014; Li et al., 2017; Mbuh, 2017; Guo H. et al.,

2020; Huangfu et al., 2020; Qun’ou et al., 2021; Zhao et al., 2021), the

sample sites were divided into the sites of zones A andB according to

the hierarchical cluster analysis results to generate the modeling

datasets separately.

In this study, the K-nearest neighbor (KNN), linear regression

(LR), random forest (RF), gradient-boosting tree (GBT), extra trees

regressor (ETR), support-vector regression (SVR), and back-

propagation neural network (BPNN) algorithms were used to

construct TN and TP concentration retrieval models. KNN was

given a training dataset and a new input sample, where the new

sample was predicted after finding the K-nearest samples to the

instance in the training dataset (Modaresi and Araghinejad, 2014).

LR minimized the mean square error (MSE) between the predicted

and true values by finding the parameters w (slope) and b (intercept)

Frontiers in Environmental Science frontiersin.org05

Li et al. 10.3389/fenvs.2022.1014155

https://scihub.copernicus.eu/
https://data.casearth.cn/
https://data.cma.cn/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1014155


(Ahmed et al., 2019; Aguilar et al., 2021). RF is a classifier that uses

multiple decision trees to train and predict samples (Ahmed et al.,

2019; Chen et al., 2020). ETR is similar to RF in that classification is

performed by constructing multiple decision trees; however, in

constructing the split nodes of each tree, a random portion of

features are first collected, and then the best node features are

selected for model construction using the information entropy/Gini

index (Ahmed et al., 2019). To minimize the MSE, GBT uses a

forward stepwise algorithm to determine each decision tree by

minimizing the loss function based on the previously calculated

model residuals, making the previous residuals decrease in the

direction of the gradient, thus gradually improving the model-

prediction accuracy. SVR, however, constructs a decision

function for LR by mapping nonlinear data to a high-

dimensional space through a kernel function, which has its

unique advantages in solving nonlinear and high-dimensional

pattern-recognition problems in the case of small samples

(Modaresi and Araghinejad, 2014; Ahmed et al., 2019). BPNN is

a local search optimizationmethod that approximates theminimum

error by continuously adjusting theweights of neurons, which is easy

to converge to produce local minima, and the approximation and

generalization ability of the network is strongly dependent on the

training samples (Fei et al., 2020).

Inthemodeling process, Pearson correlation analysis was used to

correlate a single band or band combinations of the Rrs with the TN

and TP concentrations via the scipy.stats function in the Python

library. The bands or band combinations with high correlation were

selected as independent variables of retrieval models, and TN and

TP concentrations were selected as dependent variables. The

modeling dataset was then randomly divided into a training set

(about 75%) and a validation set (about 25%) according to the

geographic location of the sampling sites, and the TN and TP

concentration retrieval models were constructed.

3.3 Model accuracy evaluation

Ensuring that the number of samples for the validation

dataset was more than a quarter of the total samples, and that

at least one site of each river was used, the accuracy of the

retrieval models was evaluated using the determination

coefficient (R2), mean square error (MSE), and mean absolute

percentage error (MAPE) (Eqs 2–4).

R2 � ∑m
i�1(�y − y∧i )

2

∑m
i�1 (�y − yi )

2 , (2)

MSE � 1
m
∑

m

i�1(yi − y∧i )
2 (3)

MAPE � 100%
m

∑m

i�1

∣∣∣∣∣∣∣∣
y∧i − yi
yi

∣∣∣∣∣∣∣∣ , (4)

where m is the total number of samples, �y is the mean value of the

TN or TP concentration, yi is the measured value of the TN or TP

concentration, and y∧i is the retrieval value of the TN or TP

concentration.

4 Results

4.1 Geographical division of water around
Chaohu Lake

In our study, based on the hierarchical cluster analysis results

of the land-type proportions in the riparian zones, the water with

a low proportion of urban land (<20%), including Baishitian

River, Zhao River, Hangbu River, Zhegao River, Tongyang River,

Yuxi River, and Chaohu Lake, were taken as rural water (Zone

A), and those with a high proportion of urban land (>20%),

including Nanfei River, Shiwuli River, Pai River, and Tangxi

River, were taken as urban water (Zone B) (Figure 3 and

Supplementary Table S3).

4.2 TN and TP concentration-retrieval
model constructed

According to the method in Section 3.2, Pearson correlation

analysis of the measured TN/TP concentrations and the band Rrs

combinations was performed in our study. To construct the

retrieval models of the TN and TP concentrations suitable for the

study area, the bands or band combinations with high correlation

in Table 1 were selected as input-independent variables in this

study, and the retrieval models of the TN and TP concentrations

were constructed using machine-learning regression algorithms

(such as KNN, LR, RF, GBT, ETR, and SVR), respectively.

After eliminating some samples with abnormal TN and TP

concentration values by analyzing box plots, the validation

datasets for the zones A and B were selected by using the

method in Section 3.2 and the accuracy of the constructed TN

and TP concentration retrieval models was evaluated by the three

indicators of R2, MSE, and MAPE (Table 2).

As seen in Table 2, the optimal TN concentration retrieval

model was both the GBT model in zones A and B. The three

accuracy indices of R2, MSE, and MAPE for the two zones were

0.67, 0.37 mg/L, and 36.81% and 0.78, 0.34 mg/L, and 8.34%,

respectively (Figures 4A, B).

The optimal TP concentration retrieval models for zones A

and B were the RF and ET models, respectively. The three indices

of R2, MSE, and MAPE for these two zones were 0.46, 0.0034 mg/

L, and 38.60% and 0.58, 0.018 mg/L, and 37.57%, respectively

(Figures 4C, D). In addition, when the TP concentration retrieval

model is estimating the samples with high concentrations

(>0.4 mg/L), the convergence effect of machine-learning

regression on extreme data leads to an underestimation of its

retrieval values. The optimal TP retrieval model was

overestimated when estimating the samples with the
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FIGURE 3
Geographical division of the study area according to land-type proportions in the riparian zones.

TABLE 1 Band combinations as the input variables for the TN/TP-retrieved models.

TN for Zone A (N = 86) TN for Zone B (N = 28) TP for Zone A (N = 86) TP for Zone B (N = 28)

Band
combinations

Correlation
coefficient

Band
combinations

Correlation
coefficient

Band
combinations

Correlation
coefficient

Band
combinations

Correlation
coefficient

B3 −0.510 B8a×B7 0.563 B8/B3 −0.497 B8a/B8 0.506

B3+B2 −0.492 B7×B6 0.559 B8a/B4 −0.482 B8/B7 −0.424

B4+B3 −0.467 B8a×B6 0.551 B8/B5 −0.474 B8/B6 −0.395

B2 −0.463 B8×B7 0.545 B8a/B3 −0.46 B8a/B6 0.348

B4+B2 −0.445 B8a×B8 0.536 B8/B4 −0.455 B8a/B4 0.339

B5+B3 −0.443 B8×B6 0.524 B8a/B5 −0.453 B8a/B5 0.331

B8/B2 0.431 B8/B2 −0.448 B8a/B7 0.312

B3×B2 −0.430 B6/B4 −0.447 B7/B5 0.304

B5+B2 −0.425 B6/B3 −0.442

B4 −0.408 B7/B4 −0.442

B4×B3 −0.407 B7/B3 −0.429

B8/B3 0.406 B6/B5 −0.427

B4×B2 −0.395 B8a/B6 −0.426

B5/B3 0.395 B7/B5 −0.418

B8a/B7 −0.407

Note: Bi represents the i band Rrs in MSI, image, i = 1, . . . , 8, 8a.
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concentrations between 0.3 and 0.4 mg/L. It is because the

corresponding sampling sites are mainly located in the narrow

river channels, which are affected by the reflections from the

neighboring land (Supplementary Figure S1).

Then, the robustness of the retrieval model was evaluated by

using the methodmentioned in a water-transparency retrieval study

(Cui et al., 2022). The input variables of themodel were processed by

adding noise of 0.1%–40% to the training set randomly, re-modeled

with the train set with noise, and evaluated using the original test set

(Table 2). The accuracy of the optimal TN concentration model

(GBT) for zones A and B decreased to R2 = 0.45, MSE = 0.42 mg/L,

andMAPE= 42.01%, andR2 = 0.17;MSE= 1.56 mg/L, andMAPE=

16.12%, respectively, and those of the optimal TP concentration

models for zones A and B (RF, ET) decreased to R2 = 0.44, MSE =

0.0033 mg/L, andMAPE = 33.86%; and R2 = 0.36, MSE = 0.023 mg/

L, and MAPE = 36.95%, respectively. Both RF and ET models have

better robustness thanGBT because they are less prone to overfitting

owing to the random sampling of each decision tree during the

fitting process, which improves their robustness.

4.3 Variation of TN and TP concentrations
in the water around Chaohu Lake

The optimal retrieval models of the TN and TP concentrations

constructed previously were applied to Sentinel-2 MSI images

acquired in different seasons, and the TN and TP concentration

maps of the water around Chaohu Lake were obtained, respectively

(Figures 5, 6). The results showed that TN and TP concentrations

throughout the study area ranged from 0.67~10.13 mg/L and 0.0 to

1.08 mg/L, respectively. According to the environmental quality

standards for surface water in China (GB3838-2002), the water

quality of Nanfei River, Shiwuli River, Pai River, and other rivers was

stable as level poor V and fluctuated less with time, while the water

quality of Hangbu River, Baishitian River, and Yuxi River fluctuated

notably between level Ⅳ and poor V.

The TN and TP concentrations in the water surrounding

Chaohu Lake were separately calculated in the GIS software and

their spatial variation were also analyzed (Figure 7). The spatial

variation of the TN concentration is shown as Nanfei River, Shiwuli

River, and Pai River> other rivers> the lake. The TN concentrations

in all the rivers were higher than those in the lake, and the TN

concentration in the western lake was higher than that in the eastern

lake, which is consistent with the fact that the western part of

Chaohu Lake is more eutrophic than the eastern part (Yang et al.,

2020; Zhang M. et al., 2020). The seasonal differences in TN

concentrations of Nanfei River, Shiwuli River, and Pai River are

not significant, and the TN concentrations of other rivers are higher

in December and March than those in July and November.

The spatial variation of TP concentration showed that Nanfei

River, Shiwuli River, and Pai River > the lake > other rivers. TP

concentrations in Nanfei River, Shiwulil River, and Pai River were

higher in December than those in othermonths, while the difference

among the other seasons was not significant. The lowest TP

TABLE 2 The accuracy evaluation results for different TN/TP concentration-retrieval models.

Model type TN TP

Zone A (N = 27) Zone B(N = 10) Zone A (N = 28) Zone B(N = 15)

R2 MSE
(mg/L)

MAPE R2 MSE
(mg/L)

MAPE R2 MSE
(mg/L)

MAPE R2 MSE
(mg/L)

MAPE

KNN 0.17 0.93 61.00% 0.33 1.23 18.98% 0.39 0.0037 43.40% 0.29 0.026 45%

KNN+ 0.09 1.07 49.44% 0.47 0.88 12.83% 0.35 0.0044 33.45% 0.2 0.0028 39.55%

LR 0.47 0.62 50.79% 0 2.13 20.05% 0.23 0.0054 47.01% 0.2 0.026 49.22%

LR+ 0.22 0.9 59.00% 0.28 1.67 14.85% 0.24 0.0052 42.48% 0.28 0.023 36.97%

RF 0.62 0.44 42.81% 0.69 0.55 11.78% 0.46 0.0034 38.60% 0.41 0.021 43.01%

RF+ 0.58 0.49 35.96% 0.16 1.11 13.47% 0.44 0.0033 33.86% 0.29 0.023 38.69%

GBT 0.67 0.37 36.81% 0.78 0.34 8.34% 0.22 0.0065 47.65% 0.39 0.021 37.29%

GBT+ 0.45 0.42 42.01% 0.17 1.56 16.12% 0.29 0.0055 59.17 0.1 0.036 57.24%

ET 0.59 0.5 48.88% 0.55 0.88 15.67% 0.41 0.0038 42.32% 0.58 0.018 37.57%

ET+ 0.51 0.58 37.75% 0.3 1.36 14.91% 0.47 0.0036 35.74% 0.36 0.023 36.95%

SVR 0.40 0.75 45.69% 0.64 0.83 13.36% 0.41 0.0037 46.07% 0.45 0.018 49.23%

SVR+ 0.26 0.84 44.49% 0.1 1 13.16% 0.44 0.004 31.78% 0.54 0.016 33.07%

BPNN 0.63 0.47 56.24% 0.34 1.02 16.23 0.31 0.0052 50.38% 0.22 0.025 37.45%

BPNN+ 0.22 1.05 52.08% 0.2 1.38 14.69% 0.33 0.0047 43.48% 0.16 0.028 38.75%

Note: + shows the model adding random noise of 0.1%–40%.

The meaning of the bold values is optimal machine learning models.
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concentrations in Baishitian River, Zhao River, Yuxi River, and

Hangbu River all occurred in November, and the highest

concentrations occurred in July, with the same intra-annual

variation pattern as in previous years (Yang et al., 2020). The

spatial differences in the TP concentration of Chaohu Lake were

not significant, showing that the TP concentration in the western

lake was slightly higher than that in the eastern part, which is

consistent with the development that the water quality in the

western lake has slightly improved and that in the eastern part

has been gradually deteriorating (Lai and He, 2021). The TP

concentration in Chaohu Lake was slightly higher in November

and December than in March and July.

5 Discussion

5.1 The uncertainty of the retrieval model
construction

The TN/TP concentration retrieval models (RF/BPNN) for

small lakes and the TP concentration retrieval model (BPNN) for

rivers have been constructed based on Sentinel-2 MSI images

(Guo H. et al., 2020; Huangfu et al., 2020), which performed with

high accuracy but poor universality. The RF and BPNN

algorithms were then applied to our study area, and the

retrieval accuracy of TN for zones A and B was found to R2 =

0.62, MSE = 0.44 mg/L, and MAPE = 42.81%; and R2 = 0.69,

MSE = 0.55 mg/L, and MAPE = 11.78%, respectively, and that of

TP for Zones A and B was R2 = 0.31, MSE = 0.0052 mg/L, and

MAPE = 50.38%; and R2 = 0.22, MSE = 0.025 mg/L, MAPE =

37.45%, (Table 2), respectively, which were lower than the

accuracy of the optimal retrieval models in our study.

GBT, RF, and ET models in our study are all the decision-tree

regression–integration algorithms, which are strong for low-

dimensional, nonlinear, and small-sample data processing

(Huang et al., 2018), and these three models in the TN/TP

concentration retrieval performed better than other machine-

learning algorithms. Thus, the retrieval method in our study is

also suitable for the inland water with varying water quality

conditions for watershed or regional scales. Compared to the

study in Taihu Lake of China (Xiong et al., 2022), the accuracy

of the TP retrieval model constructed in our study is poor because

the model is affected by high spatial heterogeneity of the TP

concentration in the study area and the presence of TP mainly

in dissolved and particulate states, which is influenced by suspended

matter and Chl-a (Zhang et al., 2015). Therefore, the TP

FIGURE 4
Performance evaluation of the optimal TN and TP retrieval models using geographic division strategy. (A) TN retrieval model for Zone A; (B) TN
retrieval model for Zone B. (C) TP retrieval model for Zone A; and (D) TP retrieval model for Zone B.
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concentration retrieval model constructed by the indirect method

through suspended matter, Chl-a, etc. was considered in this work.

In addition, the robustness evaluation of the models in

Table 2 showed that the retrieval model of TN/TP for Zone B

was less robust because of the small modeling sample (N = 28),

and the number of modeling samples of the current TN/TP

retrieval model based on sentinel-2 MSI images was over 80 (Guo

H. et al., 2020; Huangfu et al., 2020). Therefore, the TN/TP

concentration retrieval model in our study can be further

improved by increasing the number of modeling samples.

5.2 Effect of geographical division on the
retrieval accuracy

To analyze the influence of the geographic division

strategy on the retrieval accuracy of the TN and TP

concentrations in inland water, the machine-learning

methods were used to construct the TN and TP

concentration retrieval models when the study area was not

divided, and the accuracy of the optimal retrieval model was

also evaluated (Figure 8). Then, its accuracy was compared

with the optimal model retrieval accuracy using the

geographic dividing strategy.

As seen in the two figures (Figures 4, 8), the retrieval accuracy

using geographic division for the study area is significantly better

than that without dividing, and the slope of its fitted equation is

close to 1. The accuracy indices of R2, MSE, and MAPE of the TN

concentration retrieval model were increased from 0.36, 2.95 mg/

L, and 73.51% to 0.67, 0.37 mg/L, and 36.8% (Zone A) and 0.78,

0.67 mg/L, and 8.34% (Zone B), respectively. Those of the TP

concentration retrieval model were improved from 0.23,

0.01 mg/L, and 55.35% to 0.46, 0.0034 mg/L, and 38.6% (Zone

A) and 0.58, 0.0018 mg/L, and 37.57% (Zone B), respectively.

FIGURE 5
Remote-sensing retrieval results of the TN concentrations in the water around Chaohu Lake. (A) Total nitrogen distribution on March 22, 2021
(B) Total nitrogen distribution on July 25, 2020 (C) Total nitrogen distribution on November 2, 2020 (D) Total nitrogen distribution on December 13,
2019.
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The current retrieval models of nitrogen and phosphorus

concentrations are mainly constructed directly from remote-

sensing images or through media water-quality parameters

such as chlorophyll a and suspended solids, and their

applicability has been proved, but their models are only

applicable to single water bodies (He and Li, 2011; Huang

et al., 2021; Isenstein and Park, 2014; Liu et al., 2015; Qun’ou

et al., 2021; Wang et al., 2018). It is clear that narrowing the

application region of the model when constructing the

retrieval model for the total phosphorus concentration in

Chaohu Lake can significantly improve the retrieval

accuracy (Gao et al., 2015). However, from the perspective

of the causes of water-quality deterioration, pollutant

discharge, geography, hydrology, and climate are the

fundamental causes of water-quality differences (Palviainen

et al., 2016; Liu et al., 2017; Shrestha et al., 2018; Wu and Lu,

2021), and related studies have shown that there is a clear

correlation between land type in riparian zones and river

water quality (Ding et al., 2016; Giri and Qiu, 2016; Shi

et al., 2017; Mello et al., 2018). Therefore, this study has

constructed the retrieval models of TN and TP concentrations

in the rivers around Chaohu Lake based on geographical

division by the land-type proportions of river riparian

zones and provides a reference for solving the problem of

poor applicability of water-quality retrieval model.

5.3 The factors influencing TN and TP
concentration variations

The factors influencing TN and TP concentration

variations in the water around Chaohu Lake were analyzed

by investigating meteorological, statistical yearbook, and

land-type datasets in the Chaohu Lake Basin. Figure 7

FIGURE 6
Remote-sensing retrieval results of the TP concentrations in the water around Chaohu Lake. (A) Total phosphorus distribution on March 22,
2021 (B) Total phosphorus distribution on July 25, 2020 (C) Total phosphorus distribution onNovember 2, 2020 (D) Total phosphorus distribution on
December 13, 2019.
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shows that the intra-annual variability of TN concentration in

urban water is not significant, owing to the fact that the

nitrogen sources in urban water are mainly discharged

from urban industrial wastewater, and the monthly

discharge is relatively stable (Xi et al., 2016; Yu et al.,

2018). Meanwhile, the short-term intense precipitation

caused intra-annual fluctuations of nitrogen concentration

in urban water (Baron et al., 2012; Kaushal et al., 2014). TN

concentrations in rivers of rural water show higher

concentrations in March and November than in July, which

is due to agricultural non-point source pollution as the

primary source of nitrogen in rural water, and the low

precipitation in March and November, so agricultural

farming and seasonal precipitation have a combined

influence on the intra-annual variation of TN

concentrations in rivers of rural water (Yu et al., 2018;

Yang et al., 2020). In addition, the western and eastern

parts of Chaohu Lake showed the highest concentrations in

spring, also due to the dramatic increase in river nitrogen

output caused by agricultural activities in the spring, resulting

FIGURE 7
Inner-annual variation of the retrieved TN/TP concentration in the water around Chaohu Lake. (A) TN concentration; (B) TP concentration.

FIGURE 8
Performance evaluation of the optimal TN and TP retrieval models which did not use the geographic division strategy. (A) TN retrieval model; (B)
TP retrieval model.
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in an increase of the total nitrogen discharged into Chaohu

Lake (Wang et al., 2011; Zhang et al., 2015).

Recent studies have shown that phosphorus emissions

from livestock surface pollution account for about 40% of

phosphorus inputs to the Chaohu Lake Basin (Wu et al., 2020;

Zhang M. et al., 2020). Sewage discharge is the main source of

phosphorus in urban water (Yang et al., 2020), and the form of

phosphorus present is dominated by SRP (soluble reactive

phosphorus), which is the main source of phosphorus in

Chaohu Lake (Zhang et al., 2015). The slower river flow in

winter limits the rate of phosphorus migration, resulting in

higher phosphorus concentrations of urban water in

December (Xi et al., 2016). Agricultural non-point source

pollution is the main source of phosphorus in rural water,

mainly in the form of PP (particulate phosphorus) (Zhang

et al., 2015), which is influenced by soil erosion. Soil erosion

caused by the continuing precipitation is the main reason for

the highest TP concentrations in rural water in July (Du et al.,

2017).

Then, the optimal retrieval models of the TN/TP

concentrations for zones A and B were applied to Zone B and

Zone A, respectively, to further demonstrate the effectiveness of

the geographic division modeling strategy (Supplementary

Figure S2). By analyzing the cross-validation accuracy of the

optimal retrieval model in the zones A and B, all the sample

locations were basically distributed on a single side of 1:1, and

their cross-validation accuracies were very low. The

aforementioned results indicate that the retrieval models

constructed based on geographic division exhibit high

accuracy only in the water with a similar land-type

composition for the watersheds, thus demonstrating the

effectiveness of geographic division modeling based on land

type in riparian zones. The nutrients in the Chaohu Lake

Basin mainly come from the soil (Yu et al., 2018), and are

highly correlated with the land type in the riparian zone (Lin

et al., 2021). Thus, geographic division based on land type can

extract data features, reduce discrete differences in the dataset,

and improve modeling accuracy (Dalmaijer et al., 2022).

6 Conclusion

Remote-sensing retrieval models of the TN and TP

concentrations in the water around Chaohu Lake were

constructed using the geographical division strategy based

on the land-type proportions in the riparian zone. The

accuracy of the constructed models was evaluated using

the validation dataset based on the geographic location of

the sample sites. The R2, MSE, and MAPE of the optimal TN

concentration retrieval model for rural water and urban

water were 0.67, 0.37 mg/L, and 36.81% and 0.78, 0.34 mg/

L, and 8.34%, respectively, while those of the TP

concentration retrieval model for rural water and urban

water reached 0.46, 0.0034 mg/L, and 38.60% and 0.58,

0.018 mg/L, and 37.57%, respectively. Comparing to which

does not use the geographic division strategy, the retrieval

accuracy of TN and TP concentrations has improved

significantly. According to the retrieval results of TN and

TP concentrations from Sentinel-2 MSI images, the TN and

TP concentrations in urban water are higher than those in

rural water. The TN and TP concentrations in urban water

are stable throughout the year, peaking in December, while

those of rural water are the highest in March and the lowest

in November. Sewage discharge and intense rainfall are the

main reasons for the variations of the TN and TP

concentrations in urban water, while the TN and TP

concentrations variations in rural water are affected by

agricultural non-point source pollution and seasonal

precipitation. Our study can provide new methods for

retrieving the water-quality parameters in different water

bodies in the large-scale region, and the relevant conclusions

will provide the scientific reference for preventing pollution

and eutrophication in the water around Chaohu Lake, China.
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