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The emission peak and carbon neutrality targets pose a great challenge to

carbon emission reduction in the coal industry, and the coal industry will face an

all-around deep adjustment. The forecast of coal price is crucial for reducing

carbon emissions in the coal industry in an orderly manner under the premise of

ensuring national energy security. The volatility and instability of coal prices are

a result of multiple influencing factors, making it very difficult to make accurate

predictions of coal price changes. We propose in this paper an innovative hybrid

forecasting method (CEEMDAN-GWO-CatBoost) for forecasting coal price

indexes by combining machine learning models, feature selections, data

decomposition, and model interpretation. By combining high forecasting

accuracy with good interpretability, this method fills a gap in the field of

coal price forecasting. Initially, we examine the factors that influence coal

prices from five angles: Supply, demand, macroeconomic factors, freight

costs, and substitutes; and we employ Spearman correlation analysis to

reduce the complexity of the attribute set and devise a coal price

forecasting index system. Secondly, the CEEMDAN method is used to

decompose the raw coal price index data into seven intrinsic modal

functions and one residual term in order to weaken the volatility of the data

caused by complex factors. Next, the CatBoost model hyperparameters are

optimized using the Grey Wolf Optimizer algorithm, while the coal price data is

fed into the combined forecasting model. Lastly, the SHAP interpretation

method is introduced for studying the important indicators affecting coal

prices. The experimental results show that the combined CEEMDAN-GWO-

CatBoost forecasting model proposed in this paper has significantly better

forecasting performance than other comparative models, and the SHAP

method employed in this study identifies the macroeconomic environment,

freight costs, and coal import volume as significant factors affecting coal prices.

As part of the contribution of this paper, specific recommendations aremade to

the government regarding the formulation of a regulatory policy for the coal

industry in the context of carbon neutrality based on the findings of this

research.
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Introduction

The world is confronted with a slew of environmental issues,

one of which is attenuating the detrimental impacts of carbon

dioxide (CO2) emission-induced climate change (Doğan et al.,

2021; Murshed et al., 2022; Talbi et al., 2022). As the largest

developing country in the world, China proposed in September

2020 a low-carbon development goal to “achieve peak carbon

dioxide by 2030 and carbon neutrality by 2060”, and General

Secretary Xi Jinping, of the CPC Central Committee, has

repeatedly stressed the necessity of implementing this goal at

international and domestic meetings. Yet, in terms of the overall

level of emissions, China is still experiencing “high total and high

incremental” carbon emissions, of which more than 85% are the

result of energy-related activities (Lin et al., 2022). In China, coal-

based fossil fuel energy is the largest source of carbon emissions,

and carbon reduction in the coal industry is the main focus of its

carbon neutral efforts (Bouckaert et al., 2021). It is necessary to

change the current energy consumption structure in order to

mitigate environmental degradation. However, numerous studies

have confirmed the existence of numerous strong links between

economic complexity, energy consumption and carbon

emissions (Dogan et al., 2020; Doğan et al., 2020; Shahzad

et al., 2020; Shahzad et al., 2021; Doğan et al., 2022a; Doğan

et al., 2022b; Doğan et al., 2022c; Khalfaoui et al., 2022; Lv et al.,

2022; Reddy Paramati et al., 2022; Shahzad et al., 2022). The

inseparability of economic development from energy

consumption, and the widespread use of energy and its

fundamental support for society and the economy determine

the complexity of the transition to a new energy system. Without

an appropriate relationship between short- and medium-term

stable economic growth and a low-carbon transition, it will not

only be difficult to achieve the anticipated emission reduction

effects, but also may pose hidden risks to energy security and

economic growth (Mo et al., 2021). The coal industry faces the

dual challenge of ensuring reliable energy supply and achieving

carbon neutrality (Wei et al., 2020). Recently, China’s coal prices

have fluctuated significantly and triggered a series of chain

reactions, causing a large impact on China’s energy security

and national economic and social development. In the “double

carbon” goal, due to energy restructuring and industrial

transformation and upgrading is a non-linear multi-oscillation

process, coal prices will change significantly is a norm. An

accurate scientific prediction of coal prices will allow coal

enterprises to adapt their business strategies, government

agencies to develop price control measures, and individual

investors to make timely investment decisions. Therefore,

establishing an effective coal price forecasting model is crucial

both to the smooth implementation of the current Chinese coal

revolution strategy and to maintaining the smooth operation of

the macroeconomic system. This is also one of the important

ways of strengthening the energy market governance and

reducing energy price risks.

Many domestic and foreign scholars have conducted

extensive research on coal prices from various perspectives. By

examining and analysing the existing literature, it has been found

that coal price research can generally be divided into two

categories: analysis of coal price influencing factors and coal

price forecasting. In exploring the factors that influence coal

prices, Lin et al. (2007) examined the factors underlying the

fluctuations in coal prices from the perspective of market supply

and demand equilibrium. Yuan et al. (2010) conducted an

empirical study on the factors affecting coal prices using

cointegration analysis with VEC models. Wang et al. (2013)

demonstrate asymmetry between factors affecting coal demand

and coal supply in China, and coal demand from key coal-

consuming industries has a significant impact on the domestic

coal price. The effect of the power sector on coal prices has been

highlighted by Wang et al. (2021a). He et al. (2013) analysed the

correlation between Chinese and international energy prices and

observed that Australian coal prices are strongly correlated with

Chinese coal prices. Li et al. (2019) examined the interaction

between the Chinese coal market and the crude oil and

international coal markets Hasan and Ratti (2015) analysed

the effect of oil prices on stock returns in the coal industry

and concluded that there is a negative correlation between them

Zamani (2016) confirmed that oil supply and demand have an

effect on coal prices.

Among the existing methods for coal price simulation

forecasting, there are both econometric and machine learning

methods. Time series data are used in econometrics for

forecasting. For example, Zhang and Ma (2011) extracted the

principal components of the coal price index for the past 20 days

to construct a least square forecasting model in order to achieve

autoregressive forecasting of coal prices. Zhao et al. (2016) used

multiple fractal detrended volatility analysis to study the volatility

of power coal prices and proposed quarterly volatility indices for

predicting coal prices. Jiang et al. (2018) built an ARIMA model

to estimate coal prices in China for 2016–2030. Although the

econometric approach is capable of capturing the time series

information on coal prices, it only uses historical data of the

target quantity to fit a target value, ignoring the inter-coupling

effects of other influencing factors on coal prices (Ho et al., 2002).

With the development of computer science and artificial

intelligence techniques, machine learning methods have

become widely used for predicting energy consumption in

recent years (Herrera et al., 2019; Ding et al., 2022; Meng

et al., 2022). Coal prices are affected by a number of factors,

including domestic and international macroeconomic

developments, the level of development of coal downstream
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industries, thermal power generation, coal alternative energy

prices, coal futures market quotes, environmental protection

policies, and national politics and diplomacy. In comparison

to econometric methods, the emergence of artificial intelligence

provides new ideas for modeling multivariate nonlinear time

series forecasting problems. Machine learning methods make use

of training data to better model the nonlinear mapping

relationship between coal prices and their influencing factors,

which can improve the accuracy of forecasting results when

predicting future price trends (Yan and Aasma, 2020). Fan et al.

(2016) used a multilayer perceptron network (MLP) to predict

coal prices in Qinhuangdao, and the experimental results showed

that the neural network algorithm prediction was more accurate

than the ARIMAmodel. Alameer et al. (2020) suggested a model

that uses a LSTM-DNN to predict monthly fluctuations in the

price of Australian power coal. Ding et al. (2021) established a

hybrid data sampling (C-MIDAS) combined with XGBoost

model to achieve probability density prediction of the FOB

price of Qinhuangdao power coal. Zhang et al. (2022)

presented a hybrid VMD-A-LSTM-SVR forecasting model

and demonstrated this model’s effectiveness using three

typical coal price datasets. Machine learning models can

achieve high prediction accuracy due to the rapid

development of artificial intelligence and there is an increasing

demand for interpretable machine learning so that the reasons

why the models make decisions can be reliably explained (Miller,

2019). While the learning performance and prediction accuracy

of the above coal price machine learning forecasting model has

been greatly improved, the interpretability of the model in the

forecasting process has been overlooked.

Furthermore, coal prices are typically non-linear and non-

smooth time series data, and because they are affected by

multiple factors, directly using the collected coal price data for

forecasting will have poor forecasting accuracy, which requires

the use of appropriate data pre-processing techniques to reduce

noise in the collected coal prices. In the field of forecasting, some

scholars have discovered information-rich and valuable subseries

by decomposing the original time series signal into sub signals

(Bedi and Toshniwal, 2020). Representative methods are such as

Variational Mode Decomposition (VMD) (Niu et al., 2018),

Wavelet Transform (WT) (Liu et al., 2018), and Empirical

Mode Decomposition (EMD) (Zhang et al., 2016). In

particular, the EMD method is able to decompose data into

multiple Intrinsic Mode Functions (IMFs) at varying frequencies

based on the data’s characteristics, which has better

decomposition properties for nonlinear and nonsmooth data

and can extract features from the data at different frequency

scales (Huang et al., 1998). Nevertheless, EMD is susceptible to

the phenomenon of modal mixing during decomposition, which

in turn affects the decomposition effect. In order to address these

issues, Wu and Huang (2009) proposed an integrated Empirical

Mode Decomposition (EEMD) method that can effectively

resolve the modal mixing phenomenon by introducing

Gaussian white noise to the original signal. However, there

remains residual Gaussian white noise in the eigenfunction

components decomposed by the EEMD method, which causes

errors in the reconstruction. Based on this, Torres proposed the

CEEMDAN (Torres m e Colominas-, 2011) method to improve

EEMD. CEEMDAN adds adaptive white noise at each stage,

which can effectively overcome the large reconstruction error

problem associated with the EEMD method. Based on this

advantage of the CEEMDAN decomposition method, the

method has been used in forecasting problems in several fields

(Zhang et al., 2017; Cao et al., 2019; Wang et al., 2021b), however,

the current energy forecasting problem has not yet been studied

by combining the method with coal price forecasting.

Overall, the existing literature has examined the coal price

issue from various perspectives, but there are still some

shortcomings. Firstly, there are many studies on the factors

which influence coal prices, but most of them focus

exclusively on a local level and fail to compare and analyse

the factors which influence coal prices in China in a

comprehensive manner along with their degree of influence.

Secondly, most econometric models for coal price forecasting

are only linear fitting forecasts of historical data, and the method

ignores the nonlinear coupling between multidimensional

effective features. Finally, the prediction research of existing

coal price machine learning methods primarily uses deep

learning models, despite greatly improving prediction

accuracy. It, however, does not take into account the deeper

information present in the time series data, nor does it

decompose coal price data prior to prediction, and the model

prediction is poorly interpretable after completion, making it

easy to create a “black box”. The purpose of this paper is to

address the above deficiencies by making the following

contributions to the coal price forecasting problem.

(1) Five indicators are considered to influence coal price factors:

supply, demand, macroeconomics, freight costs, and

substitutes, and the indicators with high correlations with

coal prices are selected as the final variables by Spearman’s

correlation analysis.

(2) A hybrid CEEMDAN-GWO-CatBoost prediction model was

developed. To begin with, the coal price data is decomposed

by using the CEEMDANmethod; then, the finalized forecast

indicators and the decomposed data are input into the

CatBoost model, and then the model hyperparameters are

optimized by using the GWO algorithm in order to increase

the forecasting ability of the combined model; and finally, the

SHAP interpretation method is used to determine the

important factors affecting coal prices after the forecasting

has been completed.

The remainder of the paper is structured as follows: the

second part provides an overview of the CEEMDANmethod, the

Gray Wolf optimization algorithm, and the CatBoost model,
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followed by a description of the implementation steps of the

combined model presented here and the SHAP interpretation

process; the third section presents the predictive index system

and data used in this study; in the fourth part, experimental

analysis of coal prices is presented and discussed; the fifth section

summarizes the conclusions of this paper, then proposes some

policy recommendations based on the findings, and finally

discusses the shortcomings of this paper and the next steps of

the research.

Methodology

CEEMDAN

A key idea behind the EMD algorithm is to convert the

nonlinear waveform signal into a series of single-frequency

component signals and residual signals. However, during the

decomposition process, the local poles will jump multiple times

thereby resulting in the modal presentation of the mixing

problem. Ensemble empirical modal decomposition (EEMD)

is an improved type of EMD that can suppress modal aliasing

to some extent by introducing auxiliary white noise.

Nevertheless, the IMF components decomposed by EEMD

have noise residue, which reduces decomposition efficiency

and results in large reconstruction errors. CEEMDAN solves

the issues of modal mixing and residual noise that arise in EEMD

and CEEMD algorithms from two perspectives. The Gaussian

white noise is first added to the noisy IMF component that has

been processed by the EMD algorithm in order to reduce the

effects of residual noise that tend to appear in the vibration signal

when added directly. CEEMDAN abandons the averaging of the

overall IMF components after the EMD decomposition, but

computes the overall averaging of the first order IMF

components until the final 1st order components are

obtained, and repeats this operation for the residual parts,

which effectively addresses the problem of noise transfer from

high to low frequencies and improves the completeness of the

decomposition process. The steps involved in decomposing

CEEMDAN are as follows.

Step1. Add i(i � 1, 2, . . . , m) times of Gaussian white noise

ei(n) with normal distribution to the original signal x(n), and
get the new signal.

Xi(n) � x(n) + ei(n) (1)

Step2. The EMD decomposition algorithm is used to

decompose the signal Xi(n) of each group with added noise

to obtain the 1st order modal component I1,i of each group, and

then the summation average is calculated to obtain the 1st modal

component I1.

I1 � 1
T
∑i
i�1
I1,i (2)

To obtain the residual component, x(n) is subtracted from

the 1st modal component as follows:

r1(n) � x(n) − I1 (3)

Step3. Continue to add i groups of white noise ei(n) to the

residual components to form a new signal to be decomposed.

R1,i(n) � r1(n) + ei(n) (4)

Then the EMD decomposition of R1,i(n) is performed to

obtain the 2nd order modal component I2,i and the summation is

averaged over I2:

I2 � 1
T
∑T
i�1
I2,i (5)

It is possible to express the residual component as follows:

r2(n) � r1(n) − I2 (6)

Step4. Repeat Step1-Step3 until the signal can no longer be

decomposed, i.e., the signal is monotonic, thus obtaining h

components and a residual rh(n), and the signal x(n) can be

expressed as follows:

x(n) � ∑h
i�1
Ii + rh(n) (7)

Grey wolf optimizer

By simulating the predatory behaviour of grey wolf packs,

Mirjalili and Lewis (2014) proposed a pack intelligence

optimization algorithm, the Grey Wolf Optimizer (GWO), in

2014. The GWO optimization process is carried out by the α, β

and δ wolves, the highest social strata in each generation of the

population, who lead the bottom ω wolves by hunting,

surrounding, and attacking their prey. GWO has been used to

solve optimization problems in many fields due to its simple

structure, few adjusting parameters, and easy implementation.

The following is a mathematical description of the algorithm.

To begin, we can describe mathematically the process by

which a wolf pack searches for and slowly surrounds its prey.

D � ∣∣∣∣C ·Xp(t) −X(t)∣∣∣∣ (8)
X(t + 1) � Xp(t) − A ·D (9)

a � 2 − 2I
M

(10)
A � 2a · r1 − a (11)
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C � 2 · r2 (12)

Here, X(t) is the position of the prey after the t th iteration;

Xp(t) is the position of the grey wolf at the t th iteration; D

denotes the distance between the grey wolf and the prey;X(t + 1)
denotes the update of the position of the grey wolf; A and C are

the coefficient vectors; a is the convergence factor whose value

decreases linearly from 2 to 0 with the number of iterations, I is

the number of previous iterations, and M is the maximum

number of iterations; r1 and r2 are the random numbers

between [0,1].

Secondly, the position of the three optimal wolves α, β, and δ

are constantly updated to determine the prey. The following is a

mathematical description of the hunting process of a wolf pack.

Da � |C1 ·Xα(t) −X(t)| (13)
Dβ �

∣∣∣∣C2 ·Xβ(t) −X(t)∣∣∣∣ (14)
Dδ � |C3 ·Xδ(t) −X(t)| (15)

X1(t + 1) � Xα(t) − A1 ·Dα (16)

X2(t + 1) � Xβ(t) − A2 ·Dβ (17)
X3(t + 1) � Xδ(t) − A3 ·Dδ (18)

X(t + 1) � X1(t + 1) +X2(t + 1) +X3(t + 1)
3

(19)

Here, Xα(t) , Xβ(t) and Xδ(t) are the positions of α, β and δ

wolves when the population is iterated to the t th generation;

X(t) is the position of individual grey wolves in the tth

generation; A1 and C1 , A2 and C2 , A3 and C3 are the

coefficient vectors of α, β and δ wolves, respectively; X1(t + 1)
, X2(t + 1) and X3(t + 1) indicate the positions of α, β and δ

wolves after (t + 1) iterations, respectively; X(t + 1) is the

position of the next generation of grey wolves. Figure 1

illustrates the flow chart of the GWO algorithm.

CatBoost model

CatBoost is a new open source machine learning library

proposed by Russian scholar Yandex in 2017, which is based on

Categorical and Boosting (Prokhorenkova et al., 2018), a new

gradient boosting algorithm that is implemented as a symmetric

decision tree-based learner. Using ordered boosting, it improves

the gradient estimation of the traditional Gradient Boosting

Decision Tree (GBDT) algorithm and handles efficiently the

category-based features in the gradient boosting decision tree

algorithm. GBDT is an algorithm for regression and classification

proposed by Friedman (2001) in 2000. This algorithm solves the

problem of overfitting individual decision trees by internally

integrating multiple decision trees and accumulating multiple

decision trees. The GBDT algorithm constructs a loss-reducing

learner at each step in the direction of the steepest gradient to

compensate for the shortcomings of the currently constructed

model, i.e., it uses gradient descent to optimize. The algorithm

model is described as follows:

F(x,ω) � ∑T
t�0
αtht(x,ωt) � ∑T

t�0
ft(x,ωt) (20)

Where F(x,ω) is the output of the whole decision tree; x is

the input of the sample; ω is the parameter of the whole decision

tree; αt is the weight of the tth number; T is the number of trees;

ht(x,ωt) is the output of the tth decision tree; ωt is the parameter

of the tth decision tree; ft(x,ωt) is the output of the tth decision

tree after weighting.

By minimizing the loss function, the parameters of the

optimal model can be determined:

(αt,ωt) � argmin∑N
i�0
L(yi, F(xi,ω)), t � 1, 2, . . . , T (21)

where L(yi, F(xi,ω)) is the loss function, and usually the mean

squared difference or absolute loss can be used as the loss

FIGURE 1
Flow chart of the grey wolf optimization.
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function; yi is the actual output of sample i; xi is the input of

sample i; and N is the number of samples.

As a result of the dependency between weak learners in the

GBDT algorithm, it is difficult to train data in parallel. At the

same time, the algorithm lacks smoothness, and the created

model may still overfit. A CatBoost algorithm solves the

overfitting problem of the traditional GBDT algorithm,

which uses Ordered Boosting to obtain an unbiased

estimation of the gradient to alleviate the effect of gradient

estimation bias, thus increasing generalization capability of

the model (Lu et al., 2022).

The traditional GBDT algorithm utilizes the label average as

the criterion for splitting nodes, which can be expressed as

follows:

x̂i
k �

∑N
j�1I{xij�xik}yj∑N
j�1I{xij�xik} (22)

where xi
k is the ith category feature of the kth training sample

and x̂i
k is its average; yj is the label of the jth sample; I is the

indicator function, i.e., 1 is taken when the two quantities in

parentheses are equal and 0 otherwise, as shown in the

following equation.

I{xij�xik} � { 1, xi
j � xi

k

0, otherwisre
(23)

The disadvantage of this approach is that features contain

more information than labels, and the average of the labels is

used as a representation of the features, which can cause a

conditional bias problem when the data structure and

distribution of the training and test datasets are different. The

CatBoost algorithm incorporates terms and weighting factors

that reduce the impact of noise and low frequency category type

data on data distribution.

x̂i
k �

∑N
j�1I{xij�xik}yj + ap

∑N
j�1I{xij�xik} + a

(24)

Where p is the added prior term; a is the weighting factor.

The CatBoost algorithm uses the oblivious tree as the base

predictor. In each iteration, the same partitioning rule is applied

to the entire layer of the tree, ensuring that the left and right

subtrees are perfectly symmetrical. For each leaf node of a

oblivious tree, the index may be encoded as a binary vector of

length equal to the depth of the tree. The binary eigenvalues of all

samples are stored in the continuous vector B. The values of the

leaf nodes are stored in a floating-point vector of size 2d, where d

is the depth of the tree. To calculate the index of the leaf node of

the tth tree, for sample x, create a binary vector.

Bx � ∑d−1
m�0

2mB[x, f(t, m)] (25)

Where Bx is the binary vector created for sample x;

B[x, f(t, m)] is the value of the binary feature f of sample

x read from vector B; f(t, m) is the number of binary features;

m is the depth of the tree; and t is the number of trees. When

compared with other integrated learning algorithms in the

Boosting family, such as XGBoost and LightGBM, CatBoost

performs better in terms of algorithmic accuracy, etc., it is able

to automatically process discrete feature data, its ability to

apply to regression problems with multiple input features

and data containing noisy samples, and the model has a

stronger robustness and generalization performance (Lee

et al., 2021).

CEEMDAN-GWO-CatBoost combined
prediction model

The CEEMDAN-GWO-CatBoost coal price forecasting

model presented in this paper is divided into two

components: decomposition and prediction. We first

decompose the raw coal price index data using CEEMDAN.

Then, each of the IMF components and residual RES are

predicted separately, and the hyperparameters of the CatBoost

model are sought using the GWO optimization algorithm. The

final result is obtained by summing each prediction. Figure 2

illustrates the specific implementation flow.

SHAP interpretation method

Machine learning has achieved great success in many fields,

but its application to real-world tasks is severely limited by the

difficulty of interpreting the results. In the field of prediction,

interpretability is of paramount importance. Although the

machine learning model based on the integration algorithm

has a better performance, it reduces the interpretability of the

model as the complexity of the model increases, which renders

the CatBoost model almost a black box. In order to address the

problem of poor interpretability of the model, the SHAP

framework is presented in this article to interpret the model

results in order to support the model’s reliability.

SHAP is based on game theory (Štrumbelj and

Kononenko, 2014) and local interpretation (Lundberg et al.,

2020), and it belongs to the classic ex post explanation

framework. This method is based on the Shapley value

concept proposed by Lundberg et al. (2018) in 2017 from a

game theory perspective, using each feature variable in the

dataset as a player and training the model on that dataset to

predict the results. It can be viewed as the result of many

players cooperating to complete a project, considering the

contribution made by each player, and sharing the benefits

fairly through SHAP value. The SHAP method is a model

interpretation tool applicable to tree-based algorithms that
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quantifies the contribution of each feature to the prediction

and reveals the relationship between the individual values of

the features and the prediction results (Carrieri et al., 2021).

The model generates a prediction value for each sample, and

the SHAP value reflects the value assigned to each feature in

that sample. If the ith sample is xi, the jth feature of xi is xij,

the predicted value of the model for that sample is yi, and the

baseline (usually the mean of all sample target variables) of the

whole model is ybase, then the SHAP value is calculated as

shown in Eq. 26.

yi � ybase + f(xi1) + f(xi2) + f(xi3) + . . . + f(xik) (26)

Where f(xij) is the SHAP value of xij. f(xi1) is the

contribution value of the 1st feature in the ith sample to the

final predicted value yi. The SHAP value for a given feature

indicates the change in expected model prediction when the

feature is taken into consideration, and is analysed based on the

magnitude, positive or negative, of that value. Generally,

the larger the SHAP value of a feature, the greater the impact

of the feature on the model. Conversely, the lower the SHAP

value, the smaller the impact. Positive and negative values

represent positive and negative impacts, respectively.

Description of data

Establishment of a primary indicator
system

The purpose of this paper is to examine comprehensively the

internal and external factors affecting coal price and establish a

primary index system for coal price influencing factors in five

dimensions: supply, demand, macroeconomic environment,

freight costs, and substitutes.

On the supply side, coal production directly affects supply,

which in turn influences coal prices. Due to the country’s

commitment to the development of advanced production

capacity, as well as the promotion and use of renewable

energy, China’s coal production has declined, but it still

accounts for a substantial proportion of the world’s coal

production. The import and export of coal will disrupt the

original supply and demand balance, affecting the coal price.

In terms of demand, coal consumption is determined by the

level of development of its downstream industries. With the

rapid development of coal-consuming industries, coal demand

is likely to increase and is subject to seasonal fluctuations.

Power generation and summer thermal power generation by

FIGURE 2
Flow chart of the coal price index forecasting model based on CEEMDAN-GWO-CatBoost.
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the power industry will also affect coal prices. Considering

freight costs, coal as a bulk commodity, China’s “west coal

east, north coal south” coal logistics pattern will undoubtedly

influence the final coal price. The cost of coal

transportation accounts for a significant portion of its total

cost, so the cost of coal transportation is a very important

factor. In terms of macroeconomic and social context, the

degree of domestic economic development will affect coal

prices, which can be reflected by fixed asset investment,

industrial value added, and consumer price index. With

regards to substitutes, the price increase of substitutes such

as oil will to some extent increase the demand for coal,

thereby affecting its price. Detailed classifications and

secondary quantifications of each indicator level are

presented in Table 1.

Data source

Bohai-Rim Steam-Coal Price Index (BSPI) is based on

market trading prices of power coal in the ports and closely

related areas of the Bohai Sea region, which is authoritative,

objective, stable and scientific enough to reflect the operating

dynamics of the Chinese coal market (Wang et al., 2011).

Therefore, in this paper, the Bohai Rim Power Coal Price

Index is chosen as the predicted variable, denoted by the

symbol Yt, and the data are obtained from the China

Qinhuangdao Coal Trading Center (http://www.cqcoal.com)

for the period from 5 January 2011 to 22 June 2022 (as

shown in Figure 3).

The predictor variables are the secondary indicators

collected in Table 1, and the raw data are available from

the China Wind Financial Database (https://www.wind.com.

cn). In addition to the China Coastal Coal Price Index, which

is a daily indicator, all other indicators are monthly indicators.

For the purpose of ensuring the fairness of the

experiment, Eivews software is used to convert the monthly

data into weekly data and the China Coastal Coal

Freight Index on the day the BPSI is announced is

selected as the freight cost factor, with a period between

5 January 2011 and 22 June 2022, for a total of

TABLE 1 Coal prices comprehensive impact factors indicators table.

Indicators at tier 1 Secondary indicators Quantification of secondary
indicators

Symbol
representation

Factors affecting coal
prices

Supply Coal production Power coal production/million tons X1

Coal inventory Key power plant coal stocks/million tons X2

Coal export Power coal export volume/million tons X3

Demand Electricity industry Coal consumption in the power industry/million tons X4

Thermal power generation Thermal power generation/billion kWh X5

Coal consumption of power
plants

Coal consumption of the six major power generation
groups/million tons

X6

Coal import Power coal import volume/million tons X7

Macroeconomic
environment

CPI CPI month-on-month X8

PMI Manufacturing PMI month-on-month X9

PPI All industrial PPI month-on-month X10

Industrial value added Industrial value-added month -on- month X11

Fixed asset investment Fixed asset investment completed month -on- month X12

Money supply M2/billion X13

Freight cost Marine coal price China Coastal Coal Tariff Index X14

Substitute Crude oil imports Quantity of crude oil imports/thousand barrels per day X15

FIGURE 3
Trend of BSPI.
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598 samples. The missing values present in the data were filled

in using the forward fill method (Eekhout et al., 2012), and

descriptive statistics are presented for each indicator in

Table 2.

Data pre-processing

In practice, data of high dimensions can create problems

such as high computational complexity and long execution

times for the model. The basic concept of feature selection is to

select the most effective variables among the original features

in order to reduce data dimensionality. Feature selection

should be conducted before modeling in order to reduce

noise and over-fitting as well as improve training efficiency

and prediction accuracy. In this study, Spearman correlation

analysis, which is commonly used in statistics, is used for

feature selection. Spearman’s rank correlation coefficient is a

statistical method used to assess the correlation between two

variables. The most important feature of the methodology is

that it is quick and robust without considering sample size or

distributional characteristics of the variables. For two vectors

X and Y of dimension n, Xi and Yi denote their corresponding

ith ((1≤ i≤ n)) elements, respectively. The new sequence of

variables x, y is obtained by arranging X and Y in the same

way in ascending or descending order. Were the element xi is

the row ofXi inX and yi is the row of Yi in Y. Accordingly, the

difference set di � xi − yi is obtained defining the Spearman

rank correlation coefficient between the random variablesX, Y

as follows.

ρs � 1 − 6

n(n2 − 1)∑ni�1d2
i (27)

Where, ρs is the Spearman correlation coefficient between the

quantitative data of secondary indicators of coal price impact

factors and coal prices; n is the sample size; di is the set of

ranking differences obtained from the corresponding

subtraction of indicator Xi and label Yt after descending

TABLE 2 Descriptive statistics of coal price data.

Mean Standard
deviation

Variance min 25% 50% 75% max

Yt 595.000 116.630 13602.581 371.000 537.000 577.000 634.250 853

X1 5741.755 908.242 824902.983 3378.950 5018.622 5692.085 6341.538 8721.118

X2 1669.307 346.255 119892.530 901.964 1416.765 1635.712 1918.543 2449.169

X3 10.700 6.851 46.938 −0.069 6.394 9.978 14.065 44.658

X4 3780.780 599.999 359998.810 2124.379 3334.442 3756.500 4113.499 5847.600

X5 894.207 185.852 34541.062 550.088 761.313 858.116 1009.637 1427.251

X6 14.498 2.073 4.296 7.239 12.994 14.755 15.602 20.192

X7 264.247 96.654 9341.993 −28.120 198.585 258.176 323.757 578.125

X8 0.539 0.317 0.100 -0.136 0.369 0.464 0.635 1.604

X9 11.629 1.367 1.869 6.565 10.202 12.292 12.770 14.566

X10 0.271 1.075 1.155 −1.528 -0.511 -0.070 1.164 3.274

X11 1.765 1.488 2.215 −5.635 1.207 1.566 2.195 13.799

X12 2.738 2.056 4.226 −5.729 1.459 2.253 4.230 9.288

X13 353839.993 124767.103 1.557E+10 121721.558 246492.855 343307.172 443605.4287 728260.000

X14 760.942 248.196 61601.500 372.24 595.160 682.240 878.755 1789.94

X15 755.802 229.729 52775.232 376.226 556.303 741.691 934.170 1366.045

TABLE 3 Correlation of the predictor with the predicted label.

Feature Correlation coefficient p-value

X1 0.091* <0.05
X2 −0.059 >0.05
X3 0.226** <0.01
X4 0.031 >0.05
X5 −0.071 >0.05
X6 0.110** <0.01

X7 0.248** <0.01
X8 0.230** <0.01

X9 0.056 >0.05
X10 0.653** <0.01
X11 0.327** <0.01

X12 0.324** <0.01
X13 −0.156** <0.01

X14 0.418** <0.01
X15 −0.136** <0.01

Note: ** Indicates p < 0.01, * indicates p < 0.05.
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ranking. The Spearman correlation coefficients between each

characteristic and the coal price index were calculated using

Eq. 27, as shown in Table 3.

Table 3 shows that the 11 indicators in the index system

established in this paper show a statistically significant

correlation with the coal price index (p < 0.05). Therefore,

to improve the efficiency of the model forecast, we have

excluded from the input features of the model the four

indicators X2 (coal inventory of key power plants), X4 (coal

consumption in the power industry), X5 (thermal

energy generation) and X9 (manufacturing PMI month-

over-month) with p-values greater than 0.05. In

addition, to reduce the influence of outliers on the

model and to avoid the effect of different magnitudes of

input variables on the predictive power of the model,

Eq. 28 has been applied to standardize the experimental

data set:

xp � x − x min

x max − x min
(28)

Where, x* is the normalized data value; x is the input data

value before normalization, and xmin and xmax are the

minimum and maximum values of the input data. As the

normalized values fall into the [0,1] interval, this

data treatment can improve the predictive power of the

model to some extent (Singh et al., 2005). The normalized

data are proportionally divided into a training set and a test

set (the training set is the first 80% of the sample data and the

test set is the last 20%) and the prediction results from the

model are then back-normalized to obtain the predicted

values.

Empirical analysis

Performance evaluation index

In this paper, Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE) and Mean Absolute Percentage Error

(MAPE) are selected as the evaluation functions of the

prediction models. Among the three performance measures,

smaller values of RMSE, MAE and MAPE indicate better

model prediction performance, as shown in the following

equations.

RMSE �
������������
1
n
∑n
i�1
(yi − ŷi)2

√
(23)

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣yi − ŷi

∣∣∣∣∣∣ (24)

MAPE � 100%
n

∑n
i�1

∣∣∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣∣∣ (25)

Where, n denotes the number of coal price index weeks in the test

set; i denotes the week number; yi is the true value of the coal

price index in week i of the test set; ŷi is the predicted value of the

coal price index in week i of the test set.

Model parameter setting

Multiple algorithms are used as comparison models in

this paper to assess the forecasting performance of the

proposed master model for coal price index. For single-

model prediction, the commonly used econometric

models (ARIMA), machine learning models (SVR and

GBDT) and deep learning models (LSTM) are selected for

comparison and analysis; in the combined algorithm, the PSO-

optimized CatBoost model (PSO-CatBoost) is chosen

for comparison and analysis with the GWO-optimized

CatBoost model (GWO-CatBoost); for data decomposition,

the EEMD-GWO-CatBoost is used to compare and

analyze the prediction effect of the CEEMDAN-GWO-

CatBoost model. Table 4 provides information regarding

the parameters of each algorithm model. Figure 4

illustrates the results of the CEEMDAN decomposition of

the raw data.

Analysis of model prediction effect

Figure 5 and Table 5 present the fitting curves of each

model for the coal price index in the test set sample and the

prediction accuracy in each of the three evaluation indicators,

respectively. From the analysis, the following conclusions can

be drawn.

Based on single-model prediction, the CatBoost model

performs best, with the GBDT model ranking second in

RMSE and MAE metrics, which has been attributed

primarily to the following reasons. Primarily, in contrast

with ARIMA, SVR and LSTM models, CatBoost and GBDT

are part of Boosting integrated learning framework

models, and this integrated method can improve the

prediction results of the models through combining the

results of multiple base learner algorithms. As a second

advantage, the Ordered Boosting method used in the

CatBoost model effectively mitigates the effect of

gradient estimation bias in comparison to the GBDT

model. This improves the generalizability of the CatBoost

model.

In the combined algorithm, the GWO-CatBoost model

outperforms the PSO-CatBoost model in terms of prediction

accuracy by 46.83%, 48.35%, and 0.24% for RMSE, MAE and

MAPE metrics, respectively. The results show that the optimal

parameters of the CatBoost model can be locked faster by

selecting the GWO algorithm with the same parameter
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settings. An important point to note is that adding both EEMD

and CEEMDAN algorithms to the prediction model can

significantly enhance MAPE metrics. As such, decomposing

the original data before prediction can unearth valuable

information in the data, and incorporating the decomposed

data into the established model can enhance the accuracy of

prediction. Generally, the CEEMDAN-GWO-CatBoost

models developed in this paper outperformed the other

comparative models in this study in terms of prediction

accuracy. This means that the combined model proposed in

this paper can be applied to the field of coal price forecasting

with high level of accuracy.

Analysis of the importance of factors
influencing coal prices

An important issue in the current machine learning

applications area is that machine learning makes it difficult

for operators to understand which metrics play a key role, as

TABLE 4 Algorithm parameter setting.

Algorithm name Parameter setting

GWO-CatBoost n_estimators = 29; learning_rate = 0.41467; max_depth = 4

PSO-CatBoost n_estimators = 34; learning_rate = 0.561849; max_depth = 5

CatBoost n_estimators = 80; learning_rate = 0.8; max_depth = 6

GBDT n_estimators = 80; learning_rate = 0.8; max_depth = 6

LSTM loss = “mse”; optimizer = “adam”; batch_size = 12; dropout = 0.9

SVR C = 30; gamma = 11

ARIMA (p, d, q)=(3, 1, 1)

PSO Number of iterations: 50; population size: 20

GWO Number of iterations: 50; population size: 20

FIGURE 4
CEEMDAN decomposition results for BSPI.
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linear regression models do. Other words, while the results can be

relied upon, the process may not be reliable. In this paper, the

SHAP interpretation method is proposed in order to address this

issue and try to resolve it based on model interpretation.

Based on the GWO-CatBoost model that has been trained,

we compute the SHAP values of the indicators once per

sample point to ensure that the sum of the SHAP values

of all indicators at the sample point corresponds to the

output of the sample on the model. As part of this

study, the average SHAP absolute value of each indicator on

the training and test sets of the GWO-CatBoost model is

calculated as the feature importance of each indicator, and

the ranking results are reported in Table 6.

The results show that the top five indicators remain

unchanged, i.e., the identification of important indicators is

more robust, both in the training set as well as the test set,

namely the PPI index, fixed asset investment, money supply,

seaborne coal price index and coal imports. Of these, three are

indicators of the macroeconomic environment category,

indicating that the national economic development

situation has a profound impact on coal prices. It also

confirms the findings of the literature (Doğan et al., 2022a;

Murshed et al., 2022) that the general economic development

of country is inextricably linked to energy consumption.

China’s coal resources are unevenly distributed

geographically, which has led to the development of a coal

logistics pattern of “sending coal from the west to the east and

coal from the north to the south” for many years, which is why

the maritime coal price index plays a significant role in the

price of coal. In light of the fact that imported coal has always

represented a significant portion of China’s coal supply and

electricity coal rationing, changes in its quantity may have

significant effects on coal prices. For a deeper understanding

of the relationship between each metric and its SHAP value,

the relationship between all metrics and SHAP values on the

training and test set samples is plotted in Figure 6. The feature

values, SHAP values and multi-indicator presentation are

taken into consideration to reflect the global interpretation,

and the magnitude of the indicator values on the sample points

are represented by different colours; the red sample points are

representative of the indicators with higher values in the

sample, while the blue sample points are representative of

the indicators with lower values, and the graph of each feature

includes all the sample points in the data set. SHAP value is

taken as zero as the middle divider. For the sample point on

the left, the feature has a negative SHAP value, and it has a

negative contribution to the output coal price prediction value

in this case. In contrast, the indicators corresponding to the

sample points on the right side of the middle dividing line

contribute positively to the predicted coal price values. Thus,

the figure should show blue on the left, purple in the middle,

and red on the right for correlators contributing positively

to the predicted value of coal prices, and red on the left,

purple in the middle, and blue on the right for

correlators that contribute negatively to the predicted value

of coal prices.

FIGURE 5
Model prediction effect.

TABLE 5 Model prediction accuracy table for coal price index.

Name of the model RMSE MAE MAPE

CEEMDAN-GWO-CatBoost 1.916680810160789 1.593493684357543 0.26001078546299

EEMD-GWO-CatBoost 2.5729433634713796 2.1095498614525154 0.34621249463127596

GWO-CatBoost 2.241567368001278 1.7125001635646235 13.592445260536302

PSO-CatBoost 3.113648790952216 2.4721381652905667 13.614750007325302

CatBoost 4.215641628837947 3.3154993940489583 13.625308667545694

GBDT 6.605314367490323 4.40974850000589 13.743883909692675

LSTM 7.153716700168368 6.697406108152933 13.587137582616368

SVR 10.822793715352619 7.318131844792242 13.94273566060166

ARIMA 11.168837571264307 4.812970387890472 13.610349406173938

Frontiers in Environmental Science frontiersin.org12

Wang et al. 10.3389/fenvs.2022.1014021

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1014021


As can be seen from the images of the model on the

training and test sets, coal exports (X3), power plant coal

consumption (X6), and industrial value added (X11) are

strongly negatively correlated indicators, and the higher the

value taken, the lower the model’s coal price prediction value.

The PPI index (X10), seaborne coal price index (X14), money

supply (X13), fixed asset investment (X12), coal imports (X7),

coal production (X1), CPI index (X8), and crude oil imports

(X15) are significantly positively correlated indicators, and the

higher the forecasted coal price value, the higher the forecast

value. Analysis of the results shows that the PPI index has the

greatest impact on coal prices, which reflects the changing

economic situation. An increase in coal production and coal

imports indicates an increase in coal demand, and higher

demand increases coal prices. An increase in money

supply and fixed asset investment will result in increased

costs for the coal industry, which will result in higher coal

prices. As seaborne coal prices increase, the overall cost of

coal will also increase, thus raising coal prices. The increase in

coal exports will increase supply on the domestic coal market,

and the oversupply will lower domestic coal prices. The

decreases in the coal consumption of power plants and

industrial value added indicate a decrease in the demand

for coal at this time, which in turn leads to a decrease in

coal prices.

Conclusion and suggestions

Obtaining timely and accurate forecasts of coal prices

trends is essential for price regulation and resource

allocation by the government and the market with the

FIGURE 6
Training set (left) and test set (right) feature analysis graph.

TABLE 6 Ranking of feature importance.

Indicator ranking Training set Mean (|SHAP value|) Test set Mean (|SHAP value|)

1 X10 0.015822 X10 0.016886

2 X14 0.010464 X14 0.014281

3 X7 0.009863 X13 0.011608

4 X13 0.009304 X12 0.011373

5 X12 0.008693 X7 0.009978

6 X8 0.007791 X1 0.008897

7 X1 0.007692 X8 0.007749

8 X6 0.006715 X3 0.006844

9 X11 0.006658 X15 0.00668

10 X3 0.006415 X11 0.006429

11 X15 0.006219 X6 0.006343
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objective of guiding the Chinese coal industry toward

reasonable control of supply and maintenance of supply

and demand, as well as encouraging coal midstream and

downstream businesses to respond quickly and accurately,

and influencing the efficiency of coal use by the major coal

consuming industries in China. Under the objectives of carbon

neutrality and carbon peaking, accurate coal price predictions

are even more critical to ensure national energy security.

Based on existing research, the Bohai-Rim Steam-Coal

Price Index from 5 January 2011 through 22 June 2022 is

used as the forecast label for this study. It is proposed

an impact factor indicator system based on five aspects:

supply, demand, macroeconomic environment, freight

costs and substitutes, and the Spielman correlation

analysis is used to screen the indicators. A combined

CEEMDAN-GWO-CatBoost forecasting model is then

developed, and the following research conclusions

are drawn from simulation experiments based on coal

price data.

In the first instance, machine learning models can

provide better forecasting results for nonlinear time

series problems such as coal price forecasting. At the same

time, the prediction accuracy of the integrated CatBoost model

optimized with the GWO intelligent algorithm is

significantly better than that of a single prediction model.

Furthermore, by using the CEEMDAN data decomposition

method, you can uncover non-linear valuable information in

coal price data, and the addition of the decomposed data to the

established model will further enhance the accuracy of

prediction. Additionally, this research differs from prior

research on machine learning modeling. This paper is

intended to address the problems of “black boxes” and

“algorithmic discrimination” encountered in machine

learning forecasting, by starting from the factors

influencing coal prices, and then identifying important

indicators based on the SHAP explanation method for

coal price forecasting and interpreting the principle of

the importance of important indicators. It has been

shown that the SHAP interpretation method with

good interpretability of feature importance assignment based

on machine learning model can give a richer interpretation of

indicators and is an effective interpretation tool. In light of the

above research, this paper presents the following policy

recommendations.

(1) The government should take into account the PPI index,

fixed asset investment, money supply and other

macroeconomic variables to set up a reasonable

benchmark price for coal, strengthen the supervision of

coal medium- and long-term contract performance, and

ensure the basic stability of coal prices. In the current

state of the Chinese coal industry, which is experiencing

an intricate political and economic situation at home and

abroad, stable coal prices will be able to ensure power and

energy security, as well as basic price stability in the

energy industry. Based on a forecast model proposed by

academia, the government’s scientific prediction of future

coal prices is conducive to improving the coal price

pricing mechanism, which will assist the coal industry

in overcoming difficulties and effectively avoiding market

risks.

(2) The government should fully recognize that the

supply and demand of coal are important factors

that affect its price, in order to promote the

transformation of the development mode of coal

enterprises under the premise of basic stability in the

domestic coal supply and demand. Specifically, in

terms of coal demand, the government needs to

stabilize the scale of coal imports and achieve

complementarity with domestic coal resources

by continuously purchasing high-quality imported coal.

In terms of coal supply, the governments should

formulate relevant policies to gradually

eliminate backward production capacity, improve

the efficiency of coal resource utilization, and

ensure that coal producers that do not

meet environmental standards exit the market as

soon as possible with regards to coal supply. By

releasing coal quality production capacity in an

orderly manner while ensuring safe, clean and

efficient utilization, the total coal production will be

stabilized.

(3) In order to achieve emission peak and carbon neutrality,

the government should accelerate the transformation of

the energy mix at the appropriate time. As a result of

China’s resource endowment and distribution, its

current energy structure relies excessively on coal,

contributing to the pollution problems facing the country

today. Under the premise of accurate prediction of coal price,

the government should use the time window of coal

price rebound to promote the transition from coal

to clean energy sources, namely photovoltaics,

natural gas, and wind energy, and gradually

reduce the dependence on coal as a non-renewable energy

source.

There is a point to be made about the indicator system used

in this paper being based on market-based factors influencing

coal prices. However, this system does not consider the impact

of government decisions or social emergencies, such as the
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sudden outbreak of Corona Virus Disease 2019. It is

therefore necessary to undertake subsequent studies in

order to quantify policy decisions and major contingencies

as exogenous input indicators, which will enhance the

accuracy, reliability, and usefulness of the coal price

forecasting model.
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