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Meteorological data mining aims to discover hidden patterns in a large number

of available meteorological data. As one of the most relevant big data

preprocessing technologies, feature discretization can transform continuous

features into discrete ones to improve the efficiency of meteorological data

mining algorithms. Aiming at the problems of high interaction of multiple

attributes, noise interference, and difficulty in obtaining prior knowledge in

meteorological data, we propose a rough set-based feature discretization

method for meteorological data (RSFD). First, we calculate the information

gain of each candidate breakpoint in the meteorological attribute to split the

intervals. Then, we use chi-square test to merge these discrete intervals. Finally,

we take the variation of indiscernibility relation in rough set as the evaluation

criterion for the discretization scheme. We scan each attribute in turn by using

the strategy of splitting first and then merging, thus obtaining the optimal

discrete feature set. We compare RSFD with the state-of-the-art discretization

methods on meteorological data. Experiments show that our method achieves

better results in the classification accuracy ofmeteorological data, and obtains a

smaller number of discrete intervals while ensuring data consistency.
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1 Introduction

With the continuous improvement of observation and detection technology, the

continuous expansion of prediction range, and the continuous improvement of

refinement, the meteorological data covers a wider geographical range which has a

larger spatial-temporal density, and the more diverse available types and presentation

forms (Reichstein et al., 2019; Bhatti et al., 2021a; Bhatti et al., 2022). According to

different forecast types, information decision tables of different forecast types in the

meteorological dataset can be constructed, as shown in Figure 1. Meteorological data

mining aims to find hidden patterns in a large number of available meteorological data

from these information decision tables, thus transforming the retrieved information into

available meteorological knowledge (Guo, 2016; Aamir et al., 2021; Bhatti et al., 2021b;
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Hasnain et al., 2021; Galvan et al., 2022). However, the abundant

information brings huge space-time overhead and greatly

increases the complexity of meteorological data analysis (Xu

et al., 2020). Using all collected meteorological information in the

process of meteorological big data analysis is easy to lead to

information redundancy and weaken the generalization ability of

the learning model, thereby significantly reducing the accuracy of

meteorological data processing (Zhang and Shi, 2021).

Feature discretization is a key technology of intelligent data

preprocessing (Chen et al., 2018). It removes redundant

information by converting continuous features in

meteorological data into discrete ones that are closer to the

knowledge layer representation, thus reducing the system

overhead and enhancing the robustness of the learning

algorithm (Chen et al., 2020; Huang et al., 2020; Chen et al.,

2021). In addition, feature discretization can be useful for missing

value imputation (Rahman and Islam, 2016). At present, the

widely used discretization methods mainly include information

entropy-based discretization (de Sá et al., 2016), class-attribute

correlation-based discretization (Yan et al., 2014), chi-square-

based discretization (Rosati et al., 2015), and rough set-based

discretization (Chen and Huang, 2021).

Liu et al. proposed a large-scale data discretization algorithm

based on information entropy and inconsistency of

meteorological attributes to effectively mine the hidden

knowledge in meteorological data (Liu et al., 2017). Moon

et al. (2019) devised a selective discretization method that

converted a subset of continuous input variables to nominal

ones and used principal component analysis to preprocess the

meteorological data obtained by the automatic weather station,

thus improving the prediction quality of the early warning system

(EWS). Kamińska et al. (2020) proposed and tested a

multivariate, non-deterministic, and distribution-based

discretization algorithm coupled with the well-known rule

extraction algorithm APRIORI for modeling of air quality,

thus producing more interesting rules with respect to the

specific domain-application. Wang et al. discretized the

original data by defining a class-attribute contingency

coefficient that measures the strength of correlation between

variables in Bayesian network, thus mining the correlation

between meteorological factors and lightning attributes in the

historical data of lightning strikes on transmission lines (Wang

et al., 2020).

Although the above feature discretization algorithms have

achieved gratifying results in meteorological data mining, they do

not take into account the internal stability of discrete intervals

and the similarity of adjacent intervals when selecting

breakpoints, and cannot ensure that the indiscernibility

relationship of information system will not be destroyed. In

addition, the prior knowledge of meteorological data in

complex environment is usually difficult to obtain, which

makes the accuracy of discretization greatly reduced.

To this end, we propose a rough set-based feature

discretization method for meteorological data (RSFD). First,

we calculate the information gain of each candidate

breakpoint in the meteorological attribute to split the

intervals. Then, we use chi-square test to merge these discrete

intervals. Finally, we take the variation of indiscernibility relation

in rough set as the evaluation criterion for the discretization

scheme. We scan each attribute in turn by using the strategy of

splitting first and then merging, thus obtaining the optimal

discrete feature set. We compare RSFD with the state-of-the-

art discretization methods on meteorological data. Experiments

show that our method achieves better results in the classification

accuracy of meteorological data, and obtains a smaller number of

discrete intervals while ensuring data consistency.

FIGURE 1
Information decision tables of different forecast types in meteorological dataset.
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The remainder of this paper is organized as follows. Section 2

introduces the basic concepts and problem models. Section 3

elaborates the proposed feature discretization method. The

experimental results are analyzed and discussed in Section 4.

Section 5 summarizes this paper.

2 Problem models

We introduce the definition of feature discretization and the

basic flow of meteorological data feature discretization. Then, we

describe the rough set model.

2.1 Feature discretization

Feature discretization divides continuous attributes into a

finite number of sub-intervals, and then associates these sub-

intervals with a set of discrete values (Chen et al., 2022a). The

basic flow of meteorological data feature discretization is shown in

Figure 2. Firstly, the continuous attribute values of meteorological

data are sorted and the duplicate values are deleted to obtain a set

of candidate breakpoints. Secondly, the breakpoints of continuous

attributes are selected from the set of candidate breakpoints, and

whether to split the intervals or merge the adjacent sub-intervals is

decided according to the judgment criteria of the adopted

discretization algorithm. If the termination condition is

satisfied, output the meteorological data discretization result,

otherwise, continue to select the remaining breakpoints from

the set of candidate breakpoints to perform attribute discretization.

2.2 Rough set

Unlike DS evidence theory and fuzzy set theory, the membership

function value of the object in rough set theory depends on the

knowledge base, which can be directly obtained from the data

without any prior knowledge or additional information about the

data (Chen et al., 2022b). Rough set regards the knowledge as the

ability to classify the objects on theUniverse. An equivalence relation on

the Universe represents a knowledge. Two-tuple K � (U,R) is a

knowledge base, where U is the Universe, and R is the equivalence

relation clusters onU. For x ∈ U, R ∈ R, equivalence class of x under

R is: [x]R � {y ∈ U|(x,y) ∈ R}. The quotient set U/R �
{[x]R|x ∈ U} is called a knowledge. Let R be a binary equivalence

relation onU, for anyX ⊆ U, the lower and upper approximations of

X with respect to R are:

R−X � {x ∈ U|[x]R ⊆ X}, (1)
R−X � {x ∈ U|[x]R ∩ X ≠∅}. (2)

The rough set-based feature discretization evaluates the

discretization results according to the dependence of X to R.

The dependence of X to R is:

γR(X) � |R−X|
|U| , (3)

where |·| is the cardinality of the set, 0≤ γR(X)≤ 1. When

γR(X) → 1, the dependence of X to R is high, when

γR(X) � 1, X is completely dependent on R, indicating that

the system compatibility is not destroyed.

3 Rough set-based feature
discretization

We introduce the process of splitting intervals by information

entropy and merging intervals by chi-square test in detail. Then,

we explain the discretization scheme evaluation model based on

rough set, and point out the defect in the dependence.

3.1 Split intervals by information entropy

We calculate the information gain of each candidate

breakpoint in the meteorological attribute to split the

intervals. Suppose that the meteorological dataset S contains k

FIGURE 2
The basic flow of meteorological data feature discretization.
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categories (C1, ..., Ck), and P(Ci, S) represents the occurrence

frequency of categoryCi in S, then the information entropy of S is

defined as:

Ent(S) � −∑k

i�1P(Ci, S)log(P(Ci, S)). (4)

Suppose that S is divided into two subsets S1 and S2 by

breakpoint T, then the breakpoint information entropy of S is

defined as follows:

E(A, T, S) � |S1|
|S| Ent(S1) +

|S2|
|S| Ent(S2). (5)

where |S|, |S1|, and |S2| are the number of samples contained in S,

|S1|, and |S2|, respectively, A is the meteorological attribute to

be discretized. The breakpoint TA that minimizes Ent(A,T, S) is
the optimal breakpoint, which is selected to perform binary

discretization of A. The information gain of S after discretization is:

Gains(A, TA, S) � Ent(S) − Ent(A, TA, S). (6)

In addition, the selected breakpoint needs to meet the

following conditions:

Gains(A, TA, S)> log 2(N − 1)
N

+ Δ(A, TA, S)
N

, (7)
Δ(A, TA, S) � log2(3

k − 2) − [kEnt(S) − k1Ent(S1)
− k2Ent(S2)], (8)

where N is the total number of samples in the meteorological

dataset, k1 and k2 are the number of categories included in S1 and

S2 (k � k1 + k2), respectively.

3.2 Merge intervals by chi-square test

Then, we use chi-square test to merge the discrete intervals

generated after the above splitting, as follows:

χ2 � ∑
2

i�1
∑
k

j�1

(Aij − Eij)
2
,

Eij
(9)

where χ2 represents the degree of deviation between the observed

value and the theoretical value, Aij represents the number of

samples belonging to class j in the i-th discrete interval, and Eij

represents the expected frequency of class j in the i-th discrete

interval. It can be determined by χ2 whether two adjacent discrete

intervals should be merged.

3.3 Evaluate intervals by rough set

In general, the system compatibility after discretization is

measured by the dependence calculated by (3) (Zhang et al.,

2008). However, the dependency is only a microscopic

reflection of the number of data errors. The indiscernibility

relation describes the entire category on a macro level, and its

change is directly related to the class-attribute information of

meteorological data. As shown in Figure 3, the original

information decision table has 25 samples, PN represents

the serial number of the sample, MA represents the

meteorological attribute, and CLASS is the meteorological

category (including five categories of A, B, C, D, and E).

Under the first discretization scheme, there are 8 data errors in

the information decision table, and the dependence is 0.68.

These 8 errors are distributed in five categories. Under the

second discretization scheme, there are 9 data errors in the

information decision table, and the dependence is 0.64. These

9 errors are only distributed in the two categories of A and B.

Although the dependence obtained by the second

discretization scheme is less than that obtained by the first

discretization scheme, the number of categories correctly

identified by the second discretization scheme is more than

that correctly identified by the first discretization scheme.

Therefore, the dependence cannot directly reflect the accuracy

of the discretization result. It is more appropriate to measure

the system compatibility through the variation of

indiscernibility relation. We use the strategy of splitting

first and then merging to scan each meteorological attribute

in turn, and then evaluate the discretization scheme by the

variation of indiscernibility relation. If the termination

conditions are met, RSFD outputs the result; otherwise, it

adjusts the thresholds of splitting intervals and merging

intervals to rescan all attributes.

4 Experiments

We introduce the datasets and the experimental environment

configuration. Then, we compare the RSFD with the state-of-the-

art discretization methods on meteorological data. Finally, we

analyze and discuss the experimental results.

4.1 Datasets and experimental
environment

The meteorological data used in the experiment include four

main attributes of air pressure, wind direction, wind speed, and

temperature. We divide the three meteorological datasets into

three rainstorm levels, five rainstorm levels, and seven rainstorm

levels, respectively. In the dataset with three rainstorm levels,

the number of samples in the training set is 3,000, wherein

the number of samples in Level 1 is 1300, the number of samples

in Level 2 is 900, and the number of samples in Level 3 is 800.

We sort each attribute individually by value and then remove

duplicate values in each attribute, totalling 6932 initial

breakpoints. In the dataset with five rainstorm levels, the

number of samples in the training set is 5000, wherein the

Frontiers in Environmental Science frontiersin.org04

Zeng et al. 10.3389/fenvs.2022.1013811

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1013811


number of samples in Level 1 is 1300, the number of samples in

Level 2 is 1200, the number of samples in Level 3 is 1000, the

number of samples in Level 4 is 800, and the number of samples

in Level 5 is 700. We sort each attribute individually by value and

then remove duplicate values in each attribute, totalling

10,786 initial breakpoints. In the dataset with seven rainstorm

levels, the number of samples in the training set is 7000, wherein

the number of samples in Level 1 is 1600, the number of samples

in Level 2 is 1300, the number of samples in Level 3 is 1200, the

number of samples in Level 4 is 1100, the number of samples in

Level 5 is 800, the number of samples in Level 6 is 500, and the

number of samples in Level 7 is 500. We sort each attribute

individually by value and then remove duplicate values in each

attribute, totalling 15,619 initial breakpoints.

To verify the effectiveness of the proposed algorithm, the

comparative experiments are carried out under the hardware

conditions of Intel Core i5-5200U CPU at 2.20-GHz processor

and 12-GB memory. The visualization, programming, simulation,

testing, and numerical processing of the experiments are

implemented in MATLAB (R2016a version). We select the BP

neural networks with three hidden layers as classifiers. Each

hidden layer has 20 nodes. The Sigmoid function is selected as

the activation function of the hidden layer. The meteorological data

used in the experiment contains four main attributes.

Correspondingly, we set the number of input nodes of BP neural

network to 4. According to the number of rainstorm levels of the

three meteorological datasets, we set the number of output nodes of

the corresponding BP neural networks to 3, 5, and 7, respectively.

The activation function of the output node is the Softmax function.

4.2 Evaluation of discretization scheme

We compare RSFD with MFD-mvtR (Huang et al., 2020),

ECRSD (Chen et al., 2021), EDiRa (de Sá et al., 2016), NCAIC

(Yan et al., 2014), and ChiMerge (Rosati et al., 2015) in terms of

the number of breakpoints and the data inconsistency. The

discretization results of all algorithms in the dataset with the

three rainstorm levels are shown in Table 1.

RSFD obtains the smallest number of breakpoints and the

lowest data inconsistency in the dataset with the three rainstorm

levels. The number of breakpoints obtained by RSFD is 232 less

than that obtained by ECRSD. The data inconsistency obtained

by RSFD is 4 lower than that obtained by ECRSD. The

discretization results of all algorithms in the dataset with the

five rainstorm levels are shown in Table 2.

FIGURE 3
Defect in the dependence.
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RSFD obtains the smallest number of breakpoints and the

lowest data inconsistency in the dataset with the five rainstorm

levels. The number of breakpoints obtained by RSFD is 251 less

than that obtained by ECRSD. The data inconsistency obtained

by RSFD is 6 lower than that obtained by ECRSD. The

discretization results of all algorithms in the dataset with the

seven rainstorm levels are shown in Table 3.

RSFD obtains the smallest number of breakpoints and the

lowest data inconsistency in the dataset with the seven rainstorm

levels. The number of breakpoints obtained by RSFD is 241 less

than that obtained by ECRSD. The data inconsistency obtained

by RSFD is 6 lower than that obtained by ECRSD. Then, we train

the neural network classifier with the discretization results of all

algorithms. The classification results of all algorithms in the

dataset with the three rainstorm levels are shown in Table 4.

RSFD achieves the highest classification accuracy in the

dataset with the three rainstorm levels. The classification

accuracy obtained by RSFD is 1.96% and 10.15% higher than

that obtained by ECRSD and the original data without

discretization, respectively. The classification results of all

algorithms in the dataset with the five rainstorm levels are

shown in Table 5.

RSFD achieves the highest classification accuracy in the

dataset with the five rainstorm levels. The classification

accuracy obtained by RSFD is 1.21% and 9.13% higher than

that obtained by ECRSD and the original data without

discretization, respectively. The classification results of all

TABLE 1 Discretization results of all algorithms in the dataset with the
three rainstorm levels

Method Number of intervals Inconsistency

MFD-mvtR 423 12

ECRSD 389 10

EDiRa 658 16

NCAIC 572 20

ChiMerge 495 38

RSFD 157 6

TABLE 2 Discretization results of all algorithms in the dataset with the
five rainstorm levels.

Method Number of intervals Inconsistency

MFD-mvtR 589 20

ECRSD 476 16

EDiRa 968 26

NCAIC 857 32

ChiMerge 635 56

RSFD 225 10

TABLE 3 Discretization results of all algorithms in the dataset with the
seven rainstorm levels.

Method Number of intervals Inconsistency

MFD-mvtR 865 28

ECRSD 639 22

EDiRa 1398 38

NCAIC 1257 46

ChiMerge 963 68

RSFD 398 16

TABLE 4 Classification results of all algorithms in the dataset with the
three rainstorm levels.

Method Accuracy

Original data without discretization 0.8157

MFD-mvtR 0.8735

ECRSD 0.8812

EDiRa 0.8698

NCAIC 0.8359

ChiMerge 0.7756

RSFD 0.8985

TABLE 5 Classification results of all algorithms in the dataset with the
five rainstorm levels.

Method Accuracy

Original data without discretization 0.7879

MFD-mvtR 0.8319

ECRSD 0.8495

EDiRa 0.8237

NCAIC 0.8031

ChiMerge 0.7542

RSFD 0.8598

TABLE 6 Classification results of all algorithms in the dataset with the
seven rainstorm levels.

Method Accuracy

Original data without discretization 0.7693

MFD-mvtR 0.8035

ECRSD 0.8192

EDiRa 0.7968

NCAIC 0.7896

ChiMerge 0.7459

RSFD 0.8386
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algorithms in the dataset with the seven rainstorm levels are

shown in Table 6.

RSFD achieves the highest classification accuracy in the

dataset with the seven rainstorm levels. The classification

accuracy obtained by RSFD is 2.37% and 9.01% higher than

that obtained by ECRSD and the original data without

discretization, respectively.

4.3 Discussion

It can be seen that data inconsistency has a great impact on

classification accuracy. The smaller the number of data errors,

the higher the classification accuracy obtained on the neural

network classifier. RSFD scan each attribute in turn by using the

strategy of splitting first and then merging, and take the variation

of indiscernibility relation in rough set as the evaluation criterion

for the discretization scheme, thus obtaining the optimal discrete

feature set. EDiRa discretizes only one attribute at a time. Since

the correlation between attributes is not considered, the results

obtained by EDiRa will destroy the system compatibility to a

certain extent. NCAIC uses class-attribute correlation as a

criterion for dividing the interval, and considers the upper

approximation of each category and the distribution

information of the data. However, considering only the upper

approximation does not fully characterize the entire equivalence

class. The discretization discriminant of NCAIC still has a certain

probability to incline to the category with the largest number of

samples in the interval, which cannot obtain a satisfactory

discretization result. ChiMerge considers the similarity of

adjacent intervals, but neglects the internal stability of the

intervals. In this way, ChiMerge generates a large number of

data errors. On the contrary, MFD-mvtR considers the internal

stability of the intervals, but neglects the similarity of adjacent

intervals. Although MFD-mvtR can reduce the number of data

errors by using the variation of indiscernibility relation as the

evaluation criterion for the discretization scheme, it must come at

the expense of increasing the number of breakpoints. ECRSD

takes into account both the internal stability of the intervals and

the similarity of adjacent intervals, thus obtaining a discretization

result second only superior to that of RSFD. However, the

dependence adopted by ECRSD cannot directly reflect the

accuracy of the discretization result. It is more appropriate to

measure the system compatibility through the variation of

indiscernibility relation. In summary, RSFD has the best

performance.

5 Conclusion

Aiming at the problems of high interaction of multiple

attributes, noise interference, and difficulty in obtaining prior

knowledge in meteorological data, we have proposed a rough set-

based feature discretization method for meteorological data

(RSFD). Our contributions mainly come from the following

aspects: (1) we have calculated the information gain of each

candidate breakpoint in the meteorological attribute to split the

intervals; (2) we have used chi-square test to merge the discrete

intervals generated after the above splitting; (3) we have taken the

variation of indiscernibility relation in rough set as the evaluation

criterion for the discretization scheme. We have scanned each

attribute in turn by using the strategy of splitting first and then

merging, thus obtaining the optimal discrete feature set. We have

compared RSFD with the state-of-the-art discretization methods

on meteorological data. RSFD obtains the smallest number of

breakpoints and the lowest data inconsistency. We have trained

the neural network classifier with the discretization results of all

algorithms. RSFD achieves the highest classification accuracy.

However, RSFD is difficult to describe the ambiguity of

meteorological data. In future work, we will introduce fuzzy

theory to optimize the model, and test RSFD on more

meteorological datasets to improve the stability of the algorithm.
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