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Non-stationarity of extreme climate events has been reported worldwide in

recent decades, and traditional stationary analysis methods are no longer

sufficient to properly reveal the occurrence probability of climate extremes.

Based on the 0.25°C × 0.25°C gridded precipitation data (i.e., CN05.1), stationary

and non-stationary models of generalized extreme value (GEV) and generalized

Pareto (GP) distributions are adopted to estimate the occurrence probability of

extreme precipitation over China during 1961–2018. Low-frequency oscillation

(LFO) indices, such as El Niño-Southern Oscillation (ENSO), Indian Ocean

Dipole (IOD), North Atlantic Oscillation (NAO), Southern Annular Mode

(SAM), and Pacific Decadal Oscillation (PDO), are included as time-varying

covariates in the non-stationary GEV and GP models. Results illustrate that

the occurrence probability of extreme precipitation estimated from the

stationary GEV and GP distributions shows a significant increasing trend in

northwestern and southeastern China, and the opposite trend in southwestern,

central, and northeastern China. In comparison with stationary model, the

fitness of extreme precipitation series is improved for both the GEV and GP

distributions if these LFO indices are used as time-varying covariates. Positive

ENSO, IOD and PDO tend to cause negative anomalies in the occurrence

probability of extreme precipitation in northeastern China and Tibet Plateau,

and positive anomalies in southern China. Positive NAO and SAM phases mainly

tend to cause positive anomalies in southern China. The circulation patterns of

extreme precipitation anomalies associated with these LFO indices are

discussed from aspects of precipitable water, vertical integrated moisture

transport, 500-hPa geopotential height and 850-hPa wind field.
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Highlights

• Non-stationary frequency analysis for both AM- and POT-

sampled extreme precipitation events.

• A framework for non-stationary frequency analysis models

by taking the LFO indices as covariates.

• Circulation patterns of the LFO indices impact on

occurrence probability of extreme precipitation over

China are discussed.

1 Introduction

Global warming can aggrandize atmospheric water vapor

amounts (Liu et al., 2021), which in turn has led to increased

extreme precipitation (O’Gorman and Schneider, 2009; Yu et al.,

2022). Extreme precipitation can induce disasters such as floods,

slope landslides and mudslides, causing casualties and property

damage (Cazelles and Hales, 2006; Gu et al., 2020; Lai et al., 2020;

2021; Liu et al., 2019; Salinger and Griffiths, 2001). Therefore,

more and more attention has been focused on the variation in

extreme precipitation events (Gu et al., 2017a; Zhang et al., 2018).

Although climate change does not necessarily lead to an increase

in total precipitation, it exacerbates the frequency and magnitude

of extreme precipitation (Ibrahim, 2019). Hydrological frequency

analysis is a scientific criterion for natural disasters assessment,

especially water disasters caused by extreme hydrological events

(Bodini and Klotz, 2002). We use hydrologic frequency analysis

to build the relations between the hydrological design values and

the return period based on flood data or flow data, or indirectly

using precipitation data. It is the scientific basis for the planning,

design andmanagement of hydraulic engineering (Li et al., 2019).

Therefore, frequency analysis is essential for relating the severity

of extreme precipitation events to their frequency.

The current frequency analysis on extreme events requires

that the series satisfy the stationary assumption, assuming

that the frequency of extreme events is not time-varying. That

is, the probability distribution or statistical law of extreme

events remains constant in the past, present and future, and

there are no trends or abrupt changes in the extreme value

series (Klein Tank and Zwiers, 2009; Wang et al., 2015).

However, the climatic mechanisms underlying the

occurrence probability of extreme precipitation events are

constantly changing, leading to disruptions in the stationarity

of the time series of extreme precipitation events. Thus, the

reliability of the probability estimation for extreme

precipitation events based on the stationary assumption

has been strongly questioned (Hejazi and Markus, 2009;

Held and Soden, 2006; Tan and Gan, 2017; Yang and Tian,

2009), and many recent studies have shown that the

stationary assumption does not conform to the reality

(Giraldo Osorio and García Galiano, 2012; Wagesho et al.,

2012; Ishak et al., 2013). For example, Wi et al. (2016) found

an increasing trend of extreme precipitation in Korea; Tan

and Gan (2017) pointed out the temporal non-stationarities

in extreme precipitation across Canada. Therefore, it is

necessary to construct a non-stationary frequency analysis

framework for extreme precipitation events, study the

changing characteristics of occurrence probability of

extreme precipitation events, and explore the circulation

patterns behind the variation in the occurrence probability

of extreme precipitation events.

To consider the effects of low-frequency climate

variability, many studies have analyzed extreme

precipitation frequency analysis through non-stationary

generalized extreme value (GEV) and generalized Pareto

(GP) distributions (Gao and Xie, 2016; Tan and Gan, 2017;

Stojkovic and Simonovic, 2019). In such models, the

parameters of GEV and GP distributions depend on the

covariates, which are usually Low-frequency oscillation

(LFO) indices representing climate variability (Cheng et al.,

2014; Mondal and Mujumdar, 2015; Nasri et al., 2016; Zhang

et al., 2010). It can be seen that extreme precipitation are

influenced by LFO indices in previous studies. For instance,

Mallakpour and Villarini (2016) analyzed the relations

between the frequency of extreme precipitation and five

LFO indices, found that the Pacific-North American Model

(PNA) plays a major role in changes in extreme precipitation

events overAmerica. Duzenli et al. (2018) showed that the

North Atlantic Oscillation (NAO) is the most effective driver

of extreme precipitation variability in winter in Turkey. Tan

and Gan (2017) used four LFO indices as covariates with non-

stationary probability distributions to analyze their effects on

extreme precipitation in Canada.

Extreme precipitation in China is strongly impacted by

several LFO indices, including El Niño-Southern Oscillation

(ENSO) (Fu et al., 2013; Lv et al., 2019; Zhang et al., 2017),

Indian Ocean Dipole (IOD) (Saji and Yamagata, 2003; Xiao et al.,

2016; Gao et al., 2017), NAO (W. Gu et al., 2009), Pacific Decadal

Oscillation (PDO) (Gao et al., 2017; Sang et al., 2020), and

Southern Annular Mode (SAM) (Gao et al., 2022).

Precipitation in China is basically constrained by the East

Asian monsoon, under the significant influence of ENSO

(Chen et al., 2013). Many studies have shown an association

between seasonal precipitation and the positive/negative phase of

ENSO in China (Gong and Wang, 1999; Chan and Zhou, 2005;

Xiao et al., 2015; Gao et al., 2022). Gu et al. (2017a) showed that

SOI, NAO, PDO and IOD had certain effects on the incidence of

intense precipitation. The precipitation affected by NAO appear

in northwestern China and the Tibet Plateau (Ding and Wang,

2005; Cuo et al., 2013). SAM will cooperate with NAO to

influence precipitation in southern China in summer (Li et al.,

2017). The main rain belt (such as precipitation magnitude and

location) over the monsoon areas of China are significantly

influenced by PDO (Li et al., 2010; Xu et al., 2015; Zhu et al.,

2011).
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Following the framework built by Tan and Gan (2017), we

construct a non-stationary analytical model of extreme

precipitation events based on GEV and GP distributions to

detect the variation in the occurrence probability of extreme

precipitation events in China. We select ENSO, IOD, NAO, PDO

and SAM as influencing factors, and attempt to address the

following two scientific questions: 1) has the occurrence

probability of extreme precipitation events changed

significantly in China over the past few decades? 2) does the

LFO indices have a significant moderating effect on the change of

the occurrence probability of extreme precipitation events?

2 Data

2.1 Gridded daily precipitation data

The daily precipitation is collected from a 0.25°C×0.25°C

gridded dataset CN05.1. This dataset was built by Wu et al.

(2013) based on observations from more than 2,400 ground-

based weather stations and interpolated by the “distance level

approximation” method. The CN05.1 dataset covers the period

1961–2018, including daily precipitation, and other

meteorological elements; this dataset is widely used to analyze

climate characteristics in China (He et al., 2021; Li et al., 2021;

Wei et al., 2021; Wu et al., 2017).

2.2 Low-frequency oscillation indices

LFO indices impact significantly on precipitation processes

in China. Numerous studies have confirmed the importance of

ENSO (Fu et al., 2013; Lv et al., 2019; Zhang et al., 2017), IOD

(Saji and Yamagata, 2003; Xiao et al., 2016; Gao et al., 2017),

NAO (Gu et al., 2009), SAM (Gao et al., 2017), and PDO (Sang

et al., 2020) on precipitation variability in China. Therefore, in

this study, ENSO, IOD, NAO, SAM, and PDO are selected as the

LFO indices (time-varying covariates) that affect the occurrence

probability of extreme precipitation in China. We obtain the

monthly time series of ENSO, NAO, IOD, SAM, and PDO during

1961–2018 from the United States National Climate Center.

2.3 Large-scale environmental variables

The large-scale environmental variables (e.g., geopotential

height, meridional and zonal winds, precipitable water, and

meridional and zonal water vapor transport) are used to

analyze the circulation patterns that how LFO indices modulate

occurrence probability of extreme precipitation events in China.

These large-scale environmental variables are obtained from the

JRA-55 reanalysis data of Japan Meteorological Agency. This six-

hours reanalysis dataset covers the period 1961–2018, with a

spatial resolution of 1.25°C × 1.25°C. The six-hours data are

converted into daily values.

3 Methodology

3.1 Identification of extreme precipitation
events

We use the annual maximum (AM) and peak-over-threshold

(POT) methods to identify extreme precipitation events (Smith,

2002; Khaliq et al., 2006). The AM series consist of the annual

maximum daily precipitation, that is, the maximum value is

extracted annually to form the AM time series (a total of

58 values per grid cell during the period 1961–2018). There

may be multiple extreme precipitation events in the rainy year

and no intense precipitation events in the dry year, resulting in

the problem of omission or inclusion of false information in the

AM series. Therefore, in addition to AM series, extreme

precipitation series are constructed using the POT series (Tan

and Gan, 2017). For the POT series, the 95% quantile value of all

daily precipitation larger than 0.1 mm is taken as the threshold,

and the values above the threshold (i.e. the 95% quantile value)

are identified as heavy precipitation. Consecutive heavy

precipitation days are taken as one heavy precipitation event.

The POT series consist of all identified heavy precipitation events

during the period 1961–2018.

3.2 Stationary and non-stationary GEV
distribution

The AM series is fitted by the GEV distribution (Smith, 2002;

Tan and Gan, 2017):

Pr(y) � GEV(y; μ, σ, ξ) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp[ − 1 + ξ
y − μ

σ

−1/ξ], ξ ≠ 0

exp[ − exp(y − μ

σ
)], ξ � 0

(1)
Where y is the annual maximum extreme precipitation and

Pr(y) is the non-exceeding probability in y; μ, σ, and ξ represent

the location, scale, and shape parameters, respectively. ξ

determines the upper tail characteristics of the GEV

distribution curve. ξ > 0, GEV distribution has no upper

boundary; ξ < 0, GEV distribution has the upper boundary

μ − σ
ξ. When ξ tends to 0, GEV distribution becomes Gumbel

distribution, and has the thin tail without boundary (Gu et al.,

2017b). When theparameters of the GEV distribution are

constant, it is a stationary GEV model.μ and σ can be defined

by a linear function of the covariates as follows:
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{ μ � β11 + β12x1 + . . . + β1mxm

log(σ) � β21 + β22x1 + . . . + β2mxm
(2)

where x1, . . ., xm are the time-varying covariates and β11, . . ., β2m
are their corresponding coefficients.When μ and/or σ of the GEV

distribution vary with the covariates, it is a non-stationary GEV

model.

3.3 Stationary and non-stationary GP
distribution

The extreme precipitation series obtained from POT

sampling can be fitted by the GP distribution (Tan & Gan,

2017; Ibrahim, 2019):

Pr (y) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − exp[−y − u

σ
], ξ � 0

1 − [1 + ξ(y − u)
σ

]−1
ξ

ξ ≠ 0

(3)

σ and ξ represent the scale and shape parameters of the GP

distribution, respectively; y is the POT extreme precipitation and

Pr(y) is the non-exceeding probability in y; u is the threshold in

the POT sampling. When the scale parameter of the GP

distribution does not change with covariates, it is a stationary

GP model.

3.3 1 Non-stationary GP models
Similar to the GEV model, the GP distribution scale

parameter can be defined by a linear function of the

covariates as follows:

log (σ) � β0 + β1x1 + . . . + βmxm (4)

When σ of the GP distribution varies with the covariates, it is

a non-stationary GP model.

3.4 Model performance tests

The Kolmogorov-Smirnov (K-S) test is used to assess the

goodness-of-fit of GEV/GP distribution (Santos et al., 2015; Tan

and Gan, 2017; Romali et al., 2018). The null hypothesis is that

the stationary GEV/GP distribution is suitable to fit the observed

extreme precipitation series. The likelihood ratio test is used to

evaluate whether the non-stationary model has a better

performance than the stationary model (Xavier et al., 2020;

Zakaria et al., 2021). The null hypothesis is that there is no

difference between non-stationary and stationary models in

fitting the observed extreme precipitation series. The false

discovery rate (FDR) test is employed to assess whether the

improvement of the non-stationary model can be considered as

field-significant across China (Wilks, 2006). The null hypothesis

is that the improvement of the non-stationary model is not field-

significant. The above null hypotheses are rejected when the

corresponding p-value is smaller than 0.05.

3.5 Detection of changes in probability
index and occurrence rate

For AM time series, the non-exceeding probability

(i.e., Pr(y)) based on the stationary GEV distribution is used

as the probability index (PI) to quantify the variation in the

occurrence probability of extreme precipitation (Min et al., 2011;

Zhang et al., 2013). The PI is a standardized index within the

range of 0–1. The higher PI value corresponds to a larger

occurrence probability and greater magnitude (i.e. return

level) of extreme precipitation. For example, a 50-year event

means that its occurrence probability is 0.02, that is, the non-

exceeding probability is 0.98 (i.e., PI = 0.98). We estimate the

return level of each the AM value based on the stationary GEV

distribution, and calculate the corresponding PI value.

For POT time series, we use a Poisson distribution to

estimate the change in occurrence rate of extreme

precipitation events (Thiombiano et al., 2018):

P(Ni � k|λi) � e−λiλki
k!

(k � 0, 1, 2, . . .) (5)

Where, λi is the incidence of the occurrence rate of heavy

precipitation events (Min et al., 2011; Zhang et al., 2013).

Higher occurrence rate means larger frequency of heavy

precipitation events.

4 Results and discussion

4.1 Modeling extreme precipitation with
stationary distribution

The distribution of extreme precipitation thresholds in China

during 1961–2018 (Figure 1A) shows that extreme precipitation

thresholds in China generally exhibit higher in southeast than in

northwest, and the highest precipitation thresholds (with values

up to 28 mm or more) appear in southern China. This is in

consistant with the results obtained by Jin et al. (2021). The

variance distribution is consistent with the mean distribution

(Figures 1B,C). Both the mean and variance of precipitation

decrease from south to north in China (also see Xie et al., 2022).

The large variance in southern China (Figure 1C) indicates that

precipitation in these areas is highly dispersed. To evaluate the

degree of dispersion, the coefficient of dispersion is calculated

(Figure 1D). According to the distribution of dispersion

coefficients (Figure 1D), most of the grid points (about 89.4%)

have a significant performance of dispersion coefficients (ratio of

Frontiers in Environmental Science frontiersin.org04

Kang et al. 10.3389/fenvs.2022.1013636

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1013636


FIGURE 1
Information of peak-over-threshold (POT) sampling for extreme precipitation: (A) 95th percentile of non-zero precipitation as the threshold in
POT sampling; (B) annual average days with precipitation exceeding this threshold; (C) the variance of annual number of days with precipitation
exceeding this threshold; and (D) the coefficient of dispersion (i.e., the variance divided by the mean).

FIGURE 2
Spatial distributions of location, scale, and shape parameters in GEV distribution (A–C) and GP distribution (D–F). The black dots in a and d
indicate that the time series of extreme precipitation reject the null hypothesis at 0.05 significance level. The null hypothesis is that the time series can
be fitted by the stationary GEV/GP distribution.
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variance to mean > 1). Heavy precipitation in China exhibits

non-stationary behavior of point process of occurrences, which is

indicated by these over-dispersion characteristics (Tan and Gan,

2017).

The stationary GEV/GP simulations are carried out for the

AM/POT series respectively, and the K-S test was adopted to

assess the models’ goodness of fit (Figure 2) (Santos et al., 2015;

Tan and Gan, 2017; Romali et al., 2018). From Figures 2A,D,

almost all grid points accept the null hypothesis that the time

series can be fitted by the stationary GEV/GP distribution,

demonstrating that the AM series satisfies the stationary GEV

distribution and the POT series satisfies the stationary GP

distribution. The spatial distribution of the parameters of the

stationary GEV and GP models shows that the location (Figures

2A,D) and scale (Figures 2B,E) parameters decrease from

southeastern China to northwestern China and from coastal

areas to inland areas, with the highest values located in

southern and east-central coastal regions of China. The shape

parameters do not have a clear spatial distribution (Figures 2C,F),

but almost all grid points have non-zero shape parameters,

indicating that the AM series can be modeled by a GEV

distribution with heavy tail behavior (Eq. 1, ξ ≠ 0) and the

POT series can be modeled by a GP distribution (Eq. 3, ξ ≠ 0).

The AM and POT series are selected to estimate

precipitation magnitude at different return period levels (10-,

20-, and 50- years) through the stationary GEV and GP

distributions, respectively (Figure 3). Overall, the spatial

distribution of precipitation magnitudes among different

recurrence levels remains consistent and is similar to the

spatial distribution of the location and scale parameters,

showing decreases from southeastern China to northwestern

China. Furthermore, the spatial distribution of the 10-, 20- and

50- year return period precipitation estimated by the GEV and

GP distributions is also very similar, but the 10-, 20- and 50-

year return period precipitation estimated by the GEV

distribution is less than that estimated by the GP

distribution. In general, the 10-, 20- and 50-year return

period precipitation estimated by the GEV distribution is

36%, 30%, and 25% smaller than that estimated by the GP

distribution, respectively (the right column in Figure 3).

FIGURE 3
Return period (value occurs once in n years on average) of extreme precipitation estimated by the stationary GEV/GP distribution. (A–C/D–F)
are the 10-, 20-, and 50-year value estimated by the stationary GEV/GP distribution based on the extreme precipitation time series during
1961–2018. (G–I) are the corresponding difference in 10-, 20-, and 50-year value between GEV and GP distribution.
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4.2 Modelling extreme precipitation with
non-stationary distribution

Based on the stationary GEV distribution, we estimate the

probability index of AM extreme precipitation and detect their

trends in each grid during 1961–2018 (Figure 4A). Decreasing

probability index is found in northeastern China and eastern

Tibet plateau, while increasing probability index occurs in

northwestern and southeastern China. These results indicate

extreme precipitation become more (less) intense and have a

higher (lower) occurrence probability in northwestern and

southeastern China (northeastern China and eastern Tibet

Plateau).

We also detect changes in occurrence rate of extreme

precipitation events obtained from POT sampling (Figure 4B).

The spatial pattern of changes in occurrence rate (Figure 4B) is

highly consistent with that of changes in probability index

(Figure 4A). We notice that occurrence rate of extreme

precipitation events shows significantly increasing trends in

northwestern China. Increasing trends in both probability

index and occurrence rate are found in northwestern China

and southeastern China, meaning that the two regions have

experienced more intense and frequent extreme precipitation

events [similar results also see Zhai et al. (2005)]. Zhai et al.

(2005).

The increase of probability index and occurrence rate in

southeastern China may be prompted by the change of East

Asian summer monsoon (EASM) (Huijun, 2001). After 1970s,

the East Asian monsoon circulation weakened and the rain belt

lacked the power to jump northward, and stayed in southern

China, increasing the extreme precipitation here (Zhai et al.,

2005). In northwestern China, with the westward extension of the

West Pacific Subtropical High (WPSH) and the strengthening of

the Mongolian anticyclone, the southwest airflow is enhanced,

resulting in an anomalous increase in southwest water vapor

transport, and increasing the precipitation (Chen et al., 2021).

Figure 5 shows the difference in the occurrence probability of

20-year extreme precipitation between the five years with the

largest positive values and the lowest negative values of given

LFO indices. LFO indices are used as covariates for the location

and scale parameters of the GEV distribution. The dotted area is

the grids that show a significant improvement in the non-

stationary GEV distribution through the likelihood ratio and

FDR tests (Wilks, 2006). Table 1 lists the percentage of these grid

points. By modeling AM series using time to build the non-

stationary GEV distribution, the first and the last 5 years of the

period 1961–2018 (i.e., 1961–1965 and 2014–2018) for each grid

point. To avoid the influence of abrupt change, the precipitation

data were detrended.

Figure 6 shows the difference between the estimated

occurrence probability of 20-year extreme precipitation,

conditional on the positive and negative phases of the

covariates with the climate indices as the scale parameter of

the GP distribution. The result of GP distribution based on the

POT series with time, ENSO, IOD, NAO, SAM and PDO as the

covariate are similar to the GEV distribution (Figure 5).

When only taking the time as the covariate for the location

parameter, approximately 15.6% of the AM time series fit to the

GEV distribution showing a significantly better fit to the

stationary distribution (Table 1). The percentage of AM series

with a good fit to the GEV distribution increased to about 21.7%

when the time is included as a covariate for location and scale

parameters. With time as the covariate for the scale parameter of

the GP distribution, about 23.1% of POT series fitted the GP

distribution significantly better than the stationary GP

distribution (Table 1). The regions where the occurrence

FIGURE 4
Changes in probability index (A) and occurrence rate (B) during 1961–2018 over China. The probability index is estimated based on the GEV
distribution and the occurrence rate is estimated based on the Poisson distribution (see Section 3). The black dots indicate the change at
0.05 significance level.
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probability of 20-year extreme precipitation increases

significantly are mainly located in southeastern China, and

northwestern China also shows an increase (Figures 5A, 6A).

While there is a decrease trend in the occurrence probability,

especially in northeastern and east-central China and the eastern

Tibet Plateau (Figures 5A, 6A). This is consistent with the results

of J. Sun & Zhang (2017). In addition, Ma et al. (2015) also

pointed an increase of intense precipitation events in

southeastern China.

When ENSO is used as a covariate of GEV distribution

location parameter, about 25.5% of the regions showed

significant improvement. With ENSO as the covariate of

location and scale parameters, the good fitting region

between AM series and GEV distribution is about 28.8%.

When ENSO is used as the covariate for the scale

parameter of the GP distribution, the significant

improvement area was about 28.6% (Table 1). Figures 5B,

6B show the effect of ENSO on the occurrence probability of

20-year extreme precipitation, where positive ENSO events

imply El Niño and negative ENSO events imply La Niña. In

the summer when El Niño develops, China shows negative

precipitation anomalies except the southeastern China. The

results of Li et al. (2020) are consistent with our study showed

that during El Niño (La Niña) phases, positive (negative)

precipitation anomalies occur in southern China, while the

opposite in northern China and the Tibet Plateau. Sun et al.

(2017) pointed out that during El Niño years, southeastern

China has an increased risk of extreme precipitation, while

most areas in northern China experience drier conditions

during El Niño.

FIGURE 5
Change in the occurrence probability of 20-year extreme precipitation estimated by the non-stationary GEV distribution. The six covariates in
the non-stationary GEV distribution are time (A), ENSO (B), IOD (C), NAO (D), SAM (E) and PDO (F). For example, the ENSO is taken as the covariate,
and the change is the difference in occurrence probability estimated from themaximum andminimum five ENSO values. The blue/red areas indicate
the occurrence probability of 20-year extreme precipitation is higher/lower during extreme ENSO positive than negative phase. Black dots
indicate that the non-stationary model has better performance than the stationary model at 0.05 significance level.

TABLE 1 Percentage (%) of stations showing statistically significant improvements with the inclusion of covariates compared to consistent stationary
models.

Distribution Parameters Time ENSO IOD NAO SAM PDO

GEV Location 15.6 25.5 12.9 7.8 20.9 21.5

GEV Location + scale 21.7 28.8 17.3 11.2 24.4 26.6

GP Scale 23.1 28.6 22.0 12.7 26.7 30.1

Note: The POT, sampling used in GP, distribution has been filtered to be at Julian Date.
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More AM series show significantly better fit to the stationary

GEV distribution with IOD as the covariate for the location

parameter (12.9%) or the location and scale parameters (17.3%).

Using IOD as the scale parameter for the GP distribution, the

POT series are also more suitable for the GP distribution,

improving about 22.0% (Table 1). Li and Zhao (2019) showed

that positive IOD events cause a decrease of extreme

precipitation in southwestern and northeastern China. This is

consistent with our findings (Figures 5C, 6C). In addition, there is

a certain synergy between IOD and ENSO, positive (negative)

IOD events always accompany the occurrence of positive

(negative) ENSO events (Ashok et al., 2003). The combined

effects of ENSO and IOD contribute to increased precipitation in

summer in southern China (Xiao et al., 2015; Xu et al., 2016).

Therefore, IOD has important effects on the occurrence

probability of extreme precipitation over the China monsoon

region, and the significant area of GP distribution is more

concentrated in the northwest than the GEV distribution.

When NAO is included as the covariate of the location

(location and scale) parameters of the GEV distribution, the

fit was improved for 7.8% (11.2%) of the AM series. And 12.7% of

the POT series are also better fitted with NAO as the covariate for

the scale parameter of the GP distribution (Table 1). The

distribution of the effect of NAO on the occurrence

probability of extreme precipitation (Figures 5D, 6D) shows

that most of the regions in China show positive correlations

with NAO, except for parts of northwestern, southwestern and

northeastern China, which showed negative anomalies.

Linderholm et al. (2011) showed that summer NAO has a

positive correlation with precipitation in southeastern China,

while negative summer NAO events tend to lead to drought in

southeastern China.

About 20.9% (24.4%) of the stations fits are significantly

improved with SAM as the covariate for the location (position

and scale) parameters of the GEV distribution, and up to 26.7%

when SAM is used as the covariate for the scale parameter of the

GP distribution (Table 1). Many studies show that spring SAM is

positively correlated with summer precipitation in southeastern

China. During positive SAM, summer precipitation in southeast

China increases because of the change of EASM (Li et al., 2017;

Nan and Li, 2003; Wu et al., 2009). Wang and Fan (2005)

analyzed the temporal variation of the Antarctic Atmospheric

Oscillation (AAO) and precipitation in central-northern China

during summer and found precipitation in this region is

significantly negatively related to the AAO. The AAO is an

alias for SAM (Limpasuvan and Hartmann, 1999, 2000;

Baldwin, 2001). And we also found that positive SAM phase

tends to cause increasing extreme precipitation in most areas of

China, while it demonstrated a non-significant decreasing trend

in the central, central-north and northeastern regions (Figures

5E, 6E).

Using PDO as the covariate for the location (location and

scale) parameters of the GEV distribution, about 21.5% (26.6%)

of the AM series have an improved fit to the GEV distribution.

When PDO is used as a covariate of GP distribution scale

parameter, the improvement even reached about 30.1%

FIGURE 6
The same as Figure 5 but for the non-stationary GP distribution.
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(Table 1). The interannual relationship between ENSO and the

climate can be regulated by PDO, and the impact of ENSO on wet

and dry changes varies with PDO (Library et al., 2016; S. Wang

et al., 2014; Xue et al., 2018; Yang et al., 2017). Therefore, PDO

and ENSO have strong synergistic effects, and the distributions of

their impacts on the occurrence probability of extreme

precipitation in China are relatively consistent (Figures 5B,F).

From Figures 5F, 6F, significant negative (positive) correlation

between PDO and the occurrence probability of extreme

precipitation is found in northern (southeastern) China. Zeng

et al. (2021) found that during positive PDO, summer

precipitation increase in the southeast and decrease in the

north. Zhu et al. (2011) found that in negative PDO,

precipitation increase and decrease were distributed in east-

central and southeast China, respectively. There are also many

findings of decreased summer precipitation in east-central

Chinaduring positive PDO (Lin et al., 2016; Yang et al., 2017).

4.3 Large-scale circulation patterns
associated with the low-frequency
oscillation indices

The date when extreme precipitation events occur in China

(Julian Date) is identified as the seasonal characteristics (Son et al.,

2017). The 80% interval of the empirical cumulative distribution of

AM and POT series is used to select the respective Julian Date

(Figure 7). The annual maximum precipitation events are mainly

concentrated on days 143–244, and strong precipitation events are

also concentrated around days 146–249, and their overlapping

dates are taken as the Julian Date of extreme precipitation events

(146–244). Extreme precipitation over China is concentrated in

summer (May–August).

To further understand the regional influence of the positive/

negative ENSO, IOD, NAO, SAM, and PDO on the occurrence

probability of extreme precipitation events over China, we extract

the anomalies of large-scale climate variables during Julian Date

(146–244), based on the data of atmospheric precipitable water,

vertically integrated moisture transport (VIMT), 500 hPa

geopotential height and 850 hPa wind field. Furthermore, the

atmospheric circulation patterns of LFOs affecting the occurrence

probability of extreme precipitation events are analyzed. Figure 8

explains the thermodynamic factor of the precipitation driving

mechanism and Figure 9 explains the dynamical factor.

When ENSO is in the negative phase, that is, La Niña occurs,

a cyclonic water vapor circulation anomaly appears on the east

direction of China (Figure 8B). The positive geopotential height

anomaly in the northeast direction of China and the negative

anomaly over Japan accompanied by the easterly wind anomaly

(Figure 9B), which transports more water vapor to most parts of

China. Therefore, a precipitation configuration opposite to the

positive ENSO is generated.

Li and Mu (2001) pointed out that IOD affects precipitation

of southern China mainly by influencing the Indian summer

monsoon. In IOD positive phase, there are anomalous

southeasterly winds over the equatorial eastern Indian Ocean

(EIO) (Hong et al., 2008), anomalous westerly winds over the

Indian Peninsula, anomalous westerly winds over the Bay of

Bengal to the South China Sea (SCS) (Li and Mu, 2001)

(Figure 9C). There are cyclone anomalies in the Tibet Plateau

and southwestern China, and a positive anomaly center of

precipitable water in the SCS (Figure 8C). This circulation

anomaly enhances the humid southwesterly winds blowing

from the Bay of Bengal into southern China, promoting

precipitation in southern China (Qiu et al., 2014). The

anomalous southerly winds over the Indian peninsula also

FIGURE 7
Intra-annual distribution of extreme precipitation events obtained from annual maximum (AM; (A) and POT sampling (B).
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FIGURE 8
Composite patterns of precipitable water (shadows) and water vapor flux (arrows) anomalies in the days (Julian days 146–244) that extreme
precipitation frequently occurred in. The anomalies are obtained from the most five positive and negative phases of ENSO (A–B), IOD (C–D), NAO
(E–F), SAM (G–H), and PDO (I–J), respectively.
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deliver wet summer monsoon to northwest China, increasing

precipitation in the northwest. In addition, positive pressure

anomalies exist in most of China, particularly in the north (Weng

et al., 2011) (Figure 9C), and the water vapor lacks the power to

continue northward after reaching the south, leading to the

decrease of precipitation in northern China.

FIGURE 9
The same as Figure 8 but for 500-hPa potential height (shadows) and 850-hPa wind field (arrows) anomalies.
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Positive and negative IOD events are asymmetrical (Qiu

et al., 2014). In IOD negative phase, there is a weak westerly

wind anomaly over the equatorial EIO (Hong et al., 2008)

(Figure 9D), which means that the Indian summer monsoon

is weak, and the northern hemisphere is mostly in a state of water

vapor scarcity (Figure 8D). Moreover, due to the interaction of

the positive pressure anomaly in Central Siberia and the negative

pressure anomaly in Eastern Siberia (Figure 9D), the less vapor in

the northwestern China is taken away, making the northwest

extremely dry during negative IOD.

Positive (negative) NAO causes negative (positive) geopotential

height anomaly in northeastern Asia, which affects precipitation in

eastern China. When NAO is in a positive phase, low geopotential

height anomalies are located in southeastern Russia and

southeastern China, which are consistent with positive

precipitation anomalies. Positive NAO corresponds to negative

precipitation anomaly in western China (Linderholm et al.,

2011). A negative pressure anomaly exists in eastern Tibet

plateau, producing a low-level northward (southward) airflow

anomaly over northern (southern) China (Figure 9E). The

anomalous northward and southward winds convergence

enhance the summer precipitation in east-central China (Wang

et al., 2018). In addition, there is a negative pressure anomaly

covering the SCS and southern China. This cyclone anomaly

brings sufficient water vapor from the middle and low latitudes

of the Pacific (Figure 8E) to southern China and into central China,

causing increased precipitation in these regions.

Negative NAO may be the driving factor of drought in

northern China. When NAO is in the negative phase, the

easterly extension of the North Atlantic jet could be enhanced

by the cyclonic vortex-driven jet, and the excited Ross by wave

energy anomaly spreads to the Mongolia and northern China,

enhancing the anticyclonic anomaly in northern China and

making the precipitation in northeastern China decrease (Du

et al., 2020). In southern China, due to the negative pressure

anomaly advancing inland China, accompanied by the

anticyclonic anomaly in northern China (Figure 9F), water

vapor went deep into the inland China and accumulated there

(Figure 8F), so the precipitation in western China increased.

SAM can affect precipitation in southern China by impacting

the Maskelyne high pressure and Australian high pressure, thus

causing changes in the Somali Rapids and the SCS trans-

equatorial flow. These air flows cause East Asian summer

wind anomalies and WPSH intensity and position anomalies,

and affect precipitation in southern China through the Indian

Ocean and the Pacific Ocean channel (Li, 2016; Li et al., 2017). In

positive, mid-latitude Eurasia is controlled by an anomalous

anticyclonic circulation. And there is a weak cyclonic anomaly

in eastern China, allowing the anomalous northerly flow to

extend from mid-latitudes along the East Asian coast to

southern China (Figure 9G). The prevailing northerly

anomalous meridional airflow in the mid-latitude westerlies in

Asia promotes the ability of cold air mass from higher latitudes to

reach the middle and lower latitudes, generating abundant

convective conditions and promoting precipitation in southern

China (Nan and Li, 2003; Dou et al., 2020). At the same time, the

position of the WPSH is to the west and south, which provides

favorable circulation conditions for more summer precipitation

in southern China (J. Li, 2016). In addition, the negative pressure

anomaly in eastern China also brings abundant water vapor from

the northwest Pacific Ocean (Figure 8G) into northwest China,

contributing to increased precipitation there.

When SAM is in the negative phase, the water vapor and air

pressure configuration are nearly opposite to the positive SAM

(Figures 8H, 9H). Cyclonic circulation anomalies over Japan and

anticyclonic circulation anomalies over the SCS are manifested in

eastern China as anomalous southerly winds. The weak

meridional airflow in subpolar westerlies is not favorable to

the cold air southward movement, and convective conditions

are attenuated, making precipitation in southern China decrease

(Nan & Li, 2003).

The interannual relationship between ENSO and global

climate can be regulated by PDO (S. Wang et al., 2014). PDO

and ENSO affect SST and cyclic patterns in a very similar way

(Gershunov and Barnett, 1998). During the positive PDO phase,

anomalous cyclones in the extratropical North Pacific and

anomalous strengthening of the westerly wind in the tropical

Central Pacific (Figure 9I) favor the formation of El Niño events

(Song &Wang, 2020). Since the Asian summer monsoon mainly

originates from the heat difference between land and sea in the

north, there are positive pressure anomalies over the Asian

continent, which weakens the Asian summer monsoon, and is

not conducive for the water vapor transport from low latitudes to

eastern and northeastern China (Dong, 2016). Consequently,

precipitation increases in southeastern China, while it decreases

in northeastern and inland areas (Hu et al., 2011; Qian and Zhou,

2014). However, when PDO is in the negative phase, the cyclonic

anomaly in southeastern Russia accompanied by the positive

pressure anomaly in northeastern China leads to the easterly

wind anomaly (Figure 9J), which brings sufficient water vapor in

the North Pacific Ocean (Figure 8J) to northern and inland

China, and promotes increased precipitation in the region.

5 Conclusion

Stationary and non-stationary GEV/GP distributions are

used to estimate the occurrence probability of extreme

precipitation over China during 1961–2018. ENSO, IOD,

NAO, SAM and PDO are selected as covariates of the non-

stationary GEV/GP distribution.

The location and scale parameters of the stationary GEV

distribution fitted by the AM series and the stationary GP

distribution fitted by the POT series showed a decreasing

trend from southeast to northwest, consistent with the spatial

distribution of extreme thresholds. The 10-, 20-, and 100-year
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extreme precipitation return values estimated by the GEV

distribution are 36%, 30%, and 25% smaller than those of the

GP distribution, respectively. The GEV distribution mainly

underestimates the extreme precipitation in east-central,

northeastern and northwestern China.

The fit of AM/POT series is improved by the non-stationary

GEV/GP distributions obtained using LFO indices as time-

varying covariates. ENSO and PDO have a synergistic effect,

and the impact on the occurrence probability of extreme

precipitation over China mainly results in significantly

decreasing in northeastern, central China and Tibet Plateau,

and increasing in southeastern China. IOD is supposed to

have similar impact to ENSO, but the active southwestern

airflow from the Indian Ocean into northwestern China

makes it show a significant increase. The influence of NAO

on the occurrence probability of extreme precipitation over

China is less significant, which mainly shows an increase in

central China and a decrease in northwestern and southwestern

China. SAM has contributed to the development of precipitation

and a large range of increasing occurrence probability of extreme

precipitation occurred in China, with northwestern and southern

China being the main significant regions.

The effects of the five LFO indices on extreme precipitation

over China are mainly regulated by the summermonsoon. El Niño

occurs when the EASM weakens because of the strengthening of

the WPSH and cyclonic anomalies over the East Asia-North

Pacific. The same effect is produced by the anomaly of positive

pressure in the Asian continent during positive PDO, which gives

rise to an increase in southeast and a decrease in northeast.

Cyclonic anomalies exist over the Tibet Plateau at the time of

positive IOD, so the Indian summer monsoon carrying moist

southwesterly airflow is strengthened and the precipitation

increases in northwestern China. The cyclonic anomalies over

the SCS extend into southern China at positive NAO and

anticyclonic anomalies in north have increased precipitation in

southeastern and east-central China. The positive SAM occurs

when widespread anticyclonic anomalies over Asia and Europe, as

well as negative pressure anomalies in eastern China, and provides

sufficient power for water vapor transport, resulting in increased

precipitation over a wide area of China.

Many previous studies have investigated spatio-temporal

changes in extreme precipitation (such as magnitude and

frequency) in China during the past decades, and explored the

circulation patterns behind these changes in extreme precipitation.

Our study built stationary and non-stationary frequency analysis

models to detect changes in occurrence probability (i.e. return level)

of extreme precipitation, and explore the dependence between the

occurrence probability and LFO. In comparison with directly

analyzing the variation in magnitude and frequency of extreme

precipitation shown in previous studies, the occurrence probability

(i.e. return level) analysis has closer relations with the design of

hydraulic engineerings, such as sewerage engineering. By taking the

LFO indices be the covariates to build the non-stationary frequency

analysis model, we further quantify the impacts of LFO indices on

the occurrence probability of extreme precipitation. Strong regional

patterns of dependence between the occurrence probability and

given LFO index are found in China. These regional patterns

indicate that these LFO indices could be taken as a predictor for

the risk evaluation of hydraulic engineering under extreme

precipitation.
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