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The source area of the Yellow River (SAYR) is one of theworld´s largest wetlands

containing the greatest diversity of high altitude marshlands. For this reason, its

response to climate change is extremely significant. As revealed by different

studies, the response of hydrological processes to global warming results in

high uncertainties and complexities in the water cycle of the SAYR. Thus,

understanding and projecting future runoff changes in this region has

become increasingly important. In the present investigation, we used runoff

and meteorological data of the SAYR from 1976 to 2014 (historical period). In

addition, Digital Elevation Model (DEM), land-use, and soil data for the period

1976 to 2100 were used considering three future SSPs (Shared Socioeconomic

Paths) scenarios of 8 models selected from the Coupled Model

Intercomparison Project Phase 6 (CMIP6). The Soil and Water Assessment

Tool (SWAT) was used to simulate, project, and analyze potential variations

and future runoff of the main hydrological stations (Jimai, Maqu, and

Tangnaihai) located in the SAYR. The results showed that: 1) The SWAT

model displayed good applicability in historical runoff simulation in the

SAYR. A small runoff simulation uncertainty was observed as the simulated

value was close to the measured value. 2) Under three different

2021–2100 SSPs scenarios, the yearly discharge of the three hydrological

stations located in the SAYR showed an increasing trend with respect to the

historical period. Future runoff is mainly affected by precipitation. 3) We

compared the 1976–2014 average annual runoff with projected values for

the periods 2021–2060 and 2061–2100. With respect to 2021–2060, the

lowest and highest increases occurred at Tangnaihai and Maqu Stations in

the emission scenarios without (SSP585) and with mitigation (SSP126),

respectively. However, the highest and lowest increments at Jimai Station

were observed in the intermediate emission (SSP245) and SSP126 scenarios,

respectively. Moreover, in 2061–2100, the Maqu and Tangnaihai Stations

showed the lowest and highest increments in the SSP585 and

SSP245 scenarios, correspondingly. In Jimai Station, the lowest increment

occurred in SSP126. The yearly average discharge in the near future will be

smaller than that in the far future. Overall, this study provides scientific

understanding of future hydrological responses to climate changes in the

alpine area. This information can also be of help in the selection of actions

OPEN ACCESS

EDITED BY

Guobin Fu,
CSIRO Land and Water, Australia

REVIEWED BY

Ryan Thomas Bailey,
Colorado State University, United States
Junyu Qi,
University of Maryland, College Park,
United States

*CORRESPONDENCE

Jun Wen,
jwen@cuit.edu.cn

SPECIALTY SECTION

This article was submitted to Freshwater
Science,
a section of the journal
Frontiers in Environmental Science

RECEIVED 05 August 2022
ACCEPTED 17 November 2022
PUBLISHED 01 December 2022

CITATION

Li X, Jia H, Chen Y and Wen J (2022),
Runoff simulation and projection in the
source area of the Yellow River using the
SWAT model and SSPs scenarios.
Front. Environ. Sci. 10:1012838.
doi: 10.3389/fenvs.2022.1012838

COPYRIGHT

© 2022 Li, Jia, Chen and Wen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 01 December 2022
DOI 10.3389/fenvs.2022.1012838

https://www.frontiersin.org/articles/10.3389/fenvs.2022.1012838/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1012838/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1012838/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.1012838/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.1012838&domain=pdf&date_stamp=2022-12-01
mailto:jwen@cuit.edu.cn
https://doi.org/10.3389/fenvs.2022.1012838
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.1012838


for macro-control, planning, and management of water resources, and the

protection of wetlands in the SAYR.
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SWAT model, NorESM2_MM model, runoff simulation, runoff projection, the source
area of the Yellow River

Introduction

The wetland ecosystem located in the SAYR is known as the

“ChinaWater Tower.” This area has played a unique role in flood

storage, water conservation, and prevention of water and soil

loss. The SAYR is about 12.2 × 104 km2, accounting for 16.2% of

the total catchment area of the Yellow River Basin (Wang et al.,

2019). Between 1956 and 2017, the annual SAYR runoff reached

19.82 billion m3, which represents a 34.1% of the annual runoff of

the entire region (Yang X. L. et al., 2021). Thus, the SAYR on the

Qinghai-Tibetan Plateau represents the main runoff source of the

Yellow River Basin (YRB). It has been reported that abundant

runoff and scarce runoff directly affect water availability,

economic development, income, and even the environmental

safety of the entire ecosystem of the upper reaches of the Yellow

River (Dong et al., 2007; Liu et al., 2011). The Qinghai-Tibetan

Plateau is one of the amplifiers of global climate change. Shi and

Zhang (1995) and Huang and Zhao (2004) studied the runoff

evolution of large rivers in the Qinghai-Tibetan Plateau.

According to their results, since the mid-1960s, annual runoff

decreased as a result of drying and reduction of water resources

caused by climate warming. It has been determined that climate

change is the main responsible for runoff decrease in the upper

reaches of the Yellow River (Arnell, 1999; Bolch et al., 2012;

Wang et al., 2013; Li and Fang, 2021).

Working Group I contribution to the Sixth Assessment

Report (AR6) of IPCC (Intergovernmental Panel on Climate

Change) states that global annual average surface temperature

increased by 1.09 [0.95–1.20]°C in the past 10 years (2011–2020),

as compared to the period 1850–1900. From 2003 to 2012 (the

historical period of the AR5), a global warming of

0.19 [0.16–0.22]°C was observed. In addition, the global

average surface temperature has increased at higher rates in

every decade of the past 40 years than in any other decade of

previous periods (IPCC, 2021; Zhou and Qian, 2021; Li et al.,

2022). Global warming will significantly impact the hydrological

cycle by affecting the spatio-temporal distribution of

precipitation, evaporation, runoff, and soil moisture. These

changes will further influence the redistribution of water

resources complicating their assessment and management. As

effect of global warming, evapotranspiration has also

significantly changed during the past decades, resulting in the

loss of soil water and runoff (Donnelly et al., 2017; Hu et al.,

2022). Different methodologies have been used to determine the

impact of climate change on watershed hydrology, including the

paired catchment approach, hydrological modelling approach,

conceptual approach, empirically statistical method, and

hydrological sensitivity method (Gao et al., 2016; Zhang et al.,

2017).

Since the hydrological model is able to provide a significant

amount of information from limited existing data and identifies

the relationship between model parameters and physically

observable land surface characteristics, it is the main method

currently used for runoff simulation. The three types of

hydrological models used in practical applications are the

lumped, semi-distributed, and fully-distributed models, which

are based on spatial discretization (Marahatta et al., 2021a). For

example, Génie Rural à four paramètres Journalier (GR4J),

Hydrologiska Byråns Vattenbalansavdelning (HBV) and a

simplified version of the HYDROLOG (SIMHYD) are lumped

models, while topographic hydrologic model (TOPMODEL),

Variable Infiltration Capacity (VIC) and the SWAT are semi-

distributed models. The Variant of Système Hydrologique

Européen (MIKE_SHE) and Visualizing Ecosystem Land

Management Assessments (VELMA) are fully distributed

models.

At the same time, the GCMs (Global Climate Models) are the

most important and powerful tools for future projections of

climate change in the context of global climate warming. Thus,

climate change simulations and future runoff projections can be

performed by combining hydrological models and climate

models with climate scenario model data for hydrological

modeling, which is also the mainstream and hot topic of

current research on climate change impacts on water

resources in watersheds. For example, Harding et al. (2012)

used 16 GCMs in CMIP3 to drive the macroscale VIC model.

These researchers found that, by the middle of the century, the

streamflow in the Upper Colorado River Basin will decrease and

increase in approximately 30%. Fei et al. (2016) applied the

Xinanjiang (XAJ) hydrological model by using historical climatic

data and two future precipitation scenarios for streamflow

simulations in the Pearl River Basin of China. Theirs results

implied that future precipitation transformation methods were a

source of uncertainty, affecting future discharge projections.

Isam et al. (2019) simulated and compared the future runoff

across three unregulated catchments in Australia by applying two

different hydrological models (lumped-HBV and distributed-

BTOPMC) in combination with a multi-model ensemble of

8 GCMs in CMIP5 under the RCP4.5 and RCP8.5 for the

mid-(2016–2065) and late-(2080–2099) 21st century. Their

results showed that the lumped model performed better than

the distributed model in capturing the observed streamflow
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across the three contributing catchments. In addition, the

performance of the models was relatively incompatible with

the change in the direction of high and low flows for future

climate scenarios. Ohba et al. (2022) investigated the influence of

climate change on streamflow in a heavy snowfall area of

mountainous central Japan using HYDREEMS (Hydrological

Evaluation with Evapotranspiration Modeling System)

simulations driven by climate projections obtained from the

d4PDF-GCM in d4PDf database. Simulation performance of

hydrological and climate models may vary across regions due

to differences in working mechanisms, initial conditions,

parameterization schemes, and spatial resolution (Walsh et al.,

2008; Mote and Salathé, 2010; Kobierska et al., 2013; Isam et al.,

2019; Li et al., 2022). Hence, in order to improve the accuracy of

research results, model optimization and performance evaluation

should be carried out before they are applied in the field.

The Soil and Water Assessment Tool (SWAT) model is a

physically-based semi-distributed hydrological model

developed by USDA ARS (U.S. Department of Agriculture,

Agricultural Research Service). This tool is important in

ecological and hydrological processes modelling. SWAT has

been widely used in hydrology, soil erosion, land use, and

agricultural management (Arnold et al., 1998; Mankin et al.,

2010; Tan et al., 2019; Li W. T. et al., 2021). Many studies have

confirmed the good performance of the SWAT model in

hydrological runoff simulations (Griensven et al., 2012;

Fukunaga et al., 2015; Anand et al., 2018; Das et al., 2019;

Akoko et al., 2021). For example, Shrestha et al. (2018)

evaluated the hydrological response of the SWAT model

using data of 11 basins in two contrasting climatic regions of

Asia. Their results revealed that SWAT was a suitable tool for

modelling hydrological responses in both regions. Bera and

Maiti, (2021) used SWAT to analyze the spatio-temporal

distribution of runoff and water resources in the Ganges

River Basin. Their results proved the good performance of

this model. Serrao et al. (2022) applied the SWAT model to

simulate the surface runoff and sediment yield in the Amazon

River Basin in Brazil. The simulation results were in agreement

with the real measurements. Thus, the SWAT model can be

used to evaluate the hydrological and sedimentation processes

of the Amazon River Basin. Similarly, Wang D. X. et al. (2020)

demonstrated the applicability of the SWAT model to simulate

the runoff of the Qingshui River Basin located in the

Zhangjiakou city of Hebei Province. It has also been

determined that precipitation is a primary factor influencing

runoff. In this context, Song et al. (2016) used the SWAT model

to build a simulation scheme for the Shiyang River Basin

located in the Hexi Corridor. Their data indicated that the

sequential uncertainty fitting algorithm SUFI-2 presented

certain applicability in runoff simulation. Li et al. (2004)

proved that the SWAT model displayed a good performance

when they obtained yearly and monthly streamflow simulations

for the Tangnaihai hydrological station in SAYR. Similarly,

Wang et al. (2019) reported the SWATmodel displayed the best

performance when monthly runoff data of the SAYR was

simulated.

As global climate warming persists, the ecological safety of

the YRB is threatened to an unprecedented extent. For this

reason, understanding and projecting future runoff changes in

the YRB has become increasingly important. The sixth phase of

the CMIP project involves the largest number of models among

all CMIP phases. CMIP6 is also known for its significant

improvement in experimental design and the massive amount

of data provided for simulation. Besides, CMIP6 includes

combined scenarios of future radiative forcing and shared

socioeconomic pathway-representative concentration pathway

(SSP-RCP), which further enhances the accuracy of future

projections (Zhou et al., 2019). Existing studies have

confirmed the applicability of CMIP6 models to different

Chinese scenarios. For example, Yang Z. K. et al. (2021)

compared and evaluated the simulation performance of

20 CMIP6 models for temperatures and precipitations of

China. They found out that the CMIP6 global climate model

was able to accurately reproduce the spatial distribution of

temperatures and precipitations. Also, Wang et al. (2021)

compared the CMIP5 and CMIP6 models using China’s

extreme precipitations. These researchers determined that the

simulation performance of the CMIP6 models was higher than

that of the CMIP5 models. Jiang et al. (2020) applied the

CMIP6 scenarios to the Huaihe River Basin and projected

spatial distributions of temperature and precipitation.

CMIP6 demonstrated a higher performance and lower

deviations as compared with CMIP5.

At present, a large number of studies have been conducted in

several river basins at home and abroad by coupling the SWAT

model to CMIP in different stages (Gan et al., 2015; Bajracharya

et al., 2018; Bhatta et al., 2019; Dahal et al., 2020; Marahatta et al.,

2021b). Zhang and Xu (2009) incorporated the GCMs outputs

into the SWAT model and performed runoff projection for the

SAYR in three future periods (2020s, 2050s, and 2080s). Their

data showed that future climate changes are likely to have a

dramatic impact on runoff values in the SAYR. According to

their projections, the runoff in this region will decrease in the

future. Tang et al. (2012) used three climate models, CSIRO,

INM, and MRI to determine how climate change affected by two

greenhouse gas emissions scenarios (SRES A2 and SRES B1) will

influence the runoff in the upper reaches of the Yellow River in

two future periods (2046–2065 and 2081–2100). Their results

showed that runoff in the study area stabilized or decreased

under different greenhouse gas emission scenarios. Wang et al.

(2014) combined the SWAT and the RegCM3 models to project

runoff from 2010 to 2098 in the SAYR under the A1B emissions

scenario. Their results indicated an alternation of upward and

downward trends (decrease-increase-decrease) at the Tangnaihai

hydrological station in the three future periods. Zhang et al.

(2015) used the SWAT and GCM models to assess the impact of
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climate change on the SAYR’s hydrological components under

three emission scenarios (A1B, A2, and B1) during the period

2013–2042. Their results showed that, in A1B and B1, the future

streamflow in the Tangnaihai gauge showed an increasing trend.

In addition, the A2 scenario was characterized by a declining

trend.

The SAYR on the Qinghai-Tibetan Plateau is the dominant

water source region of the whole YRB. Since temperature is

expected to continuously rise in the future, increases and

decreases in precipitation display a high level of uncertainty.

The sensitive responses of hydrological processes to the

intensifying global warming result in high uncertainties and

complexities of the water cycle in the SAYR. An in-depth

understanding of the effect of future climate changes on water

cycle is of great significance for the proper management of water

resources and the formulation of associated policies. To the best

of our knowledge, most of the SAYR runoff data has been

estimated using the hydrological information of the

Tangnaihai Station, the main stream control station of the

YRB (Wang L. et al., 2020). Significant differences in future

runoff variations have been observed. Moreover, to the best of

our knowledge, few studies have combined the CMIP6 and the

SWAT models under different future scenarios, especially in the

SAYR. Thus, in order to investigate the hydrological response to

future climate change in the SAYR, we used historical runoff data

of three hydrological stations, meteorological data of

11 meteorological stations, DEM, land use, and soil data.

First, we considered different sensitivity parameters to

evaluate the applicability of the SWAT model to the SAYR.

Later, 8 selected models under CMIP6 were analyzed in order to

project future runoff and runoff changes at three hydrological

stations from 2021 to 2100 under three different scenarios

(SSP126, SSP245, SSP585). Our research findings can provide

an important basis and theoretical support for water resources

management, flood control, water conservation, and the

environmental protection of the SAYR wetland.

Data and methods

Study area

The Yellow River originates from the Qinghai-Tibetan

Plateau in China and runs through nine provinces called

Qinghai, Sichuan, Gansu, Ningxia, Neimenggu, Shannxi,

Shanxi, Henan, and Shandong. This is China’s second longest

river with a total length of about 5,464 km and a basin area of

795 thousand km2 (Zhai et al., 2021). The region of interest is

located in the SAYR. It encompasses the upper reaches of the

Tangnaihai hydrological station in the Yellow River upstream,

covering three provinces, Qinghai, Sichuan, and Gansu. As

shown in Figure 1, the study area is located between

longitudes 95°E and 104°E, and latitudes 32°N and 37°N. The

elevation varies from 2,145 to 6,248 m a.s.l., with higher

landforms to the west as compared to the east. The river

system is highly developed, serving as an important water

conservation area in the Yellow River Basin. The wetland

types include natural wetlands (rivers, lakes, marshes and

beaches) and constructed wetlands (reservoirs, puddles and

ponds), of which the marshy wetlands have the largest area,

accounting for 63.2% of the total wetland area in the SAYR (Li,

2018). In this region, more water than sediments are present. In

the SAYR, the predominant land use includes grassland, forest

land, and water. Different types of soil are present, with the alpine

soil as the dominant (Dai et al., 2014). Within the study area, the

underlying surface is largely alpine grassland, with a typical

continental climate. The precipitation distribution is uneven

and is mostly concentrated in summer season. The annual

average precipitation varies between 257.7 and 766.7 mm over

the years. As for spatial distribution, precipitation decreases from

southeast to northwest. In addition, temperature decreases from

southeast to northwest. Figure 1 shows the geographic position of

the study area and the spatial distribution of the annual average

precipitations from 1976 to 2020.

FIGURE 1
(A) Geographic location of the study area; and (B) average annual precipitation from 1976 to 2020.
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Data

In the present study, we used daily meteorological data from

1976 to 2020 collected frommeteorological stations located in the

SAYR. The climatic elements included precipitation,

temperature, pressure, evaporation, wind speed, sunshine

hours, and relative humidity, which were obtained from

China Meteorological Data Network (http://data.cma.cn/).

DEM data were downloaded from GSCloud (http://www.

gscloud.cn/), with a spatial resolution of 30 m × 30 m. Land

use and soil type were obtained from the Resources and

Environmental Science Data Center (https://www.resdc.cn/

Datalist1.aspx?FieldTyepID=11,6), with a spatial resolution of

1 km × 1 km. The monthly runoff data from 1976 to 2014 at the

Jimai, Maqu, and Tangnaihai hydrological stations were acquired

from relevant hydrological stations and literature. The

CMIP6 data, which mainly covered maximum temperature,

minimum temperature, wind speed, precipitation, relative

humidity and radiation, was acquired from the Coupled

Model Intercomparison Project Phase 6 of the World Climate

Research Program (WCRP) (https://esgf-index1.ceda.ac.uk/

projects/cmip6-ceda/).

Many studies have indicated that GCMs is able to simulate

some climatic factors on a regional scale (Seneviratne and

Hauser, 2020; Quenum et al., 2021; Li et al., 2022). Numerous

studies have also shown that the simulation effect of the multi-

model ensemble is better than that of a single model, and the

simulation uncertainty is smaller (Kim et al., 2020; Almazroui

et al., 2021; Niu et al., 2021). Therefore, in this study, we selected

8 models with complete data for the period 1976–2100 in

CMIP6 to simulate and project runoff in the SAYR. These

data included historical climate simulations (Historical) and

three future scenarios (SSP126, SSP245 and SSP585)

representing sustainable socioeconomic development,

intermediate socioeconomic development, and traditional

fossil fuel-driven development, as well as the combination of

low radiation forcing, medium radiation forcing, and high

radiation forcing, respectively. Table 1 shows the basic

information of the 8 selected models. Due to the different

spatial resolution of each model, a bilinear interpolation was

first applied to obtain 0.5° × 0.5° data for the 8 models. Later,

multi-model ensemble mean of 8 models was determined.

Finally, in order to reduce uncertainty, the results of multi-

model ensemble mean were used for runoff projection in the near

(2021–2060) and distant future (2061–2100). In addition, a

comparative analysis of historical and future runoff data was

performed.

SWAT model

In the SWAT model, the river basin is divided into several

sub-basins, which are further decomposed into hydrological

response units (HRUs) according to DEM, land use, water

systems, and soil types. The HRU is the basic unit in SWAT

model. The natural state of the river basin was simulated and

runoff was calculated for each HRU. The sum of these values

represented the total runoff of the main river channel (White

et al., 2011). The SWAT model consists of several modules

including the sediment and hydrology modules, which are run

on a daily basis. Therefore, we can obtain monthly and yearly

outputs. The SWAT model displays high computational

efficiency and long-term continuous simulation capacity

(Osei et al., 2019). Herein, we obtained a historical

simulation and future projections of runoff using the

ArcSWAT2012 model. The SWAT model uses the general

water balance equation (Eq. 1) to simulate the water cycle

(Neitsch et al., 2009; Arnold et al., 2011):

SWt � SW0∑
t

i�1 Rday − Qsurf − Ea −Wseed − Qqw( ) (1)

Where SWt and SW0 are the final and initial soil water content; i

is the time t (days) for the simulation period; Rday (mm), Qsurf

(mm), Ea (mm), Wseed (mm) and Qqw (mm) represent daily

precipitation, surface runoff, evapotranspiration, water

accumulated in the vadose zone, and return flow, respectively.

TABLE 1 Basic information of 8 models in CMIP6 chosen for future runoff projections.

Number Model name Country Spatial resolution (gird
points, Lon×Lat)

1 CanESM5 Canada 128 × 64

2 CMCC-ESM2 Italy 288 × 192

3 GFDL-ESM4 United States 288 × 180

4 IPSL-CM6A-LR France 144 × 143

5 MIROC6 Japan 256 × 128

6 MPI-ESM1-2-LR Germany 192 × 96

7 MRI-ESM2-0 Japan 320 × 160

8 NorESM2-MM Norway 288 × 192
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We first built a simulation scheme in SWAT using DEM, land

use, soil types, water system, and 1976–2014 data from

11 meteorological stations relevant to the study area. For

parameter optimization purposes, monthly runoff

measurements of three hydrological stations were used to

perform parameter calibration and validation. Afterwards, we

obtained the optimal historical runoff simulation. Finally, the

multi-model ensemble mean data in CMIP6 corresponding to

the future scenarios were imported in order to obtain the runoff

projection and analyze potential changes in the SAYR in the two

future periods. Table 2 shows the results for land use

reclassification and area ratio for each type of land use

considered in the SWAT simulation. Figure 2 presents the

spatial distributions of DEM, water system, land use, soil types,

and the main inputs. Land use data were categorized into six

classes (level 1) while soil data were segregated into 7 classes (order

1) and 29 sub-classes (subgroup 2).

SUFI-2 algorithm in the SWAT Calibration Uncertainties

Program (SWAT_CUP) can be used for the simultaneous

calibration of several parameters. This algorithm involves

uncertainties in calibration parameters, input data, model

structure, and actual observed data. The range of uncertainty

can be visualized on the 95PPU (95 Percent Prediction

Uncertainty) plot using the simulated and measured values. In

this context, it is helpful to find the best parameter combination.

The SUFI-2 algorithm is used for parameter calibration of the

SWAT model and uncertainty assessment of the hydrological

model (Abbaspour et al., 2004). Yang et al. (2008) showed that

the SUFI-2 algorithm was highly flexible and adaptable to any

possible measurement or objective function. In addition, it

provides an uncertainty interval with a minimum number of

runs reasonably covering the data points. Considering this, we

employed the SUFI-2 algorithm for parameter calibration and

uncertainty analysis. Sensitivity was determined using the global

sensitivity analysis in SWAT-CUP2012. Also, sensitivity was

measured through t-statistic (t-Stat) and p-value, which indicate

the significance of t-Stat. The absolute value of t-Stat indicates the

sensitivity of the model parameter. The higher the absolute value,

the greater the sensitivity of the model parameter. The p-value

indicates the significance of t-Stat. The smaller the p-value, the

greater the significance of t-Stat. Hence, the lower the contingency

of the sensitivity, the greater the importance of the parameter. In

TABLE 2 Land use reclassification and area ratio in the SAYR.

No. Level 1 classification SWAT code Area ratio (%)

1 Cropland AGRL 1.11

2 Forest land FRST 7.26

3 Grassland PAST 78.94

4 Water WATR 6.55

5 Built land UCOM/UIDU 0.20

6 Unused land BARR 6.00

FIGURE 2
Regional distribution of the main input parameters of the SWAT model: (A) DEM; (B) water system; (C) land use type (level 1); and (D) soil type
(order 1).
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other words, the higher the absolute t-Stat value and the lower the

p-value, the higher the sensitivity (Li et al., 2015).

The performance of the hydrological model was assessed

using two indicators, the coefficient of determination (R2) and

Nash-Sutcliffe efficiency (NSE). The closer the R2 and NSE values

to 1, simulated and observed values were more alike. It is

generally considered that if R2 > 0.7 and NSE > 0.55, the

model’s performance to simulate monthly runoff is

satisfactory (Moriasi et al., 2015). The two indicators were

calculated using Eqs 2, 3 (Cao et al., 2021).

R2 � ∑n
i�1 Qobs

i − Qobs
avg( ) Qsim

i − Qsim
avg( )[ ]

2

∑n
i�1 Qobs

i − Qobs
avg( )

2∑n
i�1 Qsim

i − Qsim
avg( )

2 (2)

NSE � 1 − ∑n
i�1 Qobs

i − Qsim
i( )2

∑n
i�1 Qobs

i − Qobs
avg( )

2 (3)

where n is the time series length; Qobs
i and Qsim

i are the measured

and simulated runoff, respectively; and Qobs
avg and Qsim

avg are the

averages of measured and simulated runoff, correspondingly.

Taylor diagram

The Taylor diagram presents three statistics, the spatial

correlation coefficient (R) between the simulated and the

observed value, standard deviation (STD), and root mean

square error (RMSE) of the simulated value relative to the

observed field. Differences between the simulated results and

the reference data can be observed intuitively. Taylor diagram

offers a comprehensive image of the simulation performance of

the model. We plotted the Taylor diagram for 8 selected models

in CMIP6 to assess their performance for historical climatic

factors in the SAYR and the applicability during future runoff

simulations. The spatial correlation coefficient between the

simulated and the observed values estimates the performance

of model’s simulation at the central location. In addition, the

standard deviation ratio (STDR) indicates the model’s simulation

performance for central amplitude, and it corresponds to the

ratio of the standard deviation of the test field to that of the

observed field. Moreover, RMSE measures pattern similarities

between the simulated and the observed values. The closer the

RMSE to 0, the stronger the simulation performance. The

formulas to calculate these three statistics are published in

Taylor (2001) and Jiang and Chen (2021).

Results

SWAT sensitivity analysis

Twenty-seven parameters were selected for the analysis

(Zhao and Xu, 2009; Zuo and Xu, 2012; Li S. Q. et al., 2021;

Martínez-Salvador et al., 2021; Hu et al., 2022). Each iteration

consisted of 500 simulations performed with the SUFI-2

algorithm, and the optimal parameter combination was

obtained after reaching the pre-set number of iterations. As

shown in Table 3, the parameters were ranked in terms of

sensitivity. According to our results, soil evaporation

compensation factor (ESCO) was the most sensitive

parameter, which represents soil water evaporation. The

higher the ESCO, the smaller the soil water evaporation and

the larger the runoff. The high sensitivity of this parameter

indicated that runoff was significantly related to soil water

evaporation. The second most sensitive parameter was SCS

(Soil Conservation Service) runoff for moisture condition II

(CN2). This parameter shows the characteristics of the

underlying surface. The higher the SCS value, the higher the

underlying surface impermeability and runoff. The third most

sensitive parameter corresponded to the groundwater “revap”

coefficient (GW_REVAP) that indicates the ability of

groundwater to enter the unsaturated layer from the shallow

aquifer when the unsaturated soil layer is short of water. Elevated

GW_REVAP values indicated a strong capacity for groundwater

re-evaporation, high evaporation levels, and small runoff. The

fourth most sensitive parameter was the threshold depth of water

in the shallow aquifer required for return flow to streams

(GWQMN). This is a measure of the amount of precipitation

turning into runoff. The sensitivity of this parameter indicated

that runoff in the study area was also influenced by precipitation.

Other parameters with strong sensitivity included available water

capacity of the soil layer (SOL_AWC), the threshold depth of

water in the shallow aquifer for “revap” to occur (REVAPMN)

and saturated hydraulic conductivity (SOL_K), among others.

SWAT model calibration and validation

Calibration and validation processes were conducted after

the sensitivity analysis. A warm-up period (to stabilize the

model) of 2 years (1976–1977) was excluded from the

analysis. The years 1978–1994 were set as the calibration

period and 1995–2014 as the validation period. Table 4 shows

the statistics of the runoff simulation and measurements at three

hydrological stations during the calibration and validation

periods. In the calibration and validation periods, R2 between

simulated and observed value was consistently higher than 0.72.

In addition, NSE was larger than 0.65. In both periods, the

smallest R2 values (0.72) were observed at the upper reaches

of the Jimai hydrological station. Similarly, in the calibration and

validation periods, this station displayed the smallest NSE values,

which were 0.69 and 0.65, respectively. According to these

results, the SWAT model displayed good runoff simulation

performance in the SAYR, and therefore, its applicability was

proven. Figure 3 shows the temporal variations of simulated and

measured monthly discharges in the two periods. The results

showed that the simulated monthly discharge at the Jimai, Maqu,
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and Tangnaihai hydrological stations generally agreed with the

observed data. The slight decreasing trend was mainly observed

in the calibration period, while a small increasing trend occurred

in the validation period. The peak precipitations and runoff

occurred in summer season and presented a similar variation

trend in both periods. The correlation coefficients were

significant (at the significance level of 0.01 in both periods).

The runoff was significantly influenced by precipitation. The

variation trends of runoff and precipitation in the upstream of

the Jimai Station were more consistent than those observed in the

downstream of the Maqu and Tangnaihai Stations. Precipitation

influenced runoff to a greater extent in the upper reaches of the

SAYR, as compared to the lower reaches.

The SUFI-2 algorithm performs the approximation at a

95 percent prediction uncertainty level called 95PPU (Chen

et al., 2017). We assessed the uncertainty using p-factor and

r-factor of the observed data bracketed by 95PPU. It was

determined that the p-factor displayed values between 0 and

1. P-factor represents the percentage of the observed values

bracketed by 95PPU. In addition, the r-factor represents the

average width of the 95PPU band. The specific results are shown

TABLE 3 SWAT model parameter sensitivity and calibration.

Parameter name Full meaning t-Stat p-value Range Fitted value

Min Max

V_ESCO.hru Soil evaporation compensation factor 6.06 0.00 0.95 1.00 0.99

R_CN2.mgt SCS runoff curve number for moisture condition II 5.63 0.00 0.18 0.37 0.26

V_GW_REVAP.gw Groundwater “revap” coefficient −3.97 0.00 0.03 0.08 0.05

V_GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur −3.80 0.00 207.27 622 452.37

R_SOL_AWC(..).sol Available water capacity of the soil layer −2.07 0.04 0.19 0.40 0.37

V_REVAPMN.gw Threshold depth of water in the shallow aquifer for “revap" 1.83 0.07 383.72 438.28 434.30

R_SOL_K (..).sol Saturated hydraulic conductivity −1.82 0.07 −0.32 −0.17 −0.26

V_SMTMP.bsn Snow melt base temperature −1.64 0.10 −19.69 −12.44 −14.36

R_SOL_BD (..).sol Moist bulk density −1.32 0.19 −0.37 −0.23 −0.25

V_SMFMN.bsn Minimum melt rate for snow during the year (occurs on winter solstice) 1.21 0.23 11.58 15.91 13.15

V_RCHRG_DP.gw Deep aquifer percolation fraction 1.03 0.30 0.19 0.37 0.31

V_CH_N2.rte Manning’s “n" value for the main channel 1.00 0.32 0.04 0.12 0.09

V_TLAPS.sub Temperature lapse rate 0.82 0.41 7.25 13.4 10.54

V_GW_DELAY.gw Groundwater delay 0.72 0.47 109.63 190.76 169.10

V_CH_K2.rte Effective hydraulic conductivity in main channel alluvium −0.68 0.50 376.67 458.91 380.21

V_SURLAG.bsn Surface runoff lag time 0.61 0.54 9.66 16.01 14.02

V_CANMX.hru Maximum canopy storage 0.61 0.55 10.15 17.64 16.24

V_HRU_SLP.hru Average slope steepness 0.57 0.57 0.91 1.00 0.97

V_PLAPS.sub Precipitation lapse rate −0.54 0.59 187.45 462.38 291.65

V_TIMP.bsn Snow pack temperature lag factor −0.43 0.67 0.57 0.74 0.71

V_SLSUBBSN.hru Average slope length −0.31 0.76 80.09 101.44 96.47

R_BIOMIX.mgt Biological mixing efficient 0.29 0.77 −0.33 −0.27 −0.27

V_ALPHA_BF.gw Baseflow alpha factor 0.29 0.77 0.30 0.44 0.35

V_SMFMX.bsn Maximum melt rate for snow during year (occurs on summer solstice) 0.20 0.84 5.32 7.30 6.18

V_EPCO.hru Plant uptake compensation factor 0.18 0.86 0.70 0.83 0.75

V_SFTMP.bsn Snowfall temperature 0.08 0.93 1.49 11.05 4.98

R_SOL_ALB (..).sol Moist soil albedo 0.02 0.98 0.07 0.21 0.11

Note: V_ indicates that the given parameter replaces the original parameter in the model, R_corresponds to the original parameter in the model multiplied by (1 + given parameter value).

TABLE 4 Statistical values between simulated and measured data for
monthly discharges in the three hydrological stations.

Period Jimai Maqu Tangnaihai

R2 NSE R2 NSE R2 NSE

Calibration
(1978–1994)

0.72 0.69 0.83 0.83 0.83 0.82

Validation
(1995–2014)

0.72 0.65 0.79 0.77 0.80 0.78

Frontiers in Environmental Science frontiersin.org08

Li et al. 10.3389/fenvs.2022.1012838

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1012838


FIGURE 3
Temporal variation of the simulated and measured monthly discharge in the three hydrological stations ((A) Jimai (B) Maqu (C) Tangnaihai)
during the calibration and validation periods.

TABLE 5 Uncertainty of runoff simulation at three hydrological stations.

Period Jimai Maqu Tangnaihai

p-factor r-factor p-factor r-factor p-factor r-factor

Calibration (1978–1994) 0.64 0.50 0.64 0.45 0.70 0.45

Validation (1995–2014) 0.65 0.65 0.67 0.55 0.72 0.56
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in Table 5. Our data showed that p-factors of the three

hydrological stations displayed values higher than 0.64 in the

calibration and validation periods, indicating a higher percentage

of observed values bracketed by 95PPU. In the calibration period,

R-factors of these three hydrological stations showed values

below 0.50. In addition, the highest observed value was

0.65 in the validation period, indicating a relatively narrow

uncertainty interval. According to these two indicators, the

uncertainty in runoff simulation at the three hydrological

stations was small, and the simulated values were close to the

observed values.

Applicability assessment of 8 models in
CMIP6

Eight models in CMIP6 were chosen for future projections.

Relative humidity, solar radiation, wind speed, precipitation, and

temperature were input into the SWAT model during weather

data definition. Therefore, before the projections, we assessed the

applicability of the 8 selected single models and multi-model

ensemble mean (MME) of 8 models to these five climatic factors

in the historical period. In addition, results were compared with

the observed values. Figure 4 shows the Taylor diagram

comparing the historical simulations in 8 single models and

MME of five monthly climatic factors (average minimum

temperature, average maximum temperature, precipitation,

average relative humidity and average wind speed) relative to

the measured data from 1976 to 2014. Since solar radiation was

calculated using daily sunshine hours, the errors relative to the

test data might be amplified during the calculation. Therefore, no

comparison was performed for this parameter.

Projection and analysis of runoff variation

In the 8 CMIP6 models, three emissions scenarios were

selected, SSP126, SSP245, and SSP585. These scenarios

combined shared socioeconomic pathways with radiative

forcing pathways at low, intermediate, and high levels. The

SSP126 corresponds to an update of CMIP5 RCP2.6, a

combination of low socioeconomic vulnerability with low

radiative forcing. Studies have shown that under this scenario,

the annual average surface air temperature is expected to rise

FIGURE 4
Taylor diagram for the monthly values of five climatic factors ((A) average minimum temperature (B) average maximum temperature (C)
precipitation (D) average relative humidity and (E) average wind speed) between historical simulations of 8 models and observed data (REF) from
1976 to 2014.
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2.12°C by 2100. Increment in annual precipitation in the upper

reaches of the Yellow River will peak between 2041 and 2060,

followed by a decrease between 2081 and 2100. On the other

hand, the SSP245 is an update of the RCP4.5 scenario, a

combination of intermediate socioeconomic vulnerability with

intermediate radiative forcing. According to previous reports,

under SSP245 conditions, the increment in annual precipitation

in the upper reaches of the Yellow River will peak at the end of the

21st century. Moreover, SSP585 is an update of the

RCP8.5 scenario, where the global radiative forcing reaches

8.5W/m2, a combination of high socioeconomic vulnerability

with high radiative forcing. These studies showed that China’s

annual average surface air temperature will rise 6.55°C in

2100 under SSP585. In addition, annual precipitation in the

upper reaches of the Yellow River will also peak by the end of the

21st century (Zhang et al., 2019; Zhao et al., 2021).

The optimal parameter combination was obtained after

SWAT model calibration. As shown in Figure 5, runoff

projections in the SAYR in the SSP126, SSP245, and

SSP585 scenarios were performed using MME results. Data

indicated that, under the three scenarios, the yearly discharge

at the three hydrological stations will increase between 2021 and

2100 as compared to the historical period. In the next two periods

(2021–2060 and 2061–2100), the yearly discharge at the three

hydrological stations will increase in the SSP126 and

SSP245 scenarios. However, in the SSP585 scenario, it will

increase in the near future (2021–2060) and then decrease in

the distant future (2061–2100). Among them, the yearly

discharge will significantly decline in 2030 and 2045 in the

near future, while it will rebound in the distant future (in

2085) in the SSP585 scenario. Herein, we compared yearly

discharge of the three hydrological stations during the

historical period (1976–2014). Results indicated that in the

historical period, yearly discharge decreased at the beginning

and later increased. However, an overall slight downward trend

was observed. Specifically, dry seasons occurred between

1990 and 2000. It was also observed that runoff increased

after 2000. In the near future, runoff at the three hydrological

stations will significantly increase under the SSP585 scenario.

Moreover, in the distant future, a more significant increasing

trend would be observed in the SSP126 scenario as compared to

the SSP245 scenario. Moreover, the most obvious decreasing

trend will correspond to the Tangnaihai Station in the

SSP585 scenario.

Under any scenario, precipitation will increase between

2021 and 2100 at the three hydrological stations. All peaks

will be observed during the summer, and the variation trends

in precipitation will be similar to those of runoff. The correlation

coefficients were significant at each stage at the significance level

of 0.01. According to these results, precipitation is an important

FIGURE 5
Temporal variations and trends of future yearly discharge at the three hydrological stations (Jimai (A,D,G), Maqu (B,E,H) and Tangnaihai (C,F,I)) in
the SAYR under three scenarios (SSP126 (A–C), SSP245 (D–F) and SSP585 (G–I)).
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factor influencing runoff in the SAYR. We also performed a

comparison with the historical data. Our results indicated that

the increment in precipitation was different from that of runoff.

At the Jimai Station in the upper reaches, the increase in

precipitation was similar to that of yearly discharge. However,

at the Maqu and Tangnaihai Stations in the lower reaches, the

precipitation increment was larger than that of yearly discharge.

This mainly occurred because in the SAYR northwestern sub-

basins, runoff and deep aquifer recharge augmented more

dramatically as temperature and snowmelt increased.

Moreover, evapotranspiration in the northwestern region of

the SAYR was smaller than that in the southeastern region.

The lower reaches were more influenced by evapotranspiration,

which reduced the excess of runoff caused by precipitation. This

finding was consistent with the results obtained in the calibration

and validation period (Li K. et al., 2021).

Table 6 displays yearly average discharges and variation rates

from 1976 to 2100 at three hydrological stations. Between

1976 and 2014, the yearly average discharges at the three

hydrological stations (Jimai, Maqu and Tangnaihai) were

1546.68 m3/s, 5390.27 m3/s, and 7601.99 m3/s, respectively. It

was observed that yearly average discharges increased under

the three future scenarios. In addition, smaller yearly average

discharge values will be observed in the near future (2021–2060)

as compared to the distant future (2061–2100). Moreover, yearly

average discharges at the Jimai Station will increase 140.61%–

142.02% in 2021–2060, as compared to values in the historical

period (1976–2014). The increment in yearly average discharge

at Maqu Station will be 50.9%–53.41%, and that at Tangnaihai

Station will be 38.05%–40.38%. The lowest and highest

increment at Tangnaihai and Maqu Stations correspond to

SSP585 and SSP126, respectively. However, the highest and

lowest increases at Jimai Station correspond to SSP245 and

SSP126, respectively. Between 2061 and 2100, the increment

in yearly average discharge at Jimai Station will be 141.15%–

162.47% under the three scenarios. Moreover, the increment in

yearly average discharge at Maqu Station will be 53.17%–59.09%,

and 38.8%–45.06% at Tangnaihai Station. The lowest increase at

the Jimai Station corresponds to the SSP126 scenario. In general,

the lowest and highest increases at the Maqu and Tangnaihai

hydrological stations correspond to SSP585 and SSP245,

correspondingly. The reason may be that the SAYR is covered

with snow and ice all year round. As temperature rises and the

snow and ice melts, the most affected runoff is that closest to the

upstream area. Under the SSP126 scenario and in the near future,

moderate temperature increments will be observed. However,

precipitation and runoff will significantly increase. In the distant

future, moderate increase in runoff and precipitation will be

observed. In the near future and under the SSP245 scenario,

temperature, precipitation, and runoff will significantly increase.

Additionally, with the further increase in precipitation in the

distant future, runoff will also increase. Under the

SSP585 scenario and in the near future, precipitation and

temperatures will be more elevated. Snow and ice melting will

cause a large runoff increase at the upstream Jimai Station, and a

relatively small intensification of this parameter will be observed

at downstream stations. In the distant future, the increase in

runoff will slow down since precipitation will further increase

and the evapotranspiration will be intensified due to the sharp

rises in temperature.

Variations of hydrological components

Since HRU is defined as a unique aggregation of DEM, land

use, soil properties, and water system, it is the basic unit in

SWAT. We performed statistical analysis for the hydrological

components of three hydrological stations considering three

scenarios, one historical, and two future periods. Calculations

were based on the HUR and results are presented in Tables 7, 8.

As Table 7 shows, Maqu and Jimai Stations displayed the highest

and lowest PRECIP values, respectively, in the historical period.

TABLE 6 Yearly average discharge and variation rate at three hydrological stations under different scenarios from 1976 to 2100.

Scenario Hydrological station Annual average runoff (m3/s) Variation rate (%)

1976–2014 2021–2060 2061–2100 2021–2060 2061–2100

SSP126 Jimai 1564.68 3764.71 3773.20 140.61 141.15

Maqu 5390.27 8269.13 8378.95 53.41 55.45

Tangnaihai 7601.99 10671.94 10876.26 40.38 43.07

SSP245 Jimai 1564.68 3795.08 4106.89 142.55 162.47

Maqu 5390.27 8195.84 8575.41 52.05 59.09

Tangnaihai 7601.99 10587.44 11027.78 39.27 45.06

SSP585 Jimai 1564.68 3786.90 3962.85 142.02 153.30

Maqu 5390.27 8134.05 8256.12 50.90 53.17

Tangnaihai 7601.99 10494.51 10551.5 38.05 38.80
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In addition, Tangnaihai and Jimai Stations showed the largest

and smallest ET, correspondingly. Also, the greatest and smallest

SW_INIT and SW_END corresponded to Maqu Station and

Jimai Station, in the same order. Maqu and Jimai Stations owned

the highest and lowest PERC values, respectively. Our results

indicated that the atmospheric rainfall in the SAYR during the

historical period was mainly discharged in the form of

evapotranspiration, with more ET in the downstream and less

in the upstream. The highest values in soil water content and

groundwater recharge were observed in the middle reaches of

TABLE 7 Hydrological components of three hydrological stations in historical and future periods.

Hydrological
station

Hydrological components
(units: mm)

Historical
period

Future period

1976–2014 2021–2060 2061–2100

SSP126 SSP245 SSP585 SSP126 SSP126 SSP585

Jimai Precipitation (PRECIP) 173.50 1139.27 1127.01 1124.77 1125.55 1144.96 1115.24

Actual evapotranspiration (ET) 115.76 130.53 131.87 134.69 132.50 138.70 155.67

Average soil water content (SW_INIT) 317.44 347.77 339.65 338.78 338.78 332.42 314.00

Final soil profile water volume (SW_END) 379.63 408.63 401.45 400.59 401.86 396.22 378.09

Groundwater recharge (PERC) 43.08 261.58 257.42 254.58 257.52 258.95 244.29

Groundwater recharge of deep aquifer
(DA_RCHG)

2.15 13.08 12.87 12.72 12.87 12.94 12.21

Discharge from shallow aquifer to aeration
zone (REVAP)

3.64 3.39 3.49 3.55 3.50 3.72 4.16

Surface runoff (SURQ_CNT) 19.65 391.90 387.53 389.29 386.53 392.91 377.29

Lateral flow (LATQ) 24.19 138.33 137.44 135.76 137.40 139.40 135.48

Underground runoff (GW_Q) 37.27 245.08 241.00 238.12 240.97 242.08 227.91

Total river runoff (WYLD_Q) 81.11 775.31 765.97 763.18 764.91 774.40 740.67

Maqu Precipitation (PRECIP) 238.56 1572.22 1524.30 1542.73 1563.42 1555.20 1522.30

Actual evapotranspiration (ET) 130.28 146.12 147.52 150.53 149.63 158.33 178.97

Average soil water content (SW_INIT) 558.13 594.95 588.62 589.79 586.83 579.81 564.50

Final soil profile water volume (SW_END) 632.40 669.12 662.09 664.07 660.93 655.42 640.77

Groundwater recharge (PERC) 79.54 405.33 399.61 401.22 400.07 398.99 379.09

Groundwater recharge of deep aquifer
(DA_RCHG)

3.98 20.26 19.98 20.06 20.01 19.95 18.95

Discharge from shallow aquifer to aeration
zone (REVAP)

4.63 4.30 4.40 4.47 4.45 4.73 5.27

Surface runoff (SURQ_CNT) 31.95 656.00 628.47 637.02 656.10 641.39 622.30

Lateral flow (LATQ) 20.97 116.16 114.53 114.34 115.03 115.68 112.33

Underground runoff (GW_Q) 70.91 380.46 375.09 376.58 375.72 374.24 354.85

Total river runoff (WYLD_Q) 123.83 1152.62 1118.09 1127.93 1146.86 1131.31 1089.47

Tangnaihai Precipitation (PRECIP) 183.12 1105.31 1172.20 1129.27 1130.00 1133.36 1074.32

Actual evapotranspiration (ET) 137.69 162.86 164.58 169.09 167.87 180.23 205.60

Average soil water content (SW_INIT) 538.15 569.17 573.94 557.21 564.23 542.54 500.16

Final soil profile water volume (SW_END) 616.11 647.77 652.99 636.53 645.15 622.60 579.24

Groundwater recharge (PERC) 44.63 247.12 245.40 242.18 250.29 238.67 217.53

Groundwater recharge of deep aquifer
(DA_RCHG)

2.23 12.35 12.27 12.11 12.52 11.93 10.88

Discharge from shallow aquifer to aeration
zone (REVAP)

5.51 5.53 5.56 5.63 5.51 5.56 5.85

Surface runoff (SURQ_CNT) 20.00 403.11 458.22 423.81 413.56 420.94 379.69

Lateral flow (LATQ) 26.39 149.18 147.81 147.24 151.15 147.59 141.27

Underground runoff (GW_Q) 36.98 229.12 227.67 224.55 232.27 221.05 200.84

Total river runoff (WYLD_Q) 83.37 781.41 833.69 795.60 796.97 789.59 721.80
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Maqu Station. In addition, the lowest values corresponded to the

upper reaches of Jimai Station. In this region, groundwater

recharge was more influenced by precipitation than surface

runoff when the variability of precipitation was significant.

Compared with the historical period, PRECIP will

significantly increase in the future under the three scenarios.

The largest increase is expected to occur in Maqu Station and the

smallest in Tangnaihai Station. Also, ET will raise the most in

Tangnaihai Station and the least in Jimai Station. In the three

scenarios, the SW_INIT and SW_END showed a slightly

increasing trend in Maqu Station. However, those values in

Jimai and Tangnaihai Stations showed a slightly growing

pattern under the SSP126 and SSP245 scenarios, and a

decreasing trend in SSP585. An upward tendency was also

observed in PERC under three scenarios. In this case, the

highest and smallest increasing trends were observed in Maqu

and Tangnaihai Stations, respectively. These data showed that, in

the future, intense precipitation will be the main reason for

runoff increase in three hydrological stations.

During the historical period, a contribution rate of 24%–26%

was observed in SURQ_CNT in WYLD_Q in the three

hydrological stations. In addition, those of LATQ and GW_Q

were 17%–32% and 44%–57%, respectively (Table 8). According

to these data, the largest contribution to the total river runoff

corresponded to GW_Q. In the future period, little differences

will be observed in the hydrological components of the three

hydrological stations under different scenarios. The contribution

rate of SURQ_CNT in WYLD_Q showed an increase of 51%–

57%, and those of LATQ and GW_Q decreased 10%–19% and

27%–34%, respectively. These indicated that the largest

contribution rate to total river runoff corresponded to

SURQ_CNT. In summary, SURQ_ CNT, LATQ, and GW_ Q

were negatively correlated with temperature and positively

correlated with precipitation. In addition, small changes in

DA_RCHG and REVAP were observed. During the historical

period, the atmospheric rainfall in the SAYR was mainly

discharged in the form of evapotranspiration. Specifically, dry

seasons occurred between 1990 and 2000. In the two future

periods and three scenarios, the large increase in precipitation

will be the main reason for the increase in runoff in three

hydrological stations as compared to that in the historical period.

Discussion

Future projections and runoff analysis

Zhao and Xu (2009) performed SAYR runoff projections using

the Statistically Downscaled (SDS) technique. Their results

indicated that runoff will inevitably decrease in the future.

According to simulations performed using the Delta method,

annual runoff variations in the SAYR were less significant.

Annual average discharge will decrease in the 2020s and 2050s

and increase in the 2080s, as compared to 1961–1990. Shen et al.

(2010) performed a flow projection at the Longyangxia Dam in the

upper reaches of the Yellow River under different emissions

scenarios. Their data indicated that in the two future periods

(2010s and 2020s), the average flow at the Longyangxia Dam

will increase as compared to the baseline period between

1988 and 2008. In addition, a larger increment was observed

under the B2 scenario as compared that under the A2 scenario.

Liu et al. (2011) applied statistical downscaling to project the

streamflow in the SAYR considering different future climate

scenarios. Their results showed that in the two future periods

TABLE 8 Contribution rates to total river runoff of hydrological components in three hydrological stations during historical and future periods.

Hydrological station Hydrological
components

Contribution rate (%)

Historical period Future period

1976–2014 2021–2060 2061–2100

SSP126 SSP245 SSP585 SSP126 SSP245 SSP585

Jimai Surface runoff (SURQ_CNT) 24 51 51 51 51 51 51

Lateral flow (LATQ) 30 18 18 18 18 18 18

Underground runoff (GW_Q) 46 32 31 31 32 31 31

Maqu Surface runoff (SURQ_CNT) 26 57 56 56 57 57 57

Lateral flow (LATQ) 17 10 10 10 10 10 10

Underground runoff (GW_Q) 57 33 34 34 33 33 33

Tangnaihai Surface runoff (SURQ_CNT) 24 52 55 53 52 53 53

Lateral flow (LATQ) 32 19 18 19 19 19 19

Underground runoff (GW_Q) 44 29 27 28 29 28 28
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(2020s and 2050s), the annual average discharge will be 593.61 m3/s

and 525.11 m3/s, respectively. These data indicated a decrease of

14.9% and 24.7%, respectively, as compared with the baseline period

(1961–1990). Tang et al. (2012) showed that in the two future

periods (2046–2065 and 2081–2100), the runoff in the Yellow River

basin will decrease. Moreover, the decrement will be larger in the

later period than in the former. Under different climate scenarios,

the annual average runoff in the Yellow River basin was generally

larger in the upper than in the lower reaches. Wang et al. (2014)

projected the future runoff trend under the A1B scenario. Their

results indicated that runoff showed alternated decreasing and

increasing changes (that is, decrease-increase-decrease) in the

three periods (2010–2039, 2040–2069, 2070–2098) at Tangnaihai

Station. The variation trend was insignificant between 2010 and

2039 and between 2040 and 2069. Moreover, a remarkable

decreasing trend was observed between 2070 and 2098. Hu et al.

(2022) projected soil water levels under three RCPs (RCP2.6,

RCP4.5 and RCP8.5) based on 8 GCMs. Theirs results showed

the annual average actual evapotranspiration will increase between

31.9%–35.3% during 2020–2059 and 33.5%–54.3% during

2060–2099, which might cause a slight decrease in soil water

compared to the baseline (1976–2015) in the headwater area of

the YRB. These results were compared with those obtained in our

research. In previous studies, projections have shown decreasing or

stabilizing runoff trends. However, our investigation indicated an

increasing trend. Such differences for future change trends may be

attributed to the use of different future climate scenarios,

comparison of different historical periods, selection of dissimilar

future periods, and climate models. For example, in Zhao and Xu

(2009), the future climate scenario was generated using SDS (Delta

method) and GCMs output data. Also, Liu et al. (2011) used the

SRESA1B scenario, which assumed an intermediate level of future

greenhouse gas concentration. This scenario was downscaled from

China’s Climate Change Projection Dataset (Version 2.0). On the

other hand, Tang et al. (2012) used the SRES A2 and SRES

B1 emissions scenarios, Wang et al. (2014) performed the

projections in the A1B scenario, and Hu et al. (2022) applied the

three RCP2.6, RCP4.5, and RCP8.5 pathways. This also indicates a

great level of uncertainty in the projection of future flow changes in

the SAYR. In the present study, the latest MME results of 8 models

with complete data in CMIP6 for the SAYR were selected for runoff

projection in the near and distant future using three different

scenarios. We have reasons to believe that our simulations were

close to reality.

According to our simulations that considered three future

scenarios, from 2021 to 2060 the lowest and highest increase in

yearly average discharge at Tangnaihai and Maqu Stations

corresponded to SSP585 and SSP126, respectively. However,

the highest and lowest increases at Jimai Station were those of

SSP585 and SSP126, correspondingly. Between 2061 and 2100,

the lowest and highest increment in yearly average discharge at

the three hydrological stations corresponded to SSP585 and

SSP245, in that order. This probably occurred because the

yearly average discharge was closely related to the

precipitation trend and the surface air temperature projection

under the future climate scenarios. We determined that

precipitation was the main climatic factor affecting the future

runoff in the SAYR. This conclusion agreed with that of Wang D.

X. et al. (2020) and Bao et al. (2021). Working Group I

contribution to the AR6 of IPCC states that the frequency

and intensity of global-scale land-based intense precipitation

events may have increased since the mid-20th century. And

intense precipitation events are likely to become stronger and

more frequent as global warming intensifies (IPCC, 2021).

Therefore, precipitation intensity is an important factor

influencing future runoff in the SAYR. With respect to the

SSP126 scenario, the precipitation increment peaked between

2021 and 2060. The surface air temperature displayed a moderate

rise. Since precipitation was identified as the primary factor

affecting runoff, a significant runoff increase was observed

under the SSP126 scenario. Since precipitation and higher

temperatures will be more extreme between 2021–2060 under

the SSP585 scenario, it is expected that ice and snow will melt in

the SAYR. This will affect upstream runoff. The peak in

precipitation increment is expected to occur between

2061–2100 under the SSP245 scenario, the temperature rise

will be moderate, and higher runoff increases will be observed.

Also, under the last scenario, precipitation increments will reach

the peak. However, higher surface air temperatures are likely to

occur, leading to greater water losses from evaporation than

increases in ice and snow melting. As a consequence, a slower

increase in runoff is expected to occur. The period

1976–2014 was selected for simulation. Specifically, between

1990 and 2000, the runoff time series corresponded to dry

seasons. In recent years, China has implemented a series of

construction projects in the SAYR, such as returning farmland

to forests and grasslands. As a result, the area dedicated to

farmland has decreased, and that to forests and grasslands

increased. Changes in land use in the SAYR affect underlying

surfaces and cause an increase in runoff. However, a long-term

lag effect may occur (He et al., 2021). The results of this research

also indicated that yearly average discharge at Maqu Station will

increase every year in the 2020s, 2030s, and 2040s. This

conclusion agreed with that published by Zhao et al. (2019).

Uncertainties and limitations

Due to the complexity of climate change, accurate projections

of future climate changes are very difficult to achieve. In addition,

uncertainties are inherent to GCMs processes. To address these

uncertainties, the multimodal ensemble arithmetic mean from

the hydrological model output driven by the 8 global climate

models was selected for the present study. Some reports have

indicated that the simulation performance of the multimodal

ensemble with different weights was superior to that of the
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multimodal ensemble with equal weights. In addition, the limited

resolution of the model might also add to uncertainties that affect

future runoff projections. In the future, the use of different

weighted multimodal ensemble or super ensemble simulation

technology along with bias correction, in addition to statistical

and dynamical downscaling methods will reduce uncertainties,

improving the reliability and accuracy of future projections. For

future work, we will carry out relevant research on this subject. In

addition, the melting of glaciers and snow caused by global

warming will also affect runoff in the SAYR; however, we did

not take these processes into account because of the limited

model simulation ability. Moreover, the degree of impact on

different regions and the quantitative relationship with

meteorological elements also need to be further investigated.

Both, climate change and human activities will affect the runoff

change in the SAYR in the future. With the intensification in

anthropogenic activities and the transformation of land use, these

influences will be more obvious leading to over/under-estimation

of the hydrological components. Our study mainly focused on

runoff projection under future climate change scenarios. Thus,

some limitations should be considered. Also, some investigations

indicated that the role of hydrological model uncertainty in

climate change studies is remarkably high and should be

routinely considered in impact studies. These aspects are

beyond the scope of the present work. Hence, a more

comprehensive research should consider the uncertainties and

limitations inherent to runoff simulations and projections in the

SAYR. This topic will be part of our future investigations.

Conclusion

In the present study, monthly runoff data for the period

1976–2014 of three SAYR hydrological stations were used along

with related climatic data, DEM, land use, and soil type for

simulation purposes. The simulation scheme was built for the

SWAT model, and calibration and validation were carried out

using the SUFI-2 algorithm. The MME data of 8 models in

CMIP6 was chosen for runoff projections and analysis of data

variation in the SAYR using three different scenarios and two future

periods between 2021–2100. The main conclusions are as follows:

1) The sensitivity analysis showed that 27 hydrological

parameters affected runoff simulation. Those parameters

with strong sensitivity included ESCO, CN2, GW_REVAP,

GWQMN, SOL_AWC, REVAPMN, SOL_K, SMTMP.

2) The simulated monthly discharge at the Jimai, Maqu, and

Tangnaihai hydrological stations generally agreed with the

observed data. In the calibration and validation periods, R2

values between the simulated and the observed values were

consistently higher than 0.72 and NSE displayed values larger

than 0.65. A good simulation performance for runoff in the

SAYR was obtained with the SWAT model. Therefore, its

applicability was proven. P-factors of the three hydrological

stations displayed values higher than 0.64 in the calibration

and validation period. R-factors of these three hydrological

stations were below 0.50 in the calibration period, and the

highest observed value was 0.65 in the validation period. In

addition, small runoff simulation uncertainties were obtained

at the three hydrological stations with similar simulated and

observed results.

3) The annual discharge at the three hydrological stations

located in the SAYR showed an overall increasing trend

under the three 2021–2100 scenarios with respect to the

historical period. In the next two periods (2021–2060 and

2061–2100), the yearly discharge at the three hydrological

stations is expected to increase in the SSP126 and

SSP245 scenarios. However, in the SSP585 scenario, it will

increase in the near future (2021–2060) and then decrease in

the distant future (2061–2100). In the SSP585 scenario, the

yearly discharge will significantly decline in the near future

(2030 and 2045) with a recovery in the distant future (2085).

4) Compared to 1976–2014, the yearly average discharge indicated

that in the near future, the lowest and highest increments would

be observed at Tangnaihai andMaqu Stations in the SSP585 and

SSP126 scenarios, respectively. However, the highest and lowest

increments at Jimai Station correspond to the SSP245 and

SSP126 scenarios, correspondingly. Moreover, in the distant

future, the lowest and highest increments in the Maqu and

Tangnaihai Stations correspond to SSP585 and

SSP245 scenarios, in the same order. The lowest increment in

the Jimai Station would occur in the SSP126 scenario. It was also

determined that the yearly average discharge will be smaller in

the near future as compared to that in the long-term.

The Qinghai-Tibetan Plateau is one of the amplifiers of

global climate change. The SAYR on the Qinghai-Tibetan

Plateau represents the main runoff source of YRB and it is

very crucial to the YRB. The wetland ecosystem located in the

SAYR, known as the “China Water Tower,” has also played a

unique role in flood storage, water conservation, and

prevention of water and soil loss. Our study projected the

runoff changes over time considering a continuous global

warming in the future. The projections facilitate the

development and implementation of an effective water

management plan that minimizes negative impacts on water

resources of the YRB. Our research findings can provide an

important basis and theoretical support for water resources

management, flood control, water conservation, and wetland

protection in the SAYR.
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