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The shipping industry is increasingly threatened by global climate change.

Reliable trajectory prediction can be used to perceive potential risks and

ensure navigation efficiency. However, many existing studies have not fully

considered the impact of complex ocean environmental factors and have only

focused on local regions, which are difficult to extend to a global scale. To this

end, we propose a deep learning vessel trajectory prediction method fusing

discretized meteorological data (TripleConvTransformer). First, we clean the

automatic identification system data to form a high-quality spatiotemporal

trajectory dataset. Then, we fuse the trajectory data with the meteorological

data after feature discretization to deeply mine the motion information of

ocean-going ships. Finally, we design three modules, the global convolution,

local convolution, and trend convolution modules, based on the simplified

transformer model to capture multiscale features. We compare

TripleConvTransformer with state-of-the-art prediction models. The

experimental results show that in the prediction of the trajectory points in

the next 90 min, the smallest root mean square error in terms of longitude and

latitude and the highest overall prediction accuracy are achieved using

TripleConvTransformer. Our method not only fully considers the influence

of meteorological factors in the ocean-going process but also effectively

extracts the important information hidden in the data, thus achieving

accurate trajectory prediction on a global scale.
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1 Introduction

As the most important carrier of global trade, shipping is still the main method of

global cargo transportation (United Nations Conference on Trade and Development,

2021). However, disasters caused by climate change, such as the rise in sea level, the

increase in rainfall, and the formation of tropical storms, will lead to infrastructure
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damage and trade disruptions in the shipping industry, resulting

in large economic loss (Koetse and Rietveld, 2009; Zuccaro and

Leone, 2021; Bhatti et al., 2022a; Bhatti et al., 2022b). In addition,

the total emissions from global shipping continue to grow

(Capaldo et al., 1999; Wang et al., 2021). This shows that the

shipping industry is contributing to global climate change and

destroying the marine ecological environment, which will

ultimately be detrimental to itself (Liu et al., 2016; Mudryk

et al., 2021).

One-way ocean freight shipping takes an average of

approximately 30 days (Hummels and Schaur, 2013). During

long voyages, vessels inevitably encounter extremely bad weather

conditions, traffic management in busy sea areas, and navigation

yaw errors (Szlapczynski and Krata, 2018). In addition, the power

output of the vessel is insensitive and it has the particularity of

being carried by the fluid, which makes the response time for

changing the course of the vessel longer (Kim et al., 2021). If

correct decisions with respect to the vessel cannot be made in a

timely manner, according to the current state in the ocean-going

process, the risk of life and the loss of property will greatly

increase (Zhao et al., 2019). According to the International

Convention for the Safety of Life at Sea (SOLAS), an

automatic identification system (AIS) is a mandatory fit in all

cargo ships (over 300 gross tonnage) and passenger ships (Solas,

2003). The AIS has the characteristics of global coverage, great

compatibility, and strong real-time performance, which can

provide stable data support for ocean-going ships (Qian et al.,

2021). The vessel trajectory is usually used to describe the state of

ship navigation (Gan et al., 2018). Figure 1 shows the AIS

trajectories of bulk carriers worldwide. Trajectory prediction

attempts to estimate the vessel trajectory for a period of time

in the future based on historical navigation data (Hexeberg et al.,

2017). Reliable trajectory prediction can be used to perceive

potential risks and ensure navigation efficiency, which eliminates

existing safety hazards and reduces emissions (Tong et al., 2015).

Therefore, research on vessel trajectory prediction is of great

significance to the shipping industry and even the fields of

climate change and ecology (Tai and Robinson, 2018; Wan

et al., 2018; Desai et al., 2021; Glassmeier et al., 2021).

In recent years, vessel trajectory prediction has become a

research hotspot in the shipping industry (Xiao et al., 2020a).

Some traditional methods use statistical theory to establish ship

motion equations for trajectory prediction (Sutulo et al., 2002;

Perera and Soares, 2010; Mazzarella et al., 2015; Borkowski,

2017). Sutulo et al. proposed a simplified but fast dynamic

maneuvering model and two kinematic prediction methods (a

prediction based on current values of velocities and accelerations

and a method to anticipate the ship’s trajectory after a course

changing maneuver) (Sutulo et al., 2002). High computational

speed was achieved in this work by eliminating a number of

secondary effects and an extremely small amount of necessary

input data but sacrificed accuracy and failed to ensure the

prediction accuracy in complex sea areas. Perera et al. used

the extended Kalman filter incorporated with a curvilinear

motion model and a linear measurement model to achieve

satisfactory prediction of ocean vessel positions, velocities, and

accelerations (Perera and Soares, 2010). However, this study

assumed that the mean acceleration components are constant

values with white Gaussian noise, which is difficult to adapt to

real navigation with changing acceleration conditions.

Mazzarella et al. proposed a Bayesian vessel prediction

algorithm based on a particle filter (Mazzarella et al., 2015).

This algorithm, aided by the knowledge of traffic routes,

enhanced the quality of the vessel position prediction, but it

also increased the computational complexity. Borkowski

presented an algorithm of ship movement trajectory

FIGURE 1
AIS trajectories of 7,849 bulk carriers in 2021.
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prediction (Borkowski, 2017). This algorithm made use of

measurements of the ship’s current position from a number of

doubled autonomous devices through navigational data fusion

and took the assumption of knowledge of both future course

alterations and the parameters of the ship dynamics model into

account. However, the performance of this algorithm was

dependent on high-quality data and reliable assumptions,

which were not necessarily satisfied in complex sea areas.

Obviously, the traditional methods based on statistical theory

have high computational complexity and rely on domain

knowledge, making it difficult for them to establish effective

prediction models in complex marine environments (Xiao et al.,

2022b). In recent years, data-driven deep neural networks have

gradually become the preferred schemes for trajectory prediction

tasks due to their advantages of high computational efficiency

and strong adaptability (Rong et al., 2019; Capobianco et al.,

2021; Liu R. W. et al., 2022; Liu X. et al., 2022; Yang et al., 2022).

Rong et al. proposed a probabilistic trajectory prediction model

to describe the uncertainty in future positions along ship

trajectories and a data-driven nonparametric Bayesian model

based on a Gaussian process to describe the lateral motion

uncertainty, thus achieving high prediction accuracy and

meeting the demands of real-time applications (Rong et al.,

2019). Capobianco et al. presented a recurrent encoder-

decoder architecture that was able to learn space-time

dependencies from historical ship mobility data to address the

problem of trajectory prediction in the presence of complex

mobility patterns (Capobianco et al., 2021). Liu et al. used the

data-driven predictor developed with a long short-term memory

(LSTM) network to calculate the trajectory and uncertainty for

the future moment and achieved uncertainty fusion by fusing the

output of the data-driven predictor with the vessel motion

estimation, thus making the predicted trajectory sequence

more accurate (Liu X. et al., 2022). Yang et al. proposed a

vessel trajectory prediction method that combined data

denoising and a bidirectional long short-term memory (Bi-

LSTM) model to achieve accurate short-term prediction of the

trajectory sequence (Yang et al., 2022). Liu et al. proposed a

spatiotemporal multigraph convolutional network (STMGCN)-

based trajectory prediction framework and designed a self-

attention temporal convolution layer to optimize the

STMGCN, thus achieving superior prediction performance in

terms of both accuracy and robustness (Liu R. W. et al., 2022).

At present, trajectory prediction methods based on deep

learning technology have achieved promising results.

However, many existing studies have not fully considered the

impact of complex ocean environmental factors. It is well known

that adverse weather conditions (such as fog, lack of light, rain

and snow) In addition to the seawater density, the seawater

temperature, sea wind, and sea waves have an impact on the

motion behaviors of ships (Szlapczynski and Krata, 2018).

Therefore, incorporating these factors into the model can

ensure more satisfactory prediction results. In addition, the

current studies only conduct an experimental analysis of

vessel trajectory prediction in local sea areas such as canals

and ports. Ship navigation in a canal area is one-way, and the

ship channel is constrained by the river (Elsherbiny et al., 2020).

Ships entering and leaving the port must follow the guidance of

the pilots and the regulations of the specific channel (Liu et al.,

2010). In these local sea areas, the ship motion is greatly

restricted, and the change in the air-sea environment is not

obvious. The characteristics of these local sea areas make it

difficult for the current studies to be extended to pelagic areas

with greater freedom of navigation and a more complex

environment.

To this end, we propose a deep learning vessel trajectory

prediction method fusing discretized meteorological data

(TripleConvTransformer). First, we clean the AIS data to

form a high-quality spatiotemporal trajectory dataset. Then,

we use the discretization method based on the minimum

description length principle (MDLP) (Chen et al., 2021) to

discretize the meteorological data and fuse the trajectory data

with the meteorological data after feature discretization to deeply

mine the motion information of ocean-going ships. Finally, we

design three modules, the global convolution, local convolution,

and trend convolution modules, based on the simplified

transformer model (Vaswani et al., 2017) to capture multiscale

features. We compare TripleConvTransformer with state-of-the-

art prediction models on ship trajectory data in global sea areas.

In the prediction of the trajectory points in the next 90 min, the

smallest root mean square error in terms of longitude and

latitude and the highest overall prediction accuracy are

achieved using TripleConvTransformer. Experimental results

verify the effectiveness of the proposed method.

The remainder of this paper is organized as follows. In

Section 2, the related work is reviewed. In Section 3, the

proposed vessel trajectory prediction model is elaborate. The

experimental results are presented in Section 4. In Section 5, this

paper is summarized, and potential future explorations are

highlighted.

2 Related work

We introduce the three types of outliers that often appear in

AIS data. Then, we illustrate the definition and the basic flow of

feature discretization. Finally, we briefly review the deep learning

models for time series forecasting.

2.1 Outliers in AIS

The AIS can provide important static and dynamic

information, such as the ship’s Maritime Mobile Service

Identity (MMSI), sampling point position, Speed Over

Ground (SOG), and Course Over Ground (COG). However,
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due to the lack of a good information verification mechanism, the

actual AIS data contain a large number of outliers (Liu X. et al.,

2022). These outliers are mainly classified into abnormal drift

points, abnormal stopping points, and abnormal numerical

points, which are described as follows.

1) Abnormal drift point: The moving distance of the object in a

given time is greater than the product of this object’s

maximum speed and this time’s length.

2) Abnormal stopping point: The relevant information of the

object is not in real time, or the object has the same

information except for the time information.

3) Abnormal numerical point: There are illegal object values.

In addition, due to the large individual differences of ships,

the manifestations of abnormal trajectory points are different.

These data quality problems cause great resistance to AIS-based

trajectory prediction.

2.2 Feature discretization

Feature discretization is an important data preprocessing

technology in big data analysis (Chen et al., 2022a). In feature

discretization, continuous attributes are divided into a finite

number of subintervals, and then, these subintervals are

associated with a set of discrete values (Chen and Huang,

2022). Feature discretization can be used to remove redundant

information and filter noise, thereby improving the

generalization ability of the learning model (Chen et al.,

2022b). In addition, feature discretization can be useful for

missing value imputation (Rahman and Islam, 2016).

The basic flow of feature discretization is shown in Figure 2.

First, the continuous attribute values are sorted, and the duplicate

values are removed to obtain a set of candidate breakpoints.

Second, the breakpoints of continuous attributes are selected

from the set of candidate breakpoints, and whether to segment

the interval or merge the adjacent subintervals is decided

according to the judgment criteria of the adopted

discretization algorithm. If the termination condition is

satisfied, the discretization result is output; otherwise, the

remaining breakpoints are continuously selected from the set

of candidate breakpoints to perform attribute discretization.

2.3 Deep learning model for time series
forecasting

Time series data widely exist in the fields of meteorology,

transportation, finance, medical care, and the internet (Cook

et al., 2020; Hasnain et al., 2022). Time series forecasting refers to

the prediction of states in several future periods by analyzing

changes in time series data. Owing to their high-dimensional,

dynamic, and large-scale characteristics, it is extremely difficult

to analyze time series data (Makridakis et al., 2018; Zhu et al.,

2021). Compared with statistical models, deep learning models

can more effectively mine historical information (Lim and

Zohren, 2021). The informer model proposed by Zhou et al.

drastically improved the inference speed of long-sequence

predictions (Zhou et al., 2021). The SCINet model proposed

FIGURE 2
The basic flow of feature discretization.
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by Liu et al. facilitated the extraction of temporal relation features

(Liu et al., 2021).

At present, transformer models have excellent results in

natural language processing, computer vision and time series

forecasting. Transformer models do not utilize the recursive

approach of recurrent neural networks; however, they have

excellent structural advantages in modeling sequential

problems. The main advantages for transformer models in

time series prediction tasks are as follows: 1) They rely on a

multiheaded self-attention mechanism that can maintain the

ability to model both short-term and long-term time series

features. 2) They support parallel computing, and model

training is accelerated (Vaswani et al., 2017). These

advantages allow complex problems to be modeled with

excellent performance.

3 Improved transformer model for
vessel trajectory prediction

We introduce the process of trajectory extraction and

meteorological data discretization in detail. Then, we design

the model framework and explain the three convolution

modules and the self-attention mechanism. Finally, we

elaborate the overall flow of the proposed algorithm.

3.1 Trajectory extraction

We use a five-dimensional vector S(T , X , Y , V , C)
containing time, longitude, latitude, SOG, and COG to

describe the real-time state of a vessel. A complete vessel

trajectory T consists of multiple trajectory points, which can

be expressed as T � { S1, S2, S3, . . . , Si}. The state S of each

trajectory point is obtained from the AIS data. Since there is

no good information verification mechanism, the AIS data

contain a large number of abnormal drift points, abnormal

stopping points, and abnormal numerical points. We identify

and address these outliers as follows.

1) Abnormal drift points: The longitude and latitude

information of AIS often deviates significantly in a short

period, as shown in Figure 3. If the linear distance d(i, i + 1)
between the trajectory points i and i + 1 of two consecutive

moments satisfies the following expression:

d(i, i + 1)>V max ×ΔT, (1)

then the trajectory point i + 1 is regarded as an abnormal

drift point. Vmax is the maximum speed for which the vessel is

designed. ΔT is the time interval between trajectory points i and

i + 1. d(i, i + 1) can be calculated by the Haversine formula:

d(i, i + 1) � 2rsin−1⎛⎝ ���������������������������������������
sin 2(φ2 − φ1

2
) + cos(φ1) cos(φ2)sin 2(λ2 − λ1

2
)√ ⎞⎠,

(2)

where r is the radius of the earth. λ1 and λ2 represent the

longitudes of trajectory points i and i + 1, respectively. φ1 and

φ2represent the latitudes of the trajectory points iand i + 1,

respectively.

2) Abnormal stopping points: The AIS data forwarding

mechanism usually makes the receiver receive multiple

duplicate records at the same trajectory point. In addition,

the ship positioning equipment cannot obtain the current

position information in real time under some complex air-sea

conditions, resulting in repeated information of successive

positions. If (X , Y , V , C) of the i-th trajectory point’s

FIGURE 3
Scenario where abnormal drift points appear in the AIS. P′ is an abnormal drift point; A and B are the two trajectory points before and after the
point adjacent to P′ in the trajectory sequence, respectively; P is the position point where P′ should have existed under normal circumstances.
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state Siis the same as that of the i + 1-th trajectory point’s state

Si+1, then the i + 1-th trajectory point can be regarded as an

abnormal stopping point.

3) Abnormal numerical point: The effect of environmental

conditions and interference in the transmission channel

inevitably result in abnormal AIS equipment data, which

are also affected by the quality of sensors. AIS

specifications and ship parameters are described in

Table 1. We use this information as the criterion for

outlier judgment.

The research objects of this paper are mainly large ocean-

going bulk carriers with a deadweight of over 20,000 tons. These

large vessels have high motion inertia and slow speed and are

more stable than other ships during normal navigation. Thus, we

treat the extreme distribution values as outliers. We take the SOG

numerical distribution shown in Figure 4 as an example to

illustrate the process of outlier judgment. From the SOG

numerical distribution, it can be seen that the vessel will

rarely exceed the designed service speed of the ship in the

process of normal navigation, and the speed distribution is

concentrated. Thus, we regard speed over the ground values

of less than 5 kn and more than 25 kn as outliers.

After the outliers are processed, a relatively reliable dataset of

ocean-going vessel trajectories can be obtained. Then, we

segment the trajectory data of all vessels to form consecutive

subtrajectories with controllable time intervals that are suitable

for trajectory prediction modeling. According to the

requirements of the AIS, the maximum time interval for the

ship to report outward under the anchoring state is 3 min. Thus,

when the reporting interval exceeds 3 min, the data are not

referential. Figure 5 shows the distribution of trajectory data. The

length of subtrajectories formed after trajectory segmentation is

not fixed. Since subtrajectories with extremely short lengths are

not suitable for modeling by deep learning, we stipulate that only

subtrajectories containing at least 120 points can be retained.

3.2 Meteorological data discretization

Meteorological conditions are an important factor to be

considered in the process of ship navigation. However, there

is usually considerable redundant information, noise, and even

missing values in the collected meteorological data. To effectively

fuse the meteorological data and AIS data, we perform feature

discretization on the meteorological data. First, we use the

k-means algorithm to cluster the unlabeled meteorological

data. Compared with other clustering algorithms (McInnes

TABLE 1 Description of important AIS attributes.

Attributes Bits Description

SOG 10 Speed over ground, Precision: 1/10 kn
Ranges: 0–1,022; 1,023 = Unavailable
1,022 = 102.2 kn+

COG 12 Course over ground, Precision: 1/10 deg
Ranges: 0–3,599; 3,600 = Unavailable
Should not be used: 3,601-4,095

LAT 27 Latitude, Precision: 1/10,000 min
Ranges: 90–90, North = Positive
South = Negative; 91 = Unavailable

LON 28 Longitude, Precision: 1/10,000 min
Ranges: 180–180, East = Positive
West = Negative; 181 = Unavailable

FIGURE 4
SOG numerical distribution. The upper three subgraphs are the SOG numerical distribution histograms. The lower three subgraphs are the SOG
numerical line charts, in which the red horizontal line is the designed service speed of the ship.
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and Healy, 2017), the k-means algorithm has low time

complexity and high efficiency on large-scale datasets.

However, the value of k plays a decisive role in the clustering

effect. To obtain the best clustering effect, we choose the gap

statistics method to determine the value of k (Tibshirani et al.,

2001). Then, we use a discretization method based on MDLP for

feature discretization of meteorological data. The discretization

method based on MDLP evaluates the discretization results by

information gain.

Suppose that the meteorological dataset S contains k

categories C1, . . ., Ck, and P(Ci, S) represents the occurrence

frequency of category Ci in S; then, the information entropy of S

is defined as (Fayyad and Irani, 1993):

Ent(S) � −∑k
i�1
P(Ci, S)log(P(Ci, S)) (3)

Suppose that S is divided into two subsets S1 and S2 by

breakpoint T; then, the breakpoint information entropy of S is

defined as follows:

E(A,T, S) � |S1|
|S| Ent(S1) +

|S2|
|S| Ent(S2), (4)

where |S|, |S1|, and |S2| are the number of samples contained in S,

S1, and S2, respectively, andA is themeteorological attribute to be

discretized. The breakpoint TA that minimizes Ent(A, T, S) is the
optimal breakpoint, which is selected to perform binary

discretization of A. The information gain of S after

discretization is:

Gains(A,TA, S) � Ent(S) − Ent(A,TA, S). (5)

In addition, the selected breakpoint needs to meet the

following conditions:

Gains(A,TA, S)> log2(N − 1)
N

+ Δ(A,TA, S)
N

, (6)
Δ(A,TA, S) � log2(3k − 2) − [kEnt(S) − k1Ent(S1)

− k2Ent(S2)], (7)

where N is the total number of samples in the

meteorological dataset and k1 and k2 are the number of

categories included in S1 and S2 (k � k1 + k2), respectively.

The discretization method based on MDLP selects the

optimal breakpoint that meets the above conditions in

each iteration to divide the meteorological attributes,

thus obtaining the optimal discretization results of

meteorological data.

3.3 Model frame

To effectively mine the hidden features of ship motion from

historical trajectory information and meteorological information,

we design a network model (TripleConvTransformer) combining

a convolutional neural network and a multihead attention

mechanism. The network structure of TripleConvTransformer

is shown in Figure 6. We use three different types of

convolution modules to extract multiscale features.

1) Global Convolution: There are some fixed patterns during

ship navigation. These patterns can well reflect the basic

FIGURE 5
Trajectory data distribution. The abscissa indicates the time interval between two adjacent trajectory points on the trajectory sequence; the
ordinate indicates the frequency of occurrence.
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situation of vessels. We create a convolution layer with a

convolution kernel matched to the input stride to extract

the fixed patterns of each variable sequence in all time

steps. The global convolution kernel size in this study is

60 × 1.

2) Local Convolution: Ship navigation is a consecutive motion

process. Compared with the time steps farther from the

current moment, the time steps closer to the current

moment have greater internal correlation about the

current moment. Local convolution focuses on

extracting local contextual contacts. The size of the

convolution kernel is the length of the local consecutive

content. The local convolution kernel size in this study is

5 × 1.

3) Trend Convolution: The trajectory sequence is a time series

with significant trends. We ensure the stability of the

prediction results by fitting trends. Trends can be

expressed by a polynomial function (Oreshkin et al., 2019).

We use a convolution kernel with a size of 1 × 1 for feature

extraction. Then, wemultiply the convolution result set θwith

the time matrix as follows:

ŷ � ∑p

i�0θt
i (8)

where ŷ is the final output of the module,

t � [0, 1, 2, . . . , l − 2, l − 1]/l, lis the number of prediction time

steps, and p is the degree of the polynomial.When p takes a small

value such as 2 or 3, the model is able to imitate trends by

learning θ. In the experiments in this paper, we have chosen 3 for

the value of p.

The self-attention mechanism has the advantages of parallel

computing and a global receptive field (Vaswani et al., 2017). To

this end, we add a multihead self-attention mechanism to the

model to obtain the dependency between the features output by

the convolution modules. The formula to calculate the dot

product multihead attention is:

Attention (Q,K ,V) � sof tmax(QKT��
dk

√ )V (9)

where Q, K, and V are the query vector, key vector, and value

vector, respectively, dk is the dimension ofK, and the input is the

feature set output by the convolution modules.

TripleConvTransformer can directly obtain the relationship

between any extracted features without being affected by the

sequence order.

The overall flow of the proposed algorithm is shown in

Figure 7. Our algorithm mainly includes three modules,

namely, the AIS trajectory data extraction module,

meteorological data feature discretization module, and deep

learning module combining a convolutional neural network

and multihead attention mechanism. First, we clean AIS data

to form a high-quality spatiotemporal trajectory dataset. Then,

FIGURE 6
Network structure of TripleConvTransformer.

FIGURE 7
The overall flow of the proposed algorithm.
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we use the discretization method based on MDLP to perform

feature discretization on the meteorological data and fuse the

trajectory data with the meteorological data after feature

discretization to deeply mine the motion information of

ocean-going ships. Finally, we design three different types of

convolution modules based on the simplified transformer model

to capture multiscale features.

4 Experiments

We introduce the dataset and the experimental environment

configuration. Then, we explain the three evaluation indicators

for vessel trajectory prediction. Finally, we compare the proposed

algorithm with state-of-the-art prediction models and present

the experimental results.

4.1 Dataset

We use the AIS trajectory data of 7,849 bulk carriers with a

deadweight over 20,000 tons in the whole year of 2021 and the

meteorological data corresponding to the trajectory points to

conduct experiments. After extracting the trajectories, we obtain

336,573 subtrajectories that meet the requirements. We take the

top 70% subtrajectories of each vessel, a total of

109,564,853 trajectory points, as the training set. In the

remaining subtrajectories of each vessel, the first 20% of the

subtrajectories are used as the verification set, and the last 10% of

the subtrajectories are used as the test set. The attributes

contained in AIS data and meteorological data used in this

experiment are listed in Table 2.

4.2 Experimental environment

The hardware environment of this experiment is a server

with an Intel(R) Xeon(R) Gold 6248R CPU@3.00 GHz processor,

256 GB memory, and an NVIDIA RTX 3090 * 4 GPU. This

experiment uses Python 3.7 and PyTorch 1.7 on the CentOS

Linux release 7.6.1810 system for network simulation and testing.

4.3 Evaluation indicators

We use the three indicators of mean absolute error (MAE),

root mean square error (RMSE), and goodness of fit (R2) to

evaluate the prediction ability of the model. The more MAE and

RMSE tend to 0 and R2 tends to 1, the higher the prediction

accuracy. These three indicators are shown as follows:

MAE � 1
n
∑n

i�1
∣∣∣∣yi − ŷi

∣∣∣∣ (10)

RMSE �
�������������
1
n
∑n

i�1(yi − ŷi)2√
(11)

R2 � 1 − ∑n
i�1(ŷi − yi)2∑n
i�1(�y − yi)2 (12)

where yi is the true value, ŷi is the predicted value, �y is the mean

of all true values in the test set, and n is the total number of

samples. The data were normalized by the Z score method before

being fed into the model for calculation. To more directly express

the error, we denormalize it. The formula of denormalization is:

y � σ ×ŷ + μ (13)

where σ is the standard deviation of all samples in the training set,

and μ is the mean of all samples in the training set.

4.4 Experimental results

In the process of clustering meteorological data, we

obtained a k value of 21 by the gap statistics method, as

shown in Figure 8. Then, we perform feature discretization

on meteorological data using a discretization method based on

MDLP. The number of discrete intervals of meteorological

attributes is shown in Table 3.

We verified the effectiveness of the designed combination of

the three convolutional modules, and the experimental results are

shown in Table 4. Bold content indicates the optimal results. The

experimental results show that when global convolution, local

convolution and trend convolution are combined into

TripleConvTransformer, each metric has a significant

advantage over any other combination. This proves that the

three convolutional modules we designed accomplish the

expected functions and are able to obtain optimal results in

ship trajectory prediction.

TABLE 2 The attributes contained in AIS data andmeteorological data.

No. Attribute

1 MMSI

2 Longitude

3 Latitude

4 Speed over the ground

5 Course over the ground

6 Time

7 10 m wind east‒west component

8 10 m wind north‒south component

9 Total wave height

10 Total wave direction

11 Total wave period

12 East‒west component of ocean current

13 North‒south component of ocean current

14 Sea surface water temperature
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We compared TripleConvTransformer with the gate

recurrent unit (GRU) (Cho et al., 2014), temporal

convolutional network (TCN) (Bai et al., 2018), SCINet (Liu

et al., 2021), and transformer (Vaswani et al., 2017) to evaluate

the prediction accuracy of the proposed method. Table 5 shows

the prediction results of the five algorithms in terms of longitude

and latitude. The bolded values indicate the best results.

TripleConvTransformer achieved the best metric values for

all algorithms in terms of latitude and longitude forecasting.

Additionally, we found that the transformer model, which was

not optimized, performed poorly in the application of trajectory

prediction. This is because the structure of the self-attention

mechanism determines its lack of ability to record sequence

position information. This means that the position encoding

design has a very important impact on the results of the model.

However, initial position encoding is a simple structure that does

not perform well in the trajectory prediction task. In addition, the

transformer model cannot pay special attention to the vessel

navigation process characteristics mentioned in Section 3.3,

which are included in the local convolution design.

FIGURE 8
Variation curve of the gap value with respect to the cluster count. The red dot is the optimal number of clusters.

TABLE 3 The number of discrete intervals of meteorological attributes.

Meteorological attribute Number
of original values

Number of intervals

10 m wind east‒west component 1,433,051 2045

10 m wind north‒south component 1,430,690 1996

Total wave height 454,287 1,367

Total wave direction 4,875,391 1,142

Total wave period 1,016,006 1,340

East‒west component of ocean current 5,962 874

North‒south component of ocean current 5,014 825

Sea surface water temperature 51,918 1,562
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TripleConvTransformer can extract features in all dimensions

and has some superiority in the network structure. The

experimental results also show that TripleConvTransformer

outperforms the other four algorithms in trajectory prediction

in general.

5 Conclusion

Reliable trajectory prediction can be used to perceive

potential risks and ensure navigation efficiency, which

eliminates existing safety hazards and reduces emissions. In

this paper, we have proposed a deep learning vessel trajectory

prediction method fusing discretized meteorological data

(TripleConvTransformer). Our contributions mainly come

from the following aspects: 1) we have cleaned the AIS data

to form a high-quality spatiotemporal trajectory dataset; 2) we

have fused the trajectory data with the meteorological data after

feature discretization to deeply mine the motion information of

ocean-going ships; and 3) we have designed three modules,

namely, the global convolution, local convolution, and trend

convolution modules, based on the simplified transformer model

TABLE 4 Experimental results on the effectiveness of the three convolutional modules.

Target Convolution module MAE RMSE R2

Longitude Global Convolution 7.903383731 93.498123168 0.97933041

Local Convolution 5.850033283 45.250530242 0.98,999,258

Trend Convolution 0.278,236,955 0.1572,272,628 0.99,996,522

Global + Local Convolution 1.123,891,592 3.0442,674,160 0.99,932,674

Global + Trend Convolution 0.256,488,829 0.0811,840,221 0.99,998,205

Local + Trend Convolution 0.208,039,849 0.0509,351,678 0.99,998,873

TripleConvTransformer 0.011,285,609 0.0003,056,398 0.999,999,925

Latitude Global Convolution 2.027,511,835 8.9238,891,601 0.98,101,852

Local Convolution 1.142,085,433 2.4970,626,831 0.99,447,877

Trend Convolution 0.057,470,872 0.0055,312,779 0.99,998,776

Global + Local Convolution 0.299,633,473 0.3412,946,164 0.99,924,536

Global + Trend Convolution 0.083,794,780 0.0137,588,502 0.99,997,073

Local + Trend Convolution 0.060,905,627 0.0079,100,169 0.99,998,317

TripleConvTransformer 0.008,603,934 0.0001,873,666 0.999,999,588

The bolded values indicate the best results.

TABLE 5 Prediction results of the five algorithms on longitude and latitude.

Target Model MAE RMSE R2

Longitude GRU 0.054,484,251 0.0053,680,101 0.99,999,881

TCN 0.202,674,999 0.0629,355,981 0.99,998,456

SCINet 0.038,996,241 0.0026,863,857 0.99,999,940

Transformer 9.474,784,851 284.34,497,070 0.93,736,338

TripleConvTransformer 0.011,285,609 0.0003,056,398 0.999,999,925

Latitude GRU 0.027,907,492 0.0014,886,232 0.99,999,683

TCN 0.044,196,896 0.0049,987,076 0.99,998,903

SCINet 0.041,359,957 0.0033,086,843 0.99,999,279

Transformer 1.957,616,209 9.0767,431,259 0.98,041,720

TripleConvTransformer 0.008,603,934 0.0001,873,666 0.999,999,588

The bolded values indicate the best results.
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to capture multiscale features. We compare

TripleConvTransformer with the state-of-the-art prediction

models. TripleConvTransformer achieves the best metric

values among all models in terms of latitude and longitude

forecasting. Although TripleConvTransformer has achieved

exciting trajectory prediction results, the current model does

not have a confidence index. If our algorithm can provide a

confidence index to the captain, then the captain can better

understand the reliability of the position information

provided by the algorithm. This would be a large

improvement with respect to the safe navigation of the

vessel. In future research work, we will continue to improve

the TripleConvTransformer model to achieve more accurate

trajectory prediction results.
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