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Ozone pollution has been growing in the recent decade, becoming a critical

urban environmental issue in China. However, Shenyang’s near-surface ozone

concentration (ground to 100m altitude) is of grave concern. To obtain the

ozone concentration and the corresponding meteorological conditions from

1October 2018, to 30 September 2019, we built observatory sites at low (≈15 m)

and high (≈90m) layers in Shenyang, northeast China. Then, we analyzed the

temporal variation of ozone concentration and discussed the relationship

between ozone concentration and the meteorological factors at low and

high layers. Compared with the high layer, the ozone concentration in the

low layer is chartered with an earlier peak and higher diurnal range. The ozone

concentration in all seasons first peaked at a low-layer height, in early in winter

(15:00) and late summer (17:00). Then, the peak at high-layer height lagged for

behind 1–2 h, generally occurring between 17:00 and 19:00. The variations in

ozone concentration at low and high layers differed in daytime and nighttime.

The diurnal ranges of ozone concentrations at the low layer were higher than

those at the high layer in the four seasons examined. Overall, ozone

concentration correlated significantly with air temperature, having

correlation coefficients of 0.814 (p < 0.05) in the low layer and 0.731 (p <
0.05) in the high layer. Inversely, it showed a weak correlation with relative

humidity: 0.310 (p < 0.05) and 0.351 (p < 0.05) in the low and high layers,

respectively. Also, the correlation coefficients with wind speed were meager at

both layers. Generally, ozone pollution is not severe in Shenyang.
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Introduction

Tropospheric ozone is a critical atmospheric pollutant with a strong oxidizing

property. It is also a greenhouse gas without any benefits to animals, plants, or the

climate (Liu, 2019; Yu et al., 2021). With the implementation of emission reduction

measures in China, particulate matter pollution has reduced (WangW. X. et al., 2019). In

contrast, near-ground ozone concentration has been increasing recently (Cheng et al.,

2019; Deng et al., 2022). Furthermore, ozone has become a primary pollutant in some
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Chinese cities (Li et al., 2021). Thus, studying ozone is crucial to

improving their atmospheric environment.

Previous studies on ozone have mainly focused on the

characteristics of spatial and temporal distributions (Wang

et al., 2018; Liu et al., 2019b; Oufdou et al., 2021), formation

mechanism (Ridel et al., 2014; Wang et al., 2021), chemical

precursors (An et al., 2015; Shi et al., 2015; Lyu et al., 2021),

influencing factors (Pu et al., 2017; Wang Z. et al., 2019), etc.

Generally, ozone concentration has lucid spatial distribution

characteristics, i.e., higher in the suburbs and lower in the urban

areas (Im et al., 2019). Many studies reported that daily ozone

concentration is a unimodal curve change that peaks in the

afternoon and plateaus in the morning (Liu, 2019; Han et al.,

2021). Also, the concentration is respectively higher and lower

in the summer and winter than the average (Zhang and Zhang,

2019; Wang et al., 2020; Zhang et al., 2021). Key factors that

influence the seasonal and spatial ozone variations in a specific

region include horizontal inflows and outflows via long-range

transport, vertical stratospheric-to-tropospheric transport,

photochemical production and destruction, and deposition

on the Earth’s surface (Logan, 1985; Ma et al., 2002).

Moreover, most studies were done in temporal and spatial

variations.

With improved urbanization, ozone studies on vertical

height are gradually increasing. Generally, the tropospheric O3

increased to around 8 km altitude, and then increased rapidly

above 8 km with a larger variability near the tropopause in mid-

latitudes (Beekmann et al., 1994; Logan, 1994; Cooper et al.,

2005). For PBL, the O3 concentrations increased sharply below

1 km and then remained fairly constant (~52 ppbv) between

1 and 2 km in Beijing by Airbus In-Service Aircraft (MOZAIC)

program (Ding et al., 2008). Using a differential absorption ozone

Lidar, He and coworkers (He et al., 2020) found that ozone

concentration increases before decreasing with altitude

(300–3,000 m), peaking at 600–800 m. Based on the

observation at 8, 120, and 280 m layers, the ozone layer was

325 and 255 mm at the Beijing and Tianjin towers, respectively.

The daily average ozone concentration increased with altitude

from August 18 to 22 September 2006 (Sun et al., 2010). In the

vertical direction, few studies on ozone in Shenyang, northeast

China focused on the near-surface (0–100 m), predominantly the

space for urban activities. Because near-surface ozone pollution is

closely related to human health, we monitored the ozone

concentration at low (15 m) and high (90 m) layers in

Shenyang. This study aims to provide ozone concentration

variations at 15 and 90 m and discuss the relationships

between ozone and meteorological factors in the study area.

Data and methods introduces observation data and method.

Results and discussion presents results that include statistical

characteristics of seasonal, monthly and diurnal ozone

concentration in this city, and the relationship between ozone

concentration and meteorological factors. Summary and

conclusion summarizes the results.

Data and method

Study area and observation instrument

The study area is located in Shenyang, a heavily

industrialized city. Based on the seventh population census,

Shenyang has a permanent resident population of 9.03 × 106

in 2020 (https://www.maigoo.com/news/585028.html). The

topography is flat, and the altitude is 40–50 m above sea level.

It has a humid, warm continental monsoon climate, with a mean

temperature of −6°C in January and 23°C in July. The annual

mean precipitation in Shenyang is 716 mm (average from 1951 to

2010), with the precipitation concentrated in summer

(June–August).

The study site (Figure 1) is in the yard of Shenyang Institute

of Atmospheric Environment, China Meteorological

Administration. The site is surrounded by a primary school

(south), a branch of the Hunhe River (north), a residential

area (east), and bare land (west).

The monitoring instrument (H6 air quality early warning

system (constant temperature)) produced by Qingdao Hecheng

Environmental Protection Technology Co., Ltd., was set on the

roof platform of two buildings of different heights (Figure 1). The

heights are considered low (30 m) and high (90 m) layers,

respectively, influenced by various pollution sources such as

industrial pollution, traffic pollution, etc., (China State Bureau

of Technical Supervision, 1992).

Observation data and method

We measured the ozone concentration, air temperature,

wind speed, and relative humidity from 1 October 2018, to

30 September 2019. Table 1 lists the description of observed

elements. The interval time was 1 min, and the entire data

underwent strict quality control, including eliminating outliers

and interpolating missing test data. We employed the data from

the surrounding site (about 13.5 m below vertical distance and

10 m horizontal distance to the observed site at the low layer)

because of missing measurements of meteorological elements at

that layer. Also, we compared the daily mean ozone

concentration measured in the low layer in this study with

those (http://www.cnemc.cn/) from the controlled site (S3 in

Figure 1) on Hunnan east road of Shenyang. After removing

missing data and outliers, 331 sample pairs were obtained from

both sites, separated by 5 km. The trend of ozone concentration

at both sites in November was similar (Figure 2A), and the

correlation coefficient was 0.80 (p < 0.01) (Figure 2B). Thus, the

observed data can represent the status of ozone in Shenyang.

Furthermore, the spring, summer, autumn, and winter

seasons reported here correspond to March-May, June-

August, September-November, and December-February. In

addition, vertical airflow speed data indicating pollutant
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mixing in the lower boundary layer were from the European

Centre for Medium-Range Weather Forecasts (ECMWF). The

data had horizontal and vertical resolutions of 0.125 and 25 hPa,

respectively.

Shenyang’s mean boundary layer heights in 2018 were

calculated using the Weather Research and Forecasting (WRF)

model. Boundary layer height was determined from the

MYNN2 PBL scheme (Nakanishi and Niino, 2003) in the

WRF model. The scheme used 1.5-theta-increase and

Turbulent Kinematic Energy (TKE) methods to define the

Planet Boundary Layer Heights (PBLH). The 1.5-theta-

increase method defines PBL heights as the level at which the

FIGURE 1
Locations of study sites of high (S1) and low (S2) layers. S3 is the controlled site (S3) on Hunnan East Road, Shenyang.

TABLE 1 Description of monitored ozone concentration and meteorological factors.

Elements Resolution Missing data at
low/high layer

Interval time (min)

O3 0.1 μg•m−³ 29/0 days 1

Wind speed 0.1 m s−1 0/7 days 1

Temperature 0.1°C 37/7 days 1

Relative humidity 0.5% 37/7 days 1

Electrical power failure and instrument failure were responsible for the missing data.

FIGURE 2
(A) Comparison of ozone concentrations measured in the low layer and controlled site and (B) scatter plots from October 2018 to September
2019 in Shenyang.
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potential temperature first exceeds the minimum potential

temperature within the boundary layer by 1.5 K. When

applied to observed temperatures, this method can produce

PBL-height estimates that are unbiased relative to profiler-

based estimates (Nielsen-Gammon et al., 2008). However,

their study did not include Low-Level Jets (LLJ). Banta et al.

(2006) show that a TKE-based threshold is a viable estimate of

the PBL heights in LLJs. Therefore, a hybrid definition (a tanh

weighting function) was implemented using both methods,

weighting the TKE-method (Nakanishi and Niino, 2003) more

during stable conditions (PBLH <400 m). In addition, a variable,

the TKE threshold (0.02 times the maximum TKE below 250 m),

was also used in the TKEmethods. The ECMWF data verified the

simulated results of PBL heights. Both correlation coefficients

reached 0.65 (p < 0.05) and passed the t-test.

Results and discussion

Seasonal and monthly variations of ozone
concentrations

Among the four seasons, the ozone concentration was

highest in summer with 112.76 ± 28.51 μg m−3 at the low

layer and 104.13 ± 32.08 μg m−3 at the high layer. The

sequence was summer > spring > autumn > winter (Table 2).

Generally, the ozone concentration at the low layer was higher in

summer and autumn, while those at the high layer were higher in

winter and spring.

The variations in ozone concentration and meteorological

elements in low and high layers from October 2018 to September

2019 in Shenyang are shown in Figure 3. For monthly variations

(Figure 3A), trends for ozone concentrations at both height layers

are similar, having a peak and a valley. The maximum ozone

concentrations in both heights occurred in June with 129.73 ±

23.51 μg m−3 in the low layer and 128.74 ± 22.01 μg m−3 in the

high layer, while the minimum values were in January with

22.78 ± 5.85 μg m−3 in the low layer and in December with

32.21 ± 3.11 μg m−3 in the high layer, respectively. The ozone

concentration peak in the summer relates to meteorological

factors, such as high temperature and relative humidity,

intense insolation, and transport of Asia summer wind (Liu

et al., 2021). From June to October, the ozone concentration

was higher in the low layer than in the high layer, and the

maximum difference appeared in October, reaching

35.60 μg m−3. However, from November to May, it is the

contrary, with the corresponding maximum difference

(16.6 μg m−3) occurring in January.

In general, the monthly variations of ozone concentrations

are similar in the two height layers (Figures 3A,B). The daily

mean ozone concentrations in most months were under

160 μg m−3 (limit of ozone pollution standard) except in June,

with five and 7 days in the low and high layers, respectively. This

result suggests that ozone pollution seldom happens in Shenyang.

The daily mean wind speed, air temperature, and relative

humidity in the two layers in Shenyang are shown in Figures

3C–E. Wind speed in the high layer was much higher than in the

low layers, with low and high wind speed (LWS and HWS) values

of 0.47 and 1.23 ms−1, respectively. However, air temperatures in

the low (12.67°C) and high (12.62°C) layers differed slightly. The

same was observed for relative humidity, i.e., 46.68% and 43.22%

in low and high layers, respectively). Compared with the two

layers, the air temperature was higher in the low layer from May

to November, but higher in the high layer from December to

March (unmeasured data in the low layer in April). For relative

humidity, it was higher in the low layer from October to April,

while the opposite occurred from May to September.

Many studies indicated that meteorological factors could

influence vertical ozone concentration (Ma et al., 2011; Guo

et al., 2013; Dai et al., 2021). Thus, we correlated the ozone levels

against the meteorological data to discuss factors influencing

ozone pollution (Figure 4). Ozone concentration has a better

relationship with air temperature; both correlation coefficients

were 0.814 (p < 0.05) in the low layer and 0.731 (p < 0.05) in the

high layer. As for the relative humidity, the respective values were

0.310 (p < 0.05) and 0.351 (p < 0.05), while the correlation

coefficients with wind speed were meager for both layers. It also

shows that ozone concentration is well correlated with air

temperature but poorly correlated with relative temperature

and wind speed in Xi’an (Hu et al., 2021) and Cangzhou

(Xiong et al., 2022), China.

Diurnal characteristics of ozone
concentrations

Figure 5 shows the diurnal variation of hourly ozone

concentrations. Generally, O3 concentration, whose variation

is characteristic of photochemical reactions, was low at night,

gradually increasing in the morning and peaking at dusk (Xu

et al., 2008; Li et al., 2021; Liu et al., 2021). En all seasons, the O3

concentration first peaked at the low-layer height in early winter

(15:00) and late summer (17:00). Then, the peak at the high layer

height lagged for 1–2 h (between 17:00 and 19:00). The diurnal

variations (the difference between the maximum and minimum)

TABLE 2 Seasonal ozone concentrations (µg m−3) in the low and high
layers of Shenyang.

Season Low layer High layer

Spring 76.4 ± 28.21 93.23 ± 26.63

Summer 112.76 ± 28.51 104.13 ± 32.08

Autumn 69.79 ± 33.68 53.18 ± 23.92

Winter 24.87 ± 6.27 36.18 ± 6.64
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of ozone concentrations at the low layer were 44.70, 67.67, 39.60,

and 19.99 μg m−3 in spring, summer, autumn, and winter,

respectively. These values were higher than their counterparts

in the high layer. Compared with the high layer, the ozone

concentration in the low layer is chartered with an earlier

peak and wider diurnal variations. This occurrence could be

attributed to the higher concentrations of ozone precursors in the

lower layer, i.e., conducive conditions for ozone formation and

transportation of updraft transporting air mass from the low

layer, leading to the lags in ozone maximum in the high layer.

In spring, the ozone concentration during the daytime was

slightly higher at the low layer than at the high layer. The

FIGURE 3
Variation in mean (A) daily and (B) monthly ozone concentration and the corresponding (C) wind speed, (D) temperature, and (E) relative
humidity in low and high layers from October 2018 to September 2019 in Shenyang, China.
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FIGURE 4
Scatter plots of relationships of ozone concentrationwith (A) air temperature, (B) relative humidity, (C)wind speed in the low layers, andwith (D)
air temperature, (E) relative humidity, (F) wind speed in high layers in Shenyang, China.

FIGURE 5
Diurnal variation of ozone concentration in (A) spring, (B) summer, (C) autumn, and (D) winter at low and high layers in Shenyang.

TABLE 3 Atmospheric boundary layer height (m) at Shenyang in 2018.

BTC Annual average Spring Summer Autumn Winter

02:00 328.8 319.0 305.3 275.2 414.2

14:00 1,296.2 1,490.0 1,388.0 1,377.5 962.2

Average 672.2 748.2 716.2 644.7 594.1
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differences between the two heights were below 6.17 μg m−3, while

during the nighttime, it was lower at the low layer than at the high

layer, with an increase in the corresponding differences. In the

daytime, the boundary layer height in spring was the highest

among the four seasons in Shenyang, reaching 1,490 m at 14:00

(Table 3). Numerous ozone photochemical reactions were initiated

in the daytime, and the vertical mixing near the ground was

intense, resulting in similar ozone concentrations at the two

heights during the day. On the other hand, during nighttime,

the “titration” consumption of NO was evident in the lower layer

due to the high NO concentration. The dry deposition of ozone

(Ripperton and Vukovich, 1971) also led to a more significant loss

in the lower layers, and the atmospheric turbulence weakened. The

vertical mixing at different altitudes was lower during daytime, so

the ozone concentration in the lower layer was lower than in the

upper layer.

In summer, the ozone concentration was higher at the low

layer than at the high layer during daytime and nighttime, while

the difference between the two heights was higher in the daytime

than at night. The transport of ozone and its precursors by the

Asian summer monsoon (ASM) during the day, combined with

the intense local photochemical reactions, resulted in a

prominent ozone concentration in the lower layer (Liu et al.,

2019a). At night, NO transported by ASM and locally emitted

NO simultaneously consumed ozone at both heights. More ozone

was consumed at the low level than the high level because NO

was more concentrated at the low level. Furthermore, vertical

mixing in summer, even at night, makes the ozone

concentrations similar in both layers.

We analyzed the corresponding meteorological factors in

summer at low and high layer heights in Shenyang (Figure 6).

Lower air temperature, higher relative humidity, and higher

wind speed existed at the high layer height in summer than at

the low layer, whose vertical distribution suggests unstable

atmosphere stratification (Li et al., 2019). Also, the profile of

the vertical speed of airflow indicated that the area over the

observation site (123.41°E, 41.73°N) from the ground to

990 hPa (about 100 m) was a weak updraft area

(Figure 7A). A typical updraft at 18UTC on 7 July

2018 over Shenyang is shown in Figure 7B, bringing

pollutants upward thus shrinking the concentration

differences between the low and high layers. All

meteorological elements were advantageous to the vertical

mixing of pollutants.

Further, the ozone concentration variations in autumn and

summer were similar, i.e., higher at the low layer than at the high

layer. At the same time, the difference (about 16 μg m−3) between

the two heights was stable throughout the day. Also, the ozone

concentration decreased significantly in autumn than in summer,

only being 50.56–90.16 μg m−3 in the low layer and

35.93–70.86 μg m−3 in the high layer.

During winter, the ozone concentration was lower at the

low layer than at the high layer throughout the day. In

contrast, the difference between the two heights was slight

in the daytime but significant in the nighttime. An inverse

temperature occurred in winter, and wind shear was weaker in

winter than in summer, while the horizontal wind speed was

also meager (Figure 6D). Under these meteorological

conditions, pollutant transport in vertical and horizontal

directions was slow (Li et al., 2019). Thus, local

photochemical generation and consumption of ozone were

more critical. During winter, the ozone concentration was

lower in the high layer than in the low layer. And the first

reason is as follows: ozone was generated and mixed vertically

along the boundary layer during daytime. NO consumed the

uniformly mixed ozone at nighttime. The difference in NO

consumption by ozone at different heights during nighttime

was different. Another reason was that central heating during

winter, adopted in Shenyang in recent years, ensured that the

total emissions (including NOx) from elevated point sources

FIGURE 6
Diurnal variation (high minus low) of (A)wind speed, (B) air temperature, (C) relative humidity in summer, and the corresponding values (D–F) in
winter in Shenyang.
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were effectively controlled (Yang et al., 2005). Thus, NO

emissions were lesser at the upper layer than at the lower

layer. The same was the ozone consumption, resulting in a

lower ozone concentration in the lower layer than in the upper

layer.

Summary and conclusion

We monitored ozone concentration and meteorological

factors at the low layer (≈15 m) and high (≈90 m) layer in

Shenyang, northeast China. Then, we analyzed the temporal

variation of ozone concentration from 1 October 2018, to

30 September 2019. We also discussed the relationships

between ozone concentration and meteorological factors

(i.e., air temperature, relative humidity, and wind speed).

The ozone concentration in the four seasons peaked at the

low layer first, early in winter, and late in summer. The peak at

the high layer height lagged for 1–2 h. For spring, the ozone

concentration in the daytime was slightly higher at the low layer

than at the high layer, with a meager difference between the two

heights. Whereas during the nighttime, the concentration was

lower at the low layer than at the high layer, with an increased

corresponding difference. In summer, the ozone concentration

was higher at the low layer than at the high layer throughout the

day. The difference between the heights was higher during the

day than at night. During autumn, the variation in the ozone

concentration was similar to that in summer, while the

difference between the heights was stable throughout the

day. Finally, in winter, the ozone concentration was lower at

the low layer than at the high layer during daytime and

nighttime, with some slight difference between the two

heights in the daytime but higher at night.
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