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Urban functional zones (UFZs) are the fundamental units for urban

management and operation. The advance in earth observation and deep

learning technology provides chances for automatically and intelligently

classifying UFZs via remote sensing images. However, current methods

based on deep learning require numerous high-quality annotations to train a

well-performed model, which is time-consuming. Thus, how to train a reliable

model using a few annotated data is a problem in UFZ classification. Self-

supervised learning (SSL) can optimize models using numerous unannotated

data. In this paper, we introduce SSL into UFZ classification to use the instance

discrimination pretext task for guiding a model to learn useful features from

over 50,000 unannotated remote sensing images and fine tune themodel using

700 to 7,000 annotated data. The validation experiment in Beijing, China reveals

that 1) using a few annotated data, SSL can achieve a kappa coefficient and an

overall accuracy 2.1–11.8% and 2.0–10.0% higher than that of supervised

learning (SL), and 2) can also gain results comparable to that got by the SL

paradigm using two times annotated data for training. The less the data used for

finetuning the more obvious the advantage of SSL to SL. Besides, the

comparison experiment between the model pretrained on the research

region and that pretrained on the benchmark reveals that the objects with

displacement and incompleteness are more difficult for models to classify

accurately.
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1 Introduction

Urban functional zones (UFZs), including commercial zones, industrial zones, and

residential zones, have specific social activities. The spatial distribution of UFZs describes

the city structure and reveals the land demand, playing an important role in urban

management (Zhang et al., 2017; Chen et al., 2018). Nowadays, geographic big data like

points of interest and geo-tagged photos become available, which were used to analyze

UFZ spatial patterns. For example, Yin et al. (2021b) used the density of points of interest
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to determine the type of parcels and map out the UFZ. Kang et al.

(2021) used photos from Flickr to investigate the landscapes to

guide the tourisms industry. However, these data were uploaded

by users, so their quality are uncontrollable (Yin et al., 2021a).

The advance in earth observation provides high spatiotemporal-

resolution remote sensing imagery (RSI), which is widely used for

UFZ classification research (Bao et al., 2020; Cao et al., 2020; Liu

et al., 2021).

Traditional RSI interpretation relies on handcrafted

features (Dai and Yang, 2010; Zhu et al., 2014; Castelluccio

et al., 2015), in which radiometric features, texture features,

and shape features were used for image classification and

retrieval (Luo et al., 2013). Zhang et al. (2018) proposed a

hierarchical bottom-up and up-bottom feedback model to

improve the classification accuracy of UFZs by handcrafted

features like gray-level co-occurrence matrix (GLCM). Du

et al. (2019) used window independent context (WIC) feature

to extract spatial units of UFZs from very-high-resolution RSI.

However, generating a well-designed handcrafted feature

requires expert experience and has low robustness, which

cannot provide satisfying results in complex RSI

interpretation like UFZ classification (Cheng et al., 2017).

Recently, with the development of deep learning technology,

the methods based on high-level visual features, like

convolutional neural networks (CNNs), are employed in

intelligent and automatic feature extraction (Ioffe and

Szegedy, 2015; He et al., 2016; Szegedy et al., 2016). More and

more UFZ researchers have adapted CNNs for representation

and classification (Liu et al., 2017; Cheng et al., 2018; Wang et al.,

2018). For UFZ classification, CNNs have become an essential

part in recent 5 years (Bao et al., 2020; Liu et al., 2020; Xu et al.,

2020; Zhou et al., 2020; Du et al., 2021; Lu et al., 2022). Zhou et al.

(2020) proposed super-object based CNNs to classify UFZ in RSI.

They used the AlexNet (Krizhevsky et al., 2012), a typical CNN

model, to determine the class of a clipped RSI. Du et al. (2021)

designed a multi-scale semantic segmentation network

combining an object-level conditional random field to map

UFZ at the object level.

Generally, the training of a CNN follows the supervised

learning (SL) paradigm, which fits the parameters using

numerous annotated training data. Under the SL paradigm,

training a stable model requires a large number of high-quality

samples (Ma et al., 2017). Large-scale image classification

datasets, such as ImageNet (Krizhevsky et al., 2012) and

Pattern Analysis, Statical modeling and ComputAtional

Learning Visual Object Classes (PASCAL VOC) challenge

dataset (Everingham et al., 2010) have promoted the

development of SL in computer vision. However, when SL

is applied to the field like remote sensing and medical image,

this training paradigm often has insufficient training samples.

Annotating an RSI dataset needs professional knowledge and

tedious work, so annotating an RSI dataset as large as

ImageNet is costly. Therefore, it is difficult to train a good-

performance UFZ classification model with existing datasets

under the SL paradigm.

Transfer learning (TL) pretrains a model on large-scale

datasets via SL and then finetunes parts of model parameters

by target tasks, like UFZ classification. It can reduce the

annotation requirement (Wang et al., 2020; Yang et al., 2020).

TL assumes that the model can learn a general representation

from large amounts of datasets. And the representation can be

transferred into the remote sensing domain by a few annotated

FIGURE 1
The study area and its location in Beijing, China.
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data. But TL requires that the data used for pretraining and

finetuning should have the same number of channels. Natural

images have the three channels of red band, green band, and blue

band (RGB bands), but different RSIs have different numbers of

channels. For example, multispectral images and hyperspectral

images have more than three channels and panchromatic

imagery has only one channel. The difference in channel

numbers causes difficulty in finetuning the RGB-pretrained

model on RIS. In addition, the RGB-band RSIs have quite

different visual characteristics from natural images, due to the

different imaging mechanisms, such as angle and distance.

Therefore, it is a problem to train a model via massive

unannotated RSIs.

In the past few years, self-supervised learning (SSL) has

become popular in model pretraining and gains results

comparable to those got by previous learning paradigms in

computer vision tasks such as image classification, semantic

segmentation, and object detection (Doersch and Zisserman,

2017; Similarities, 2021; Tao et al., 2021; Li et al., 2022). SSL

trains models to learn useful knowledge via pretext task, whose

annotation is obtained directly from the training data. Thus, SSL

has the advantage that its pretrain period is label-free. Recently,

SSL researches on RSI have made great progress, but most of

them only used public benchmark for experiments (Yu et al.,

2020; Zhao et al., 2020; Stojnic and Risojevic, 2021). For example,

Tao et al. (2022) investigated the potential of SSL on RSI

interpretation by three open RSI datasets: EuroSAT, which is

the Land Use and Land Cover Classification with Sentinel-2

(Helber et al., 2019), Aerial Image Dataset (AID) (Xia et al.,

2017), and NWPU-RESISC45, which is the REmote Sensing

Image Scene Classification (RESISC) dataset created by

Northwestern Polytechnical University (NWPU) with 45

classes (Cheng et al., 2017). No relevant studies have been

carried out in the practical application. The RSIs selected in

open RSI datasets and those used for practical applications are

different (Cheng et al., 2017, 2020; Hong, 2021).

• First, in the images selected for open RSI datasets, the

objects of interest are always at the center. In the images

used for practical application, the location of key objects is

random, so the image is difficult to be cropped with the

target at the center. The displacement of objects causes

sample misclassification by the model pre-trained on

benchmark.

• Second, the image size of a benchmark is always fixed, but

the scales of objects in benchmarks are different (e.g.,

factory and airport). Thus, the benchmark spatial

resolution changes to make sure the key object is

contained in the image completely. However, in

practice, the spatial resolution and the image size are

always fixed, so some large-scale object might be

cropped into several patches, which is difficult for the

model to classify accurately.

Therefore, this paper intends to introduce the SSL into the

UFZ classification of the region inside the Sixth Ring Road of

Beijing, China, and to investigate the different performance of

SSL in open RSI dataset and the practical application. Specifically,

we pretrain the model on unannotated RSI of downtown Beijing

via SSL, and then collect a small-scale UFZ classification dataset

to fine-tune the model. Notably, in order to be like the practical

application, all samples used in the experiments are randomly

cropped with fixed resolution and size. The experiment result

shows that SSL has advantages over SL in terms of sample

demand and final classification accuracy.

2 Materials and methods

2.1 Study area and data

This study takes Beijing, China as the research region (shown

in Figure 1). It has a spatial coverage of 3300 km2 (longitude

TABLE 1 The classification system and number of patches for each UFZ type of the collected dataset.

Category Definition Number of patches

Commercial Financial center, retail center, shopping mall, office building 314

Residential Residence, urban shantytown, and rural settlement 1226

Institutional educational, medical, cultural, administrative office, and public services 763

Industrial factories, warehouse 275

Transportation Railway, highway, port and its surrounding water, bus station, railway station, airport, gasoline station 875

Open Space urban park, botanic garden, and other urban grasslands 531

Construction vacant land, bare land, and land under construction 1310

Forest non-urban development land with dense trees 333

Agricultural vegetable field, cropland, orchard, and other agricultural lands 1105

Water natural and artificial waterbody 572

Σ 7304
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116°04′-116°44′E and latitude 39°40′-40°11′N) and a population

of 21,000,000. This region contains a variety of urban landscapes,

which can effectively denote old/new city areas and urban/

suburbs.

The RSI used in this paper is downloaded from Bing

Virtual with a size of 53248 × 69632 in the WGS-84

framework. For SSL, the entire image is meshed into

56,576 patches with a size of 256. Considering current

researches (Zhang et al., 2020; Liu et al., 2021; Lu et al.,

2022) and the “Code for classification of urban and rural

land use and planning standards of development land

(GB50137)” issued by the Ministry of Housing and Urban-

Rural Development of the People’s Republic of China, we

divide the UFZs into 10 kinds. For model finetuning, we

annotate a few patches manually. The classification system

and the number of patches for each UFZ type are shown in

Table 1, and parts of annotated patches are shown in Figure 2.

2.2 Paradigm of SL and SSL

The supervised learning (SL) is a model training paradigm

that has been widely used in big data analysis. Given dataset D �
{xi, yi}ki�1 and model F : xi → ŷi with random initialization

parameters, SL is to optimize F to minimize the error

between yi and ŷi.

The SSL is to initialize a model’s parameters using pretext

tasks, such as image reconstruction, rotation prediction, and

FIGURE 2
Samples of the 10 urban function zone (UFZ) types.
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instance discrimination (Tao et al., 2020). By solving the pretext

tasks, the model can learn the useful features from unannotated

samples. Here, we introduce the instance discrimination task that

will be used in our research.

Given an image (instance) ~x and its two argumentation views

xi and xj, instance discrimination is to distinguish the positive

sample of xi from a set of samples {xk}. xi and xj are positive

samples of each other. From the perspective of feature space

FIGURE 3
Understanding the instance discrimination task from the perspective of feature space.

FIGURE 4
Flowchart of UFZ classification by SSL.
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(Figure 3), the goal of instance discrimination is to aggregate the

positive samples and push apart them from other samples

(negative samples). A similarity loss function is designed to

complete the task Eq. 1.

l1(i, j) � −log exp(cos < z i, zj >/τ)
∑2N

k�1 Ik≠i exp(cos < z i, zj >/τ)
(1)

where z i and zj are the argumentation views. cos < u, v > � uv
|u||v|.

Ibool is the indicator function, and its value is 1 only if bool is true,

0 otherwise. τ is the temperature parameter.

2.3 Implementation of SSL on UFZ
classification

As shown in Figure 4, the implementation of SSL on UFZ

classification includes two steps: 1) learning useful knowledge via

SSL, and 2) finetuning the pre-trained model to the UFZ

classification domain via SL. In the first step, the model will

be trained on large-scale unannotated RSIs to learn useful

knowledge. In the second step, the model will be finetuned on

a small-scale UFZ classification dataset with annotation to obtain

a UFZ classification model.

TABLE 2 Evaluation of themodels using SSL initialization and random initialization using different percentage of finetune samples. Com: commercial,
Res: residential, Ins: institutional, Ind: industrial, Tra: transportation, OS: open space, Con: construction, For: forest, Agr: agricultural.

Initialization Sample
(%)

UA (%)/PA (%)/F1 Kappa OA (%)

Com Res Ins Ind Tra OS Con For Agr Water

SSL on the Research Region 100 57.9 85.3 67.5 74.1 83.6 81.6 77.9 98.5 90.3 95.3 0.796 82.2

34.9 87.8 71.9 72.7 82.2 84.0 83.2 95.6 87.9 94.4

0.436 0.865 0.696 0.734 0.829 0.828 0.804 0.970 0.891 0.949

80 51.4 83.9 65.9 75.5 85.2 80.8 77.7 98.5 89.8 92.3 0.790 81.7

30.2 86.9 71.9 72.7 82.3 79.2 82.4 97.0 87.8 94.7

0.380 0.854 0.688 0.741 0.837 0.800 0.800 0.977 0.888 0.935

40 40.9 79.1 60.6 70.8 82.5 79.8 73.3 98.5 89.4 91.2 0.753 78.5

14.3 88.2 71.2 61.8 75.4 78.3 80.5 95.5 84.2 90.4

0.212 0.834 0.655 0.660 0.788 0.790 0.767 0.970 0.867 0.907

20 40.0 77.1 58.3 74.1 77.8 82.5 67.0 98.5 86.8 91.9 0.727 76.4

3.2 86.5 64.1 36.4 70.3 75.5 85.9 95.5 86.0 89.5

0.059 0.815 0.611 0.488 0.739 0.788 0.753 0.970 0.864 0.907

10 0 73.3 53.6 0 79.3 92.2 52.6 98.4 75.4 90.7 0.642 69.3

0 85.3 48.4 0 54.9 55.7 87.4 91.0 84.6 86.0

- 0.789 0.509 - 0.649 0.694 0.657 0.946 0.797 0.883

Random initialization 100 35.0 83.4 67.3 70.6 81.0 71.8 85.3 97.0 89.6 95.3 0.779 80.6

33.3 82.0 73.9 65.5 82.9 79.2 84.4 97.0 86.0 89.5

0.341 0.827 0.704 0.679 0.819 0.753 0.848 0.970 0.878 0.923

80 29.8 81.6 64.8 81.8 82.4 67.5 82.3 95.6 91.4 95.2 0.773 80.2

22.2 83.3 67.3 65.5 82.9 76.4 88.9 97.0 86.9 86.8

0.255 0.824 0.660 0.727 0.826 0.717 0.855 0.963 0.891 0.908

40 34.8 74.7 57.2 57.1 73.3 69.6 76.7 96.8 85.8 91.6 0.709 74.7

25.4 84.5 59.5 36.4 75.4 75.5 80.5 91.0 79.2 86.0

0.294 0.793 0.583 0.444 0.744 0.724 0.786 0.938 0.824 0.887

20 33.7 69.6 52.7 71.4 71.3 60.9 69.7 93.8 75.6 82.0 0.636 68.2

47.6 81.2 50.3 36.4 68.0 66.0 63.4 89.6 74.2 79.8

0.395 0.750 0.515 0.482 0.696 0.633 0.664 0.916 0.749 0.809

10 31.0 65.6 44.7 50.0 72.3 55.6 58.3 76.6 72.3 85.9 0.574 63.0

34.9 80.8 44.4 18.2 53.7 47.2 66.8 88.1 71.9 74.6

0.328 0.724 0.446 0.267 0.616 0.510 0.623 0.819 0.721 0.798
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2.3.1 Learning potential useful knowledge
via SSL

In this study, we use instance discrimination as the pretext

task, as it can guide the model to learn the invariance of an

image and the difference between two images (Chen et al.,

2020).

We design a CNN that contains a visual feature encoder

f(·|θf) and a feature projector g(·|θg) to represent

argumentation views and complete the instance discrimination

task. The SSL training has three steps:

1) Generation of positive samples: Randomly select a few

unannotated data {~xk}Nk�1 from a large-scale dataset ~X, and

argument them by two random argumentation rules t1 and t2
(e.g., rotation, flip, random mask, dithering). By doing so, a

set of argumentation views {xk}2Nk�1 are generated, in which

x2k−1 and x2k are a pair of positive samples.

2) Representation of argumentation views: represent the

argumentation views in {xk}2Nk�1 by f(·|θf) to get the visual

representation {hk}2Nk�1 and project the representation by

g(·|θg). In this way, all argumentation views are projected

as {zk}2Nk�1 in the instance discriminative space.

3) Discrimination of instance: optimize θf and θg by

minimizing the similarity loss.

2.3.2 Finetune the pre-trained model to the UFZ
classification domain

Finetuning the pre-trained model via SL is to use a small-

scale annotated dataset to adjust some parameters of the pre-

trained model. In this study, we use the collected UFZ

classification dataset to finetune the pre-trained model to

the UFZ classification domain through the following two

steps:

1) Extracting useful features: randomly sample a mini batch of

data {(~xk, yk)}nk�1 from the annotated dataset (~X, ~Y), and
extract features by pretrained feature encoder f(·|θf) to get

the feature representation {hk}nk�1.
2) Finetuning the model by SL: randomly initialize a classifier

φ(·|θφ) and classify {hk}nk�1 to predict the class distribution

probability {pk}nk�1 and optimize φ by minimizing the cross-

entropy (CE) loss between pk and yk. yk,i � Ixk∈Classi,

pk,i � P(xk ∈ Classi), and cls is the total class number. In

this study, cls is 10.

FIGURE 5
UFZ classification using 100% training samples. (A) UFZ map predicted by the SSL model; (B) UFZ map predicted by the SL model; (C)
comparison result between the SSL model and the SL model.
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l2(pk, yk) � −∑
cls

i�1
yk,ilog (pk,i) (2)

2.3.3 Implementation details
In the experiment, we use ResNet50 (He et al., 2016) as the

backbone of the visual encoder f(·|θf), and take two stacked

fully connected (FC) layer with REctified Linear Unit (ReLU)

activating function as the projector g(·|θg). For an image ~xk (or

its argumentation view xk), the model firstly extracts its visual

feature by feature extractor f: ~xk → hk ∈ R2048, and then

projects hk to the instance discriminative space by projector g

(Eq. 3), in which W1 ∈ R1024×2048 and W2 ∈ R128×1024 are the

learnable weight in FC layers, and δ(a) � max(0, a) denotes the
ReLU function.

zk � g(hk
∣∣∣∣θg) � W2δ(W1hk) (3)

For model finetuning, we take a classifier with an FC layer.

Mathematically, the classification process can be expressed by

(Eq. 4).

FIGURE 6
Results obtained using different ratio of training samples. R.I., random initialization.

TABLE 3 Location quotient based on the ring road.

Category Inside 2nd 2nd-3rd 3rd-4th 4th-5th 5th-6th

Commercial 2.01 2.42 2.51 1.67 0.59

Residential 1.81 1.41 1.69 1.15 0.85

Institutional 2.82 3.04 2.00 1.27 0.66

Industrial 0.17 0.18 0.59 0.93 1.13

Transportation 0.70 1.01 1.22 1.17 0.95

Open Space 0.27 0.18 0.30 1.13 1.11

Construction 0.20 0.44 0.65 1.11 1.07

Forest 0.00 0.00 0.00 0.01 1.41

Agricultural 0.01 0.00 0.03 0.23 1.36

Water 0.85 0.26 0.19 0.67 1.20

μ ± σ 0.88 ± 0.94 0.89 ± 1.02 0.92 ± 0.84 0.93 ± 0.47 1.03 ± 0.26

Frontiers in Environmental Science frontiersin.org08

Lu et al. 10.3389/fenvs.2022.1010630

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1010630


pk � SoftMax(W3hk) (4)

SoftMax(pk) �
exp(pk)

∑
i
exp(pk,i)

(5)

W3 is the weight of FC layer and pk is the class probability

distribution of image ~xk. SoftMax is the normalized exponential

function whose expression is Eq. 5. pk,i means the probability of

image ~xk belonging to class i.

3 Results

In quantitative evaluation, we use the Kappa coefficient

(Kappa) and overall accuracy (OA) as the overall evaluation

indexes and the producer accuracy (PA), user accuracy (UA), and

F1 score (F1) as the evaluation indexes for each category. Table 2

shows the evaluation result of two initialization strategy with

different numbers of finetuning samples. When 100% finetuning

samples are used, the SSL method gains a better result than SL.

The Kappa and OA increase by 2.4% and 2.1%, respectively.

According to F1, the SSLmethod achieves the best results in 8 out

of 10 categories. For both SSL and SL models, forests and water

have an F1 value of above 0.9, due to the simple texture.

Residential zones, transportations, open spaces, constructions,

and agricultural lands are also visually distinguishable, so their

F1 values are over 0.75. However, commercial, institutional, and

industrial zones with strong social attributes are visually

ambiguous, which are difficult to be accurately classified them

using the visual characteristics provided by remote sensing

images, so their F1 values are relatively low.

Figure 5 shows the UFZ map predicted by two models. One

model is initialized by SSL on the research region (SSL model) with

100% finetuning samples and another is randomly initialized (SL

model) with 100% finetuning samples. We show four results in

Figure 5, which intuitively demonstrate the superiority of the SSL

model in UFZ classification. The comparison chart shows that SL is

prone to misclassifying UFZs with visual homogeneity, such as open

space, forest, residential zone and commercial zone. For example, in

region A, the SSL model accurately identifies the area with forest

trails as forest, while the SLmodelmisclassifies it as an open space. A

possible reason is that the SL model cannot distinguish between

TABLE 4 Location quotient based on administrative district.

Category Xicheng Dongcheng Haidian Chaoyang Shijing Fengtai

Commercial 1.50 1.52 0.74 1.29 0.35 1.10

Residential 1.73 1.67 0.81 1.12 1.25 1.01

Institutional 2.69 2.58 1.39 0.77 0.69 0.90

Industrial 0.11 0.32 0.41 1.24 1.09 1.44

Transportation 0.82 0.79 0.67 1.17 0.84 1.25

Open Space 0.11 0.31 1.16 0.70 0.52 1.38

Construction 0.16 0.32 0.56 1.42 0.89 1.01

Forest 0.00 0.00 1.83 0.00 4.03 0.53

Agricultural 0.00 0.02 1.35 1.06 0.07 0.68

Water 1.23 0.20 0.89 1.37 0.58 0.70

μ ± σ 0.83 ± 0.88 0.77 ± 0.82 0.98 ± 0.42 1.01 ± 0.41 1.03 ± 1.05 1 ± 0.29

TABLE 5 Quantitative result of the models pretrained on the research region and AID.

Initialization UA (%)/PA (%)/F1 Kappa OA

Com Res Ins Ind Tra OS Con For Agr Water

SSL on the Research Region 57.9 85.3 67.5 74.1 83.6 81.6 77.9 98.5 90.3 95.3 0.796 82.2 (%)

34.9 87.8 71.9 72.7 82.2 84.0 83.2 95.6 87.9 94.4

0.436 0.865 0.696 0.734 0.829 0.828 0.804 0.970 0.891 0.949

SSL on AID 46.2 69.0 64.9 68.4 79.7 77.3 63.0 90.0 79.9 90.3 0.779 80.6 (%)

19.1 87.4 55.6 47.3 67.4 64.2 74.1 94.0 82.8 89.5

0.270 0.771 0.599 0.559 0.731 0.701 0.681 0.920 0.813 0.899

Frontiers in Environmental Science frontiersin.org09

Lu et al. 10.3389/fenvs.2022.1010630

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1010630


forest trails and park trails when the samples are limited, while the

SSL model can distinguish between the two using many unlabeled

samples.

3.1 The advantages of SSL in UFZ
classification

To compare the performance of SSL and SL in UFZ

classification, we carry out a set of experiments using 10%, 20%,

40%, 80%, and 100% training samples for finetuning, separately. The

overall results are shown in Figure 6. For detailed qualitative

evaluation, please refer to Table 2. Compared with the randomly

initialized model (SL-based model), the model pretrained via SSL

gains better results. Following are the advantages of SSL:

1) Using the same number of training samples, the SSL-based

model achieves higher Kappa and OA than the SL-based model,

and the fewer the training samples the more obvious the

advantage. When 100% training samples are used for

finetuning, the values of Kappa and OA of the SSL-based

model are 2.1% and 2.0% higher than those of the SL-based

model, respectively. When the samples reduce to 10%, the

correspondence is 11.8% and 10.0%.

2) The SSL-based model achieves results comparable to or better

than that got by the SL-based model but uses fewer samples.

When the SSL-based model uses 10% (Kappa: 0.642; OA:

69.3%)and 20% (Kappa: 0.727; OA: 76.4%)samples for

finetuning, the results are better than that got by SL-based

models using 20% (Kappa: 0.636; OA: 68.2%)and 40%

(Kappa: 0.709; OA: 74.7%)samples, respectively.

3.2 Spatial patterns of the urban functional
zones

As shown in the map in Figure 5, there are many institutional

zones in downtown, like government buildings, universities, and

research institutes, because this city is the cultural and political

center of China. The residential zones rank the top ratio in the center

city. In the suburb, there are large areas of forest, open space, and

agricultural land. The construction regions between urban and

suburban areas reflect the expansion of Beijing.

In this study, we analyze the spatial patterns of the UFZs in the

research region. The location quotient (LQ) is used to evaluate the

ratio of specialization of a region (Kolars and Haggett, 1967). LQ is

calculated by Eq. 6, in which the area ratio of UFZ c in region r is the

divided by area ratio of total UFZ c in the research region s.

LQr
c �

src/sr

sc/s
(6)

When LQr
c > 1.5, UFZ c has a high superiority in region r; when

LQr
c is between 1 and 1.5, UFZ c exceeds the average level in

region r; if LQr
c < 1, UFZ c is below the average level in region r.

FIGURE 7
Samples misclassified by the model pretrained on AID. The texts at the bottom of each subfigure are the ground truth and the prediction. For
example, the image in the left upper corner is for transportation, but it was misclassified as agricultural land. Com: commercial, Res: residential, Ins:
institutional, Ind: industrial, Tra: transportation, OS: open space, Con: construction, For: forest, Agr: agricultural.
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By calculating LQ, the development status of UFZs and the

degree of function composite can be analyzed.

The LQ based on ring roads (from the 2nd ring road to the

6th ring road) and administrative divisions (Xicheng,

Dongcheng, Haidian, Chaoyang, Shijing, and Fengtai) is

calculated and shown in Table 3 and Table 4.

Commercial, residential, and institutional zones show

different superiority in the regions divided by ring roads. The

commercial zone shows high superiority inside the 5th ring road,

the institutional zones are concentrated inside the 4th ring road,

and the residential zones are prominent inside the 2nd and

between the 3rd and 4th ring roads. Apart from the

downtown, the superiority of the above functional zones

reduces, and other UFZs increase.

From the perspective of administrative divisions, the

commercial, residential, and institutional zones show

superiority in the inner city (Xicheng and Dongcheng

district). The forest shows superiority in the Haidian and

Shijing districts, as they share the Western Hills National

Forest Park. In Chaoyang and Fengtai districts, most kinds of

UFZs are at the average level.

4 Discussion

4.1 The gap between benchmarks and
practical application

As we mentioned in the Introduction, SSL has been

investigated deeply using different data, but it is rarely used in

practical applications like UFZ classification, and the gap

between benchmarks and practical applications is also

ignored. Here, we conducted an experiment, in which two

ResNet50 models are pretrained by the sample generated from

the research region and the sample in the AID (Xia et al., 2017)

dataset via SSL separately, and finetuned by 100% annotated

samples collected in the research region. Table 5 compares the

performance of the two models.

Compared with the model pretrained on the AID, the model

pretrained on the research region gains 15.9% and 12.0% higher

Kappa and OA. The average F1 got by the research region based

model was 19.2% higher than the other, with the maximum

increase of 62% in commercial areas.

As shown in Figure 2, there are many patches in the dataset

with incomplete objects, while in public datasets such as AID,

samples are carefully selected that have higher visual

discrimination and are easier for the model to capture its

features. Figure 7 shows some samples misclassified by the

AID pre-trained model. The objects are not in the center of the

patches and some objects are incomplete. But they have been

accurately classified by the research region pre-trained model.

For example, airplanes are important objects for identifying

the airport, but they are not at the center of patches in the

practical samples, which leads misclassification. This conflicts

the prior knowledge learned from the benchmark that objects

used to determine the category of images should be in the

image center.

5 Conclusion

Current SL-based UFZ classification methods require a lot of

training samples, which are not easy to acquire. Thus, this study

conducts research on UFZ classification based on SSL. We collect

7304 typical UFZ samples as the finetuning and testing data and

map the UFZ distribution inside the 6th ring road in Beijing. The

experiment result proves that SSL gains better classification

results than SL when the same number of training data is

used and achieves comparable results to SL using half of the

training samples. However, the classification accuracy of

commercial, institutional, and industrial zones is still

unsatisfying due to visual ambiguity. In addition, the

comparison experiment between the model pretrained on the

research region and that pretrained on the benchmark

demonstrates the difficulties in the practical application of

SSL. The displacement and incompleteness of objects in real

data impact the performance of SSL models.

In the future, we will use social sensing data like geo-tagged

photos, taxi trajectories, and points of interest as supplementary

information for UFZ classification.
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