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Drylands are among the most susceptible ecosystems to global climate change. It

has been suggested that a future surface drying trend would largely reduce gross

primary productivity (GPP) in drylands, given that water is the dominant factor

controlling the spatial distributions (i.e., space-for-time analogy) and inter-annual

fluctuations (i.e., variability-for-time analogy) of dryland GPP. However, whether

these approaches using spatial and inter-annual diagnostics are valid to infer long-

term dryland GPP remains unknown. In this study, we evaluate whether space-for-

time and variability-for-time approaches, which are based on the empirical scaling

between GPP and dryness, are able to capture future changes in dryland GPP as

simulated by 18 Earth system models (ESMs). Using observational data during

1958–2014, we identify a strong coupling between dryland GPP and the annual

aridity index (AI, the ratio of precipitation to potential evapotranspiration) over both

spatial and inter-annual scales. This GPP-AI scaling is used to predict future GPP

changes throughout the 21st Century based on the future AI changes projected by

ESMs. The space-for-time, and variability-for-time approaches predict an overall

decrease of dryland GPP by -23.66 ± 10.93 (mean ±1 standard deviation) and

-3.86 ± 2.22 gC m−2 yr−1, respectively, in response to future surface drying,

however, the ESM projections exhibit a strong dryland GPP increase (+81.42 ±

36.82 gC m−2 yr−1). This inconsistency is because the space- and variability-based

approaches, which rely on the spatial or short-term GPP-AI relationships, cannot

capture the slowly-evolving but key determinant of dryland GPP changes over

multi-decadal or longer timescales, which, in ESMs, is the ecosystem physiological

response to rising CO2. Our study questions the validity of “the drier the less

productive” hypothesis rooted in the space-for-time and variability-for-time

theories, and the implementation of such theories to constrain future

ecosystem changes.
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Introduction

Global drylands are a pivotal part of the Earth system,

occupying about 42% of the global land surface and being

home to over 2.5 billion people (Safriel et al., 2005; Reynolds

et al., 2007; Mirzabaev et al., 2019). Drylands provide a variety of

essential ecosystem functions and services (i.e., crops, timbers

and livestock products) to support the existence of local

communities. Dryland ecosystems also play a critical role in

the global carbon cycle, as they dominate the interannual

variability of global terrestrial carbon sinks over the past

decades (Poulter et al., 2014; Ahlström et al., 2015). Therefore,

a better understanding of the responses of dryland ecosystem

productivity to ongoing and future climate change is essential not

only for human sustainability, but also for the global carbon

budget.

Drylands are one of the most susceptible ecosystems to

climate change and human activities (Huang et al., 2017; Lian

et al., 2021). With ongoing climate change, particularly the

potential for more prolonged, frequent and severe droughts,

there is growing concern of a possible exacerbation of dryland

water shortages (Reynolds et al., 2007; Huang et al., 2016; Park

et al., 2018). Previous studies commonly used the aridity index

(AI), defined as the ratio of precipitation (P) to potential

evapotranspiration (PET), to assess surface dryness changes

over global drylands (Fu and Feng, 2014; Sherwood and Fu,

2014; Huang et al., 2016; Park et al., 2018). They reported a

robust decreasing trend of AI as the atmospheric demand for

water increases at a faster pace than concurrent precipitation,

and therefore a tendency of surface drying and expansion of

dryland areas (Fu and Feng, 2014; Sherwood and Fu, 2014;

Huang et al., 2016; Park et al., 2018). The rising surface aridity

has been widely suggested to propagate to increased moisture

deficits in the surface soil (Wang et al., 2018; Zhang et al.,

2020), reducing ecosystem productivity and even causing land

degradation and desertification (Huang et al., 2016; Mirzabaev

et al., 2019)—a hypothesis known as “the drier the less

productive”.

The speculation of land degradation is largely grounded upon

the idea that water availability would be the primary control of

vegetation productivity in dryland ecosystems (Hui and Jackson,

2006; Biederman et al., 2016; Gray et al., 2016; Huang et al.,

2016). This is exemplified by the consistent dependence of

dryland productivity, in terms of both geographical

distributions and inter-annual fluctuations, on the aridity

index (AI). Spatially, regions with smaller AI are associated

with less available water, less vegetation cover, and reduced

productivity (i.e., space-for-time analogy). For example, using

a space-for-time approach, a recent study reported a sequential

series of AI (the ratio of precipitation to PET) thresholds that

control the responses of dryland ecosystems to the increasing

aridity (Berdugo et al., 2020). In particular, an AI threshold of

0.46 was defined below which a dramatic loss of ecosystem

productivity would occur (Berdugo et al., 2020). Temporally,

the inter-annual variability of vegetation productivity depends on

climate variability, with dry years (or drought occurrence)

coinciding with low productivity (Zhao and Running, 2010;

Poulter et al., 2014; Ahlström et al., 2015; Humphrey et al.,

2018). This also generates a strong coupling between AI and

productivity over inter-annual time scales, and leads to the

expectation that an increase in surface aridity (or more

droughts) would lower productivity (i.e., variability-for-time

analogy).

State-of-the-art Earth system models (ESMs) generally

project a persistence of the observed surface drying trend

over global drylands towards the end of the 21st Century

(Huang et al., 2016). Based on the space-for-time or

variability-for-time analogies, continuing drying would

further exacerbate plant water stress and reduce ecosystem

productivity (Huang et al., 2016; Berdugo et al., 2020).

Nevertheless, whether theses analogies established across

space or inter-annual timescales can apply to long-term

prediction of dryland productivity, remains an open

question. For example, despite multiple lines of evidence

showing atmospheric drying under global warming, both

satellite observations and ESM simulations of dryland have

demonstrated a greening trend and enhanced vegetation

productivity (Andela et al., 2013; Donohue et al., 2013;

Mankin et al., 2017; Yao et al., 2020; Gonsamo et al., 2021;

Lian et al., 2021; Fawcett et al., 2022) which is primarily due to

elevated atmospheric CO2. Specifically, rising CO2 can both

directly stimulate photosynthesis (CO2 fertilization) as well as

indirectly alleviate vegetation water stress by decreasing

stomatal conductance and plant transpiration (Mankin

et al., 2017; Stocker et al., 2018; Gonsamo et al., 2021).

Precipitation increases and land management also play an

important role in enhancing productivity at regional scales

(Chen et al., 2019; Gherardi and Sala, 2019; Hou et al., 2021).

Those greening trends do not support the fact that climatic

drying would reduce productivity. Although regional

browning trends are also detected, these are mostly limited

to areas with intense human interventions (i.e., overgrazing,

deforestation) (Lian et al., 2021). In this sense, it is necessary to

re-evaluate whether “the drier the less productive” hypothesis,

which is the key assumption of the space-for-time and

variability-for-time approaches, can be successfully

applied to predict the long-term trajectories of dryland

productivity.

The purpose of this study is to evaluate whether the space-

for-time or variability-for-time approaches can accurately

predict future changes of dryland gross primary

productivity (GPP), which is an important indicator of

ecosystem health and also the ecosystem attribute used in

previous studies supporting the theory of “the drier the less

productive” (Huang et al., 2016; Berdugo et al., 2020). To this

end, we first established empirical models between AI and GPP
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over drylands using observed information of spatial and

interannual variations during 1958–2014. Next, using long-

term climate predictions by 18 ESMs from the Coupled model

intercomparison project phase 6 (CMIP6) under SSP2-RCP4.5

(a scenario of intermediate emission and continuing historical

socio-economic activities) (Eyring et al., 2016), we predicted

the AI-driven changes of GPP throughout the 21st Century.

We made comparisons between the space- and variability-

based estimates and the actual ESM-projected changes of

dryland GPP. Last, we took advantage of factorial

simulations from CMIP6 to understand the radiative and

physiological mechanisms underlying the difference among

the three estimates.

Materials and methods

Definition of global dryland extent

Following previous studies (Lian et al., 2021), we identified

the areas of global drylands based on AI, which represents the

balance between atmospheric water supply to the land

(precipitation) and atmospheric water demand from the land

(PET). Here, PET was calculated using the Penman-Monteith

equation (Eq. 1) (Allen et al., 1998). Compared to other

formulations (e.g., the Thornthwaite algorithm), this

physically-based algorithm leverages more meteorological

variables as inputs, and is now widely used due to its

comprehensiveness and the increasing data availability.

PET �
0.408ΔRnet + γ

900
Tair + 273

u2VPD

Δ + γ(1 + 0.34u2)
(1)

where Rnet is net solar radiation, Tair is air temperature, u2 is

the wind speed at 2-m height, VPD is air vapor pressure

deficit, γ is psychrometric constant, and Δ is the slope of

saturated vapor pressure with temperature. We computed the

historical AI (1958–2014) data using the TerraClimate

product, which provides monthly data of meteorological

variables across the global terrestrial surface during

1958–2020 (Abatzoglou et al., 2018). The original spatial

resolution of TerraClimate is 4km, and here it was

resampled to 1 ° × 1 ° to be consistent with other datasets

(e.g., CMIP6 simulations, FLUXCOM) used in this study,

based on a first-order conservative remapping method.

According to the dryland definition from the United Nations

Environment Programme (Middleton and Thomas, 1997), we

identified global drylands as areas defined by amulti-year average

AI ≤ 0.65, and we further divided drylands into four

subcategories including dry sub-humid (0.5 ≤ AI < 0.65),

semi-arid (0.2 ≤ AI < 0.5), arid (0.05 ≤ AI < 0.2) and hyper-

arid (AI < 0.05) (Middleton and Thomas, 1997; Huang et al.,

2016).

ESM simulations from CMIP6

To examine the past and future changes in dryland aridity

and productivity, we used simulations of 18 CMIP6 ESMs under

the “historical” (1958–2014) and “SSP2-RCP4.5” (2015–2100)

scenarios. SSP2-RCP4.5 is a scenario of intermediate emission

and continuing historical socio-economic activities, which ranges

between the high-end scenario (SSP5-RCP8.5) and the stringent

scenario (SSP1-RCP2.6). All selected ESMs provide outputs of

GPP, as well as meteorological variables needed for the AI

calculation (humidity, wind speed, temperature and net

radiation). Detailed information regarding the used ESMs is

summarized in Table 1. Note that the outputs of these ESMs

have different spatial resolutions, and they were unified to 1 ° × 1 °

based on a first-order conservative resampling method.

In addition, we also used factorial simulations from

CMIP6 to isolate the physiological and radiative responses to

rising atmospheric CO2, in order to understand the modelled

dryland ecosystem responses to AI changes. The factorial

simulations are idealized single-forcing experiments where the

atmospheric CO2 rises at a rate of 1% per year continuously over

a 140-year time period, from its pre-industrial level (~285 ppm)

to a quadrupling of pre-industrial conditions (~1,140 ppm).

Three configurations for factorial simulations were used here:

biogeochemically coupled, radiatively coupled, and fully coupled

(i.e., both biogeochemically and radiatively coupled) simulations.

In the biogeochemically coupled simulation (i.e., 1pctCO2-bgc

simulation), the biogeochemical processes in the land component

(e.g., plant physiology) respond to rising CO2, while the radiative

processes in the atmosphere component only see a fixed CO2

concentration of the pre-industrial level. In the radiatively

coupled simulation (i.e., 1pctCO2-rad simulation), the

atmosphere component directly responds to the rising CO2

concentration while the land component uses a constant CO2

concentration of the pre-industrial level. In the fully coupled

simulation (i.e., 1pctCO2 simulation), both biogeochemical and

radiative processes respond to CO2 rise. There are

7 CMIP6 ESMs that provide all three factorial simulations,

and more detailed information can be found in Table 2.

Space-for-time and variability-for-time
approaches

Here, we evaluate the performance of space-for-time and

variability-for-time approaches in predicting future long-term

trajectories of dryland GPP. Both space- and variability-based

approaches are based on empirical GPP-AI relationships that are

established using observational datasets over the historical

baseline period (1958–2014). Here, we obtained AI from the

TerraClimate dataset, and for GPP, we used two independent

products to ensure the robustness of our conclusion. These are

FLUXCOM that upscales flux measurements to the globe using
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machine learning algorithms (Jung et al., 2019), and one recent

observation-based GPP product generated based on an improved

light use efficiency model (Zheng et al., 2020). Note that for the

GPP product of Zheng et al. (2020), we used the data during

1982–2014 to build the empirical GPP-AI relationships since the

earliest year covered by this GPP product was 1982.

To implement the space-for-time approach, we first

established an empirical relationship between GPP and AI for

all pixels across global drylands over the historical baseline

period. We found that dryland GPP variations along AI

gradients generally follow a linear relationship (Figure 1), so a

linear regression model was used here. We separately fitted one

linear model for each continent to account for the effect of local

characteristics (e.g., dominant vegetation species and weather

patterns) on the empirical GPP-AI relationship. Then, using

climate projections under SSP2-RCP4.5 from 18 CMIP6 ESMs,

we calculated, for each ESM and year, the long-term changes of

AI (ΔAI) compared to the historical baseline period. Finally,

based on the empirical models, we mapped the ΔAI into ΔGPP,
by multiplying ΔAI with the slope of the fitted continent-specific

linear models, in order to predict the interannual variations of

dryland GPP during the future period of 2015–2100.

As for the variability-for-time approach, we built a pixel-wise

linear model across global drylands. Specifically, for each pixel,

we established a linear regression model using the original time

series of observational GPP and AI during the historical period.

We then computed the future inter-annual changes of AI (ΔAI)
for 18 ESMs under the SSP2-RCP4.5 scenario. Finally, we used

the linear empirical models to translate ΔAI into ΔGPP, by
multiplying ΔAI with the slope of the fitted pixel-wise model,

TABLE 1 The detailed information of 18 CMIP6 ESMs that are used for historical and future (SSP2-RCP4.5) analyses.

Model name Modeling institution Spatial resolution

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology 1.2414 ° × 1.8750 °

BCC-CSM2-MR Beijing Climate Center 1 ° × 1 °

CAS-ESM2-0 Chinese Academy of Sciences 1.4 ° × 1.4 °

CESM2-WACCM National Center for Atmospheric Research (NCAR) 0.94 ° × 1.25 °

CMCC-CM2-SR5 The Euro-Mediterranean Center on Climate Change 1 ° × 1 °

CMCC-ESM2 The Euro-Mediterranean Center on Climate Change 1 ° × 1 °

CanESM5 Modeling and Analysis (CCCma) 2.8125 ° × 2.8125 °

EC-Earth3-CC EC-Earth-Consortium 0.70 ° × 0.70 °

EC-Earth3-Veg EC-Earth-Consortium 0.70 ° × 0.70 °

EC-Earth3-Veg-LR EC-Earth-Consortium 0.70 ° × 0.70 °

INM-CM4-8 Institute for Numerical Mathematics 1.5 ° × 2.0 °

INM-CM5-0 Institute for Numerical Mathematics 1.5 ° × 2.0 °

IPSL-CM6A-LR Institute Pierre Simon Laplace 1.26 ° × 2.50 °

MPI-ESM1-2-HR Max Planck Institute for Meteorology 0.94 ° × 0.94 °

MPI-ESM1-2-LR Max Planck Institute for Meteorology 0.94 ° × 0.94 °

NorESM2-LM Norwegian Climate Center 1.875 ° × 2.5 °

NorESM2-MM Norwegian Climate Center 0.94 ° × 1.25 °

TaiESM1 Research Center for Environmental Changes 0.9 ° × 1.25 °

TABLE 2 The detailed information of 7 CMIP6 ESMs that are used for the factorial analysis.

Model name Modeling institution Spatial resolution

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology 1.2414 ° × 1.8750 °

BCC-CSM2-MR Beijing Climate Center 1 ° × 1 °

CESM2 National Center for Atmospheric Research (NCAR) 1 ° × 1 °

CMCC-ESM2 The Euro-Mediterranean Center on Climate Change 1 ° × 1 °

EC-Earth3-CC EC-Earth-Consortium 0.70 ° × 0.70 °

IPSL-CM6A-LR Institute Pierre Simon Laplace 1.26 ° × 2.50 °

MPI-ESM1-2-LR Max Planck Institute for Meteorology 0.94 ° × 0.94 °
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so that we can predict the trajectories of GPP throughout the 21st

Century (2015–2100).

Note that all the above analyses used GPP during the peak

growing season, which was defined as the three consecutive

months with the highest multi-year average productivity. For

AI calculation, we used the whole year precipitation and PET

data, considering that aridity conditions during the non-growing

season could also affect the growing season GPP due to the

memory effect of soil moisture. In addition, before applying

space-for-time and variability-for-time approaches to future

FIGURE 1
Observation-based relationship between GPP and AI across spatial (A,C) and temporal (B) scales during the baseline period (1958–2014). GPP is
obtained from the FLUXCOM dataset and AI is calculated using the TerraClimate product. (A) The spatial relationship between multi-year average
GPP and AI across all grid points over global drylands. (B) The slope of a linear regression model established between inter-annual variability of GPP
and AI, as used by the variability-for-time approach. The slope of the fittedmodel represents the sensitivity of GPP to AI. The black dots indicate
regions with a statistically significant relationship (p < 0.05). The inset bar plot shows the aggregated sensitivity values for the four dryland
subcategories. (C) The spatial relationship between multi-year average GPP and AI across six continents of global drylands. The black solid lines
denote the continent-specific linear regression models used by the space-for-time approach.
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ESM projections, we validated ESM simulations against

observations by comparing the historical GPP changes

inferred from these two independent data sources. We found

that for both space- and variability-based approaches, ESM

simulations and observations show qualitatively similar results

in the inferred historical GPP changes for all dryland

subcategories (Supplementary Figure S3). This suggests a

generally good agreement between ESM simulations and

observations during the historical period (1958–2014), and

supports our extrapolation of the GPP-AI relationship to the

future period.

Results

Observation-based GPP-AI relationship
over spatial and temporal scales

During the historical baseline period (1958–2014),

observation-based data show a strong coupling between

GPP and AI at the spatial scale over global drylands

(Figures 1A,C). The multi-year average GPP from all

dryland pixels shows a significant linear correlation with AI

(R2 = 0.56, p < 0.05), with a slope of 683.73 gC m−2 yr−1 that

measures the sensitivity of GPP to AI across space. Significant

GPP-AI correlations also exist over each continent of global

drylands, with R2 higher than 0.7 in northern Africa, southern

Africa and Australia. The slope values across different

continents range from 529.36 gC m−2 yr−1 to 1,100.44 gC

m−2 yr−1. These strong positive correlations demonstrate

that the background aridity level strongly controls the

spatial distribution of dryland GPP, i.e., to be less

productive in drier areas, which is in agreement with

previous studies (Biederman et al., 2016; Gray et al., 2016;

Huang et al., 2016) and also implies the potential feasibility of

a space-for-time approach in predicting GPP changes.

For the variability-for-time approach, we similarly found a

strong GPP-AI coupling based on observational datasets during

the past decades (1958–2014) (Figure 1B). Statistically significant

positive correlations (p < 0.05) between the inter-annual time

series of GPP and AI can be detected for almost all dryland

regions. The correlation is especially strong over central Eurasia,

central and western USA and southern Africa, all having a

correlation coefficient greater than 0.7 (Supplementary Figure

S1). Correspondingly, the GPP-AI sensitivity generally increases

with the climatological aridity level, with the highest value

occurring in the hyper-arid region (>400 gC m−2 yr−1) while

the lowest one is found in the dry subhumid regions (<100 gC

m−2 yr−1). The lower GPP-AI sensitivity inferred from the

temporal-scale analysis than that from the spatial-scale

analysis (683.73 gC m−2 yr−1) indicates that different processes

underly the temporal and spatial variations. Overall, this

temporal coupling between GPP and AI reflects that the year-

to-year fluctuations of dryland productivity are also largely

determined by the aridity changes, and drier years typically

coincide with reduced productivity. This finding also agrees

with the concept that a drying climate likely tends to lower

the dryland ecosystem productivity.

Comparisons of future GPP variations
estimated by different approaches

By combining the GPP-AI relationship established over the

baseline period (1958–2014) and the future AI variations

predicted by ESMs, we predicted the future GPP changes in

response to AI changes using both space-for-time and variability-

for-time approaches. The associated estimated projections were

compared against the actual projections from the CMIP6 ESMs,

which are all represented as the GPP estimation during

2081–2100 relative to that of the baseline period (1958–2014)

(Figure 2).

Overall, the GPP changes predicted by the three

approaches show remarkable differences in terms of

magnitude, spatial distribution and even in sign (Figure 2,

Supplementary Figure S2). As for the space-for-time

approach, global drylands overall exhibit a total estimated

decrease in GPP of -23.66 ± 10.93 gC m−2 yr−1 among the

18 CMIP6 ESMs (Figure 2D). Most global drylands experience

noticeable decreases in GPP towards the end of the 21st

Century, especially for South Africa and North America

where more than 80% of all models agree on the decreasing

sign (Figure 2A). A small portion of dryland areas shows a

GPP increase, e.g., the Sahel region, eastern Africa and India,

implying a future wetting trend and enhanced productivity

over these regions. After aggregating into different dryland

subcategories, there is a clear shift from the largest GPP

decrease in dry subhumid region to a slight GPP increase

in the hyper-arid region (Figure 2D). The variability-for-time

approach also projects an overall GPP decrease (-3.86 ±

2.22 gC m−2 yr−1) in global drylands towards the end of 21st

Century, yet with much smaller magnitude compared to the

space-based estimates (Figure 2D). With regard to the spatial

pattern, the variability-for-time approach shows a

qualitatively similar but notably smaller GPP changes than

the space-for-time approach (Figure 2B). Nevertheless, and

importantly, compared to both the space- and variability-

based estimates, the original simulations obtained from

CMIP6 ESMs show opposite signs of GPP changes. The

GPP increase by original ESM projections (81.42 ±

36.82 gC m−2 yr−1) is even an order greater than the GPP

decrease from the other two approaches (Figure 2D). In ESMs,

a consistent increasing trend of GPP is projected across all

dryland regions, with especially large increases found in

northeastern China and India (Figure 2C). Among the four

dryland subcategories, the dry subhumid region shows the
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highest increase in GPP (128.96 ± 54.93 gC m−2 yr−1), which

contributes the most to the total GPP increase over global

drylands. Also, we found that this GPP increase dwindles with

increasing levels of aridity (Figure 2D).

The direct comparisons among the two estimates and the

actual projections further corroborate the incapacity of both

space- and variability-based approaches for inferring ESM-

projected GPP changes (Figure 3). Compared to the original

FIGURE 2
The spatial distribution of future GPP changes based on the space-for-time approach, the variability-for-time approach, and actual projections
from CMIP6 ESMs. The GPP changes are calculated by subtracting the historical GPP during 1958–2014 from the projected GPP over the last
2 decades of the 21st Century. (A) GPP changes predicted by the space-for-time approach. (B) GPP changes predicted by the variability-for-time
approach. (C)GPP changes predicted by the original CMIP6 ESMs. In subplots (A–C), the colorbar represents the ensemble average of estimates
by 18 CMIP6 ESMs, and the black dots denote regions where more than 80% ESMs show the same sign as the multi-model ensemble mean. (D) GPP
changes aggregated over different dryland subcategories. The error bars represent the ±1 standard deviation among ESMs.

FIGURE 3
The differences in projected future GPP changes (during 2081–2100) among the three approaches. (A) The difference between the space-for-
time approach and original CMIP6 ESM projections. (B) The difference between the variability-for-time approach and original CMIP6 ESM
projections. (C) The difference between the space-for-time approach and variability-for-time approach. The black dots in (A–C) denote regions
where more than 80% ESMs show the same sign as the multi-model ensemble mean. (D) the differences in GPP estimates aggregated over
different dryland subcategories, with error bars denoting the ±1 standard deviation among ESMs.

Frontiers in Environmental Science frontiersin.org07

Zhan et al. 10.3389/fenvs.2022.1010269

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1010269


CMIP6 ESM simulations, both space- and variability-for-time

approaches predict noticeably lower GPP across almost all

dryland areas, with the strongest underestimation found in

central Eurasia, northeastern China, and western USA

(Figures 3A,B). Overall, the total underestimation over global

drylands can reach to -105.07 ± 35.65 gCm−2 yr−1 for space-based

estimates and -85.28 ± 36.27 gC m−2 yr−1 for variability-based

estimates, with the largest contribution from the dry subhumid

region (Figure 3D). The space- and variability-for-time

approaches also exhibit striking differences between each

other, despite a much smaller magnitude than their difference

with original CMIP6 projections (Figure 3D). Specifically, the

space-for-time approach predicts relatively lower GPP over most

global drylands, although it generates slightly higher estimates in

the Sahel, eastern Africa and India (Figure 3C).

By examining the long-term trajectories of future GPP

changes estimated by the two approaches and the actual

projections of CMIP6 ESMs, we again found apparent

divergence among them. Both space- and variability-for-

time approaches cannot capture the long-term increasing

trend of GPP projected by the CMIP6 ESMs. According to

the original simulations of CMIP6 ESMs, the dryland mean

GPP first maintains an increasing trend and then flattens out

around the year 2080 (Figure 4A). By contrast, the space-for-

time approach shows a slight decreasing, rather than

increasing, trend over the course of the 21st Century, with

relatively strong inter-annual fluctuations. For the variability-

for-time approach, its long-term GPP dynamics is even more

stable with almost no discernable trends (Figure 4A). Such

divergence among different approaches, that is, substantial

increasing trend in original CMIP6 simulations while almost

no increase for both space- and variability-based predictions,

is consistently detected in the dry subhumid, semiarid, and

arid regions (Figures 4B–D). Note that for the hyper-arid

regions, the increasing trend simulated by the ESMs is

relatively weak, and all three approaches show strong inter-

annual fluctuations but almost no detectable long-term trends

(Figure 4E).

FIGURE 4
The future trajectory of GPP changes estimated by different approaches. The GPP changes (ΔGPP) are aggregated over (A) all global drylands,
(B) dry sub-humid, (C) semi-arid, (D) arid, and (E) hyper-arid regions. The ΔGPP is calculated as the difference between the future predicted GPP and
the baseline values averaged over 1958–2014. The solid lines denote the ensemble average across 18 CMIP6 ESMs and the shaded areas represent
the ±1 standard deviation among ESMs.
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Mechanisms underlying the divergent GPP
projections among approaches

To understand the deficiencies of the space-for-time and

variability-for-time GPP estimates, we leveraged the factorial

simulations of seven CMIP6 ESMs to elucidate the contribution

of radiative and physiological processes to future GPP changes.

In the fully coupled simulation, AI decreases and GPP increases

are consistently found across all ESMs, andmodels with relatively

stronger drying trend (more negative ΔAI) generally produce

larger GPP increases (Figure 5B). This finding also contradicts

the hypothesis of “the drier the less productive” rooted in the

space- and variability-based approaches. However, in the

radiatively coupled simulation, the GPP increases are

dramatically weakened or even converted to decreases, and

the AI decreases substantially in response to the CO2 radiative

forcing (Figure 5D). The spatial pattern of GPP responses shows

slight GPP increases over central Eurasia while considerable

decreases in South Africa and western USA (Figure 5C),

which is qualitatively similar to that predicted by the space-

and variability-based approaches (Figures 2A,B). By contrast, in

the biogeochemically coupled simulation where vegetation

physiological changes with rising CO2, the ESMs produce

consistent and strong increasing trend of GPP as well as the

relatively weak drying trend (Figures 5E,F). Overall, the distinct

divergence between biogeochemically and radiatively coupled

simulations indicates that AI and GPP changes in the fully

coupled scenario, as shown in Figures 5A,B, are determined

FIGURE 5
GPP and AI changes produced by the fully (A,B), biogeochemically (C,D), and radiatively (E,F) coupled simulations of CMIP6 ESMs. (A,C,E) The
spatial distribution of GPP changes from the three simulations, calculated as the difference between the average GPP in the last 20 years of the 140-
year simulation period and that in the first 20 years. The black dots in (A,C,E) denote regions wheremore than 80% of ESMs have the same sign as the
multi-model mean. (B,D,F) Scatterplot of GPP changes against AI changes aggregated over all global drylands, across the seven ESMs. Both AI
and GPP changes are calculated as the difference between the last 20 years and the first 20 years.
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by different mechanisms: the AI decrease is mainly driven by the

CO2 radiative forcing while the ecosystemGPP increase is mainly

determined by the CO2 physiological forcing.

Discussion

In this study, we illustrate that the space- or variability-for-

time approaches, or other emergent constraints based on

historical variability, might be questionable when used to

predict the long-term GPP changes across global drylands.

Over the past few decades (1958–2014), a tight coupling

between dryland GPP and AI is detected with regard to

spatial gradients and inter-annual variations (Figure 1).

Nevertheless, the GPP-AI relationship built over spatial and

short-term scales cannot be successfully applied to predict

future GPP trajectories over multi-decadal or longer

timescales. We show that an empirical scaling from AI to

GPP fails to reproduce the future greening trends as simulated

by CMIP6 ESMs (Figures 2, 4). In the CMIP6 original

simulations, despite a persistent drying trend throughout the

21st Century, there is still an extensive and continuous increasing

trend of GPP in dryland ecosystems (Figures 2, 4), which can be

interpreted as a “drier yet more productive” phenomenon due to

the CO2 physiological effect. This modelling phenomenon is also

in agreement with some previous observation-based studies that

reported greening drylands despite the atmospheric drying trend

due to global warming (Fensholt et al., 2012; Andela et al., 2013;

Donohue et al., 2013; Ahlström et al., 2015). This finding is

contradictory to “the drier the less productive” hypothesis

inherently adopted by the space- and variability-for-time

approaches.

Physiological responses of dryland vegetation to the rising

CO2 can help explain the above “drier yet more productive”

phenomenon, as exemplified by CMIP6 factorial simulations.

In the radiatively coupled experiment where all biogeochemical

processes do not respond to rising CO2, the increasing trend of

GPP is dramatically weakened or even disappears (Figure 5),

indicating the critical role of plant physiological changes in

determining future greening trends. Specifically, enhanced

atmospheric CO2 will decrease leaf stomatal conductance,

which could reduce the plant water loss via transpiration by

increasing water use efficiency (the ratio of photosynthesis to

transpiration) (Ceulemans and Mousseau, 1994; Ainsworth and

Rogers, 2007). Although this leaf-level stomatal effect is partly

counteracted by the plant structural effect due to rising CO2, as the

CO2-enhanced vegetation coverage causes extra water loss

through transpiration and canopy interception (Zeng et al.,

2018; Piao et al., 2020), ESM projections generally agree on a

net decrease of the total canopy transpiration after considering

both stomatal and morphological effects (Betts et al., 2007;

Lemordant et al., 2018; Yang et al., 2019). The CO2-driven

increase of plant water use efficiency can effectively offset the

higher atmospheric water demand driven by the increasing

temperature, alleviate water stress of dryland biomes and thus

stimulate vegetation productivity (Stocker et al., 2018; Liu et al.,

2020). This CO2-induced water saving, combined with the direct

fertilization effect of higher CO2, can optimize the carbon

sequestration of dryland vegetation and explain the co-

occurrence of ecosystem greening and atmospheric drying as

simulated in CMIP6 ESMs (Ukkola et al., 2016; Mankin et al.,

2017).

The neglect of the above CO2 physiological effects is the main

reason for the biases of space- and variability-for-time

approaches. The rationale of these two approaches, i.e., “the

drier the less productive” hypothesis, can be successfully applied

to both spatial and short-term temporal scales for the GPP

prediction. This is because across these scales, aridity level is

the dominant factor governing dryland GPP variations, while the

changes of atmospheric CO2 are limited and thus have relatively

weak impacts on GPP. However, for multi-decadal or longer

timescales, the continuous rising CO2 can impose remarkable

physiological effects on plant water use efficiency and thus drives

GPP increases even under the drying trend, leading to the

invalidity of “the drier the less productive” hypothesis. Under

this circumstance, both space- and variability-for-time

approaches, which do not account for the CO2 physiological

effect, are not able to capture the long-term increasing trend of

GPP and cannot well predict the responses of dryland

productivity to future climate changes.

Although ESMs provide a useful tool to test the validity of

space- and variability-for-time approaches, we should be

aware that considerable uncertainties exist in ESM

projections, as it is still challenging to realistically simulate

all ecosystem processes, especially those regarding extremes,

disturbances (e.g., wildfires), and nutrient regulation of CO2

fertilization effects (Whitley et al., 2017; Macbean et al., 2021;

Teckentrup et al., 2021). Under future warming trend, climate

extremes, particularly droughts, are expected to become more

frequent and extensive (Prudhomme et al., 2014; Ault, 2020),

which can impose damaging impacts on the fragile dryland

ecosystems and further increase the likelihood of disturbance

events such as fires (Reichstein et al., 2013; Bowman et al.,

2020). However, it still remains unknown how dryland

productivity would be impacted by future extreme events,

how dryland ecosystems would be disturbed or recover

from future wildfires, as well as to what extent the positive

physiological effect of CO2 could be counteracted by those

negative effects (Whitley et al., 2016; Obermeier et al., 2017;

Macbean et al., 2021; Teckentrup et al., 2021). Therefore,

future investigations are urgently needed to better

understand the potential nonlinear behaviors and tipping

points in the dryland responses to global warming, which

can further optimize the ESM parameterization and help us

better predict future changes of drylands in a changing

climate.
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Conclusion

This study suggests that it is inappropriate to apply space-for-

time and variability-for-time approaches to predict future long-term

changes of dryland GPP. Based on historical observations, we find a

strong linear coupling between GPP and AI across both spatial and

inter-annual time scales. However, when applying such GPP-AI

scaling to predict future long-termGPP trajectories, both space- and

variability-for-time approaches show large deviations from the

original ESM simulations, and they fail to predict the future

increasing GPP trend produced by ESMs. Such deviations can be

mainly attributed to the fact that the dominant driver of dryland

GPP is actually different across scales. For spatial and short-term

temporal scales, the aridity level is the primary driver of dryland

GPP, while for long-term temporal scales, the continuously rising

CO2 has important effects on plant physiology, which drives the

increases in GPP despite the atmospheric drying trend. The

different driving processes across scales results in the failure of

space- and variability-for-time approaches that solely rely on the

GPP-AI scaling to infer future changes of dryland productivity.
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