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Urban vibrancy is described by the activities of residents and their spatio-

temporal dynamics. The metro station area (MSA) is one of the densest and

most populous areas of the city. Thus, creating a vibrant and diverse urban

environment becomes an important goal of transit-oriented development

(TOD). Existing studies indicate that the built environment decisively

determines MSA-level urban vibrancy. Meanwhile, the spatio-temporal

heterogeneity of such effects requires thoroughly exploration and

justification. In this study, we first apply mobile signaling data to quantify and

decipher the spatio-temporal distribution characteristics of the MSA-level

urban vibrancy in Chengdu, China. Then, we measure the built environment

of the MSA by using multi-source big data. Finally, we employ geographically

and temporally weighted regression (GTWR) models to examine the spatio-

temporal non-stationarity of the impact of the MSA-level built environment on

urban vibrancy. The results show that: 1) The high-vibrant MSAs concentrate in

the commercial center and the employment center. 2) Indicators such as

residential density, overpasses, road density, road network integration index,

enterprise density, and restaurant density are significantly and positively

associated with urban vibrancy, while indicators such as housing price and

bus stop density are negatively associated with urban vibrancy. 3) The GTWR

model better fits the data than the stepwise regressionmodel. The impact of the

MSA-level built environment on urban vibrancy shows a strong non-stationarity

in both spatial and temporal dimensions, which matches with the spatio-

temporal dynamic patterns of the residents’ daily work, leisure, and

consumption activities. The findings can provide references for planners and

city managers on how to frame vibrant TOD communities.
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1 Introduction

Urban vibrancy has constantly been a hot topic in the

research field of urban geography and urban planning (Yue

et al., 2017; Niu et al., 2022). Many cities regard the

construction of a vibrant urban environment as the leading

objective during the development process (Zhang et al., 2021).

The conception of urban vibrancy originated from Jacobs’ idea of

urban diversity and Gehl’s theory of street space vibrancy. Jacobs

(1961) considers that “liveliness and variety attract more

liveliness; deadness and monotony repel life”. Gehl (2011)

divides human activities into three categories: necessary

activities, optional activities, and social activities. He also

points out that optional activities and social activities are the

keys to the public space vibrancy. In general, the spatial

distribution of people and their activities act as the core of

urban vibrancy, which reflects the quality of space and the

vibrancy of the city (Montgomery, 1998). A vibrant city is

able to promote residents’ life qualities, stimulate the

consciousness of communities, and enhance the city’s

attractiveness (Xiao et al., 2021). In this regard, the research

on urban vibrancy will help urban planners to understand the

spatial structure of cities, recognize the pattern of citizens’

activities, and optimize the layout of facilities.

Since the 21st century, with rapid urbanization and urban rail

transit construction, TOD has become an important concept that

guides urban development and enhances urban vibrancy in

China (Yang et al., 2022a; Qiang et al., 2022). TOD transit

nodes are generally located in developed areas with multiple

functions such as transportation, commerce, resident, and office.

These also are areas with the most advanced urban

transportation network and the most intensive travel activities.

Also, relevant studies reveal that the proximity to metro stations

and corridors exerts significant positive effects on urban vibrancy

(Long and Huang, 2019; Xiao et al., 2021). Meanwhile, due to the

differences in development intensity and geography location

(e.g., city center versus suburban area), the vibrancy of some

neighborhoods around themetro stations is still at a low level and

constantly attenuated. Thus, urban planners need to have an in-

depth understanding of the spatio-temporal distribution patterns

and influencing factors of the TOD vibrancy.

Urban built environment, as the carriers of various human

activities (Chen et al., 2022a; Chen et al., 2022b), determines the

evolution and spread of urban vibrancy. Previous studies (Tu

et al., 2020; Peng et al., 2021) have explored the impact of the

built environment (using the 3Ds and 5Ds frameworks) (Cervero

and Kockelman, 1997; Ewing and Cervero, 2010) on urban

vibrancy at the city scale, but few of them scrutinize such

interplay from a TOD scope. Furthermore, there is a lack of

human-scale built environment indicators research, especially

the refine spatial indicators such as the pedestrian system of TOD

and the environmental quality of streets. In addition, most

existing studies use linear (Tu et al., 2022) or nonlinear (Yang

et al., 2021a; Xiao et al., 2021) models to analyze the effects of the

built environment on urban vibrancy. However, the above two

types of models and their extensions ignore the typical time-

varying tidal characteristics of human activities in the MSA.

Hence, these models fail to characterize the spatio-temporal

non-stationarity of the built environment impact on urban

vibrancy.

To address these gaps, we use multi-source big data to

measure the built environment of MSA in Chengdu, China

(with the fourth largest rail transit system in China). Then,

we leverage mobile phone signaling data to capture the

intensity of human activities (urban vibrancy) around the

metro stations for 18 separate hours (from 6:00 to 23:00).

Finally, we analyze the spatio-temporal non-stationarity of the

impact of the MSA-level built environment on urban vibrancy

based on a geographically temporally weighted regression model

(GTWR). The empirical findings can provide theoretical support

and policy implications for the people-oriented built

environment design of TOD and the creation of vibrant cities.

The remainder of this paper is structured as follows: Section 2

reviews and analyzes previous studies. Section 3 introduces the

study area, data sources, and methodology. Section 4 analyzes

and discusses the model results. Section 5 concludes and provides

evidence-based policy implications.

2 Literature review

2.1 Urban vibrancy

The exploration of urban vibrancy started in the 1950s and

1960s. Jacobs and Gehl analyzed the connotation of urban

vibrancy from multidimensional perspectives, including

sociology, urban space, and even anthropology (Jacobs, 1961;

Gehl, 2011). Since then, the definition of urban vibrancy has been

widely discussed by scholars. For example, Ravenscroft (2000)

argued that urban vibrancy reflects how busy neighborhoods are

in different spatial and temporal dimensions. Mehta (2007)

pointed out that a vibrant space requires a high density of

continuous pedestrian flow and activity participation.

Montgomery (1998) stated that urban vibrancy can be

measured by the amount of foot traffic, use frequency of

facilities, and density of activities. Dougal et al. (2015) defined

urban vibrancy as the spillover effect generated from the

interactions of city residents.

There is always a debate on the selection of suitable metrics

that quantify urban vibrancy or the intensity of human activities.

Early studies mostly used traditional methods such as manual

counts and population censuses to measure urban vibrancy

(Harvey, 2001; Xu and Chen, 2021). Even containing detailed

information about the population and types of activities, these

quantitative measures still suffer from disadvantages such as

small survey sample sizes, discontinuity in time, and the
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subjectivity of the interviewees. In recent years, with the rapid

spread of smart phones as well as the advances in location aware

device (LAD) and location based service (LBS), burgeoning

technologies have brought new data sources and research

tools for urban vibrancy studies (Wu et al., 2022). Multiple-

source spatio-temporal big data, with its characteristics of

massive scale, rapid flow, and diversity (Zhou et al., 2020),

enriches the human social activities and urban spatial

information. Thus, urban researchers can carry out refined

spatio-temporal behavior analysis of the population through

multiple sources of big data. Some studies quantify the urban

vibrancy through the distribution of people and activities which

is obtained from big data such as the distribution and density of

commercial facilities (POI, etc.) (Xia et al., 2020), social media

check-in (Facebook, Twitter, Weibo, etc.) (Wu et al., 2018a),

GDP (Wang et al., 2022a), heat map of mobile applications

(mobile phone signaling, Baidu heat map, etc.) (Yang et al.,

2021a), and traffic flow (shared bicycle, smartcard, cab GPS, etc.)

(Sulis et al., 2018). For instance, Niu et al. (2022) used data from

Tencent, Easygo, and Sina Weibo to assess the distribution of the

community vibrancy index in Guangzhou. Li et al. (2021) used

urban sensor data to detect street vibrancy in historic districts

(Baitasi Area) in Beijing. Sulis et al. (2018) leveraged bus

smartcard data from a mobility perspective to reveal the

characteristics of London’s urban vibrancy distribution.

Gómez-Varo et al. (2022), based on Jacobs’ urban vibrancy

framework, added another two dimensions of indicators

including accessibility and distance to border vacuums, and

then integrated the urban vibrancy index of the Nou Barris

district in Barcelona. Kim (2018) used Wi-Fi data, mobile

phone signaling data, and bank card transactions to measure

virtual, social, and economic vibrancy in Seoul, and then

analyzed the interplay between these three types of urban

vibrancy.

2.2 The relationship between the built
environment and urban vibrancy

The built environment has a significant impact on the

generation and persistence of urban vibrancy. In Jacobs

(1961) seminal text, The Death and Life of America’s Great

Cities, she highlighted the crucial role of the physical spatial

built environment on urban vibrancy in terms of diversity,

neighborhood scale, building form, and density. Previous

research launches extensive analysis of the interplay

between the built environment and urban vibrancy. Wu

et al. (2018b) found a significant contribution of high-

density development to neighborhood vibrancy in Beijing.

Meanwhile, excessive population density may exert a negative

impact on urban vibrancy. Simmel (2012) pointed out that

the high concentration of population in industrial cities may

inhibit urban vibrancy and lead to negative life attitudes of

residents. Moreover, the land-use mix implies a diversity of

urban forms and functions. Theories such as New Urbanism,

Compact Cities, and Smart Growth all see land-use mix as an

important means of urban vibrancy creation. For example,

the research of Jacobs-Crisioni et al. (2014), Yue et al. (2017),

and Ye et al. (2018) showed that neighborhoods with higher

land-use diversity are more vibrant, for land-use mix

provides abundant functions for residents’ daily activities,

employment, and consumption, thus meets their diverse

needs. In addition, the design of street space form is also

important to urban vibrancy. Relevant studies analyze the

impact of the built environment on urban vibrancy in

dimensions including density, scale, order, and

connectivity of street networks. They argue that

topographic, cultural, and socioeconomic conditions

combine to shape the spatial structure and geometric order

of urban street networks (Kostof, 1991), which in turn affect

the intensity of human travel activities (Rose-Redwood and

Bigon, 2018). Natural movement theory also suggests that the

density of pedestrian flow on a street is influenced primarily

by the spatial structure and accessibility to this area (Hillier

et al., 1987). For instance, Huang et al. (2020) found that

spatial accessibility of the road network contributes to the

human activity intensity. The work of Li et al. (2022) revealed

that the proportion of sidewalks, the number of streetlights,

and the proximity of public transit exert a positive effect on

urban vibrancy.

2.3 The relationship between the transit-
oriented development and urban vibrancy

The founder of TOD, Calthorpe, aimed to create vibrant,

equitable, and station-centered communities through high-

density, land-use mix, walkable development patterns (Ibraeva

et al., 2020; Sun et al., 2022). In recent years, with the rapid

construction of urban rail transit all over the world and the

comprehensive promotion of the TOD concept, some scholars

have started to delve from macro-scale vibrancy (city-level)

research to micro-scale vibrancy (MSA-level) research.

Previous studies mostly considered ridership as the

manifestation of TOD vibrancy, and analyzed the impact of

MSA-level built environment on ridership to guide the built

environment construction and low-carbon travel of residents.

Some scholars have studied the interactions between the built

environment and metro ridership in mega-cities such as

Shanghai (An et al., 2019), Shenzhen (Taylor and Morris,

2015; Shao et al., 2020), Guangzhou (Li et al., 2020a), Hong

Kong (Loo et al., 2010), Seoul (Choi et al., 2012), Washington,

D.C. (Ding et al., 2019), and Chicago (Yang et al., 2020a).

However, recent research has shown that ridership only

represents the “T" (Transportation) in “TOD”, but ignores the

“D” (Development) which represents the TOD vibrancy
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(Yang et al., 2021a). Thus, several scholars start to shift from

“point-based”metro ridership to “area-based”MSA-level human

activities. They leverage burgeoning datasets such as social

media, heat map of mobile applications, and POI to analyze

the impact of the built environment on the MSA-level human

activities intensity (Tu et al., 2022). For example, Xiao et al.

(2021) and Yang et al. (2021a) both investigated the non-linear

relationship between TOD and MSA-level vibrancy in Shenzhen

based on the Gradient Boosted Decision Tree (GBDT) model,

and their study revealed that indicators such as transportation

accessibility, building density, and land-use mix are non-linearly

positively correlated with vibrancy around the MSA. Tu et al.

(2022) explored the interplay between MSA built environment

and urban vibrancy using a spatial lag model and found that the

differences of land-use mix, road network density, and

commercial land area affect urban vibrancy. Xu and Chen

(2021) characterized the population density and activities of

MSA underground spaces and found that the human activities

in the underground spaces are affected by the combination of

spatial comprehensibility, accessibility, functional mix, business

organization, and entrance/exit layouts.

Although the above studies analyze the interplay between

built environment indicators (population density, FAR, road

density, land-use mix, etc.) and MSA-level vibrancy from the

macroscopic scale of cities and the microscopic scale of MSAs,

little has been done on the microscopic scale from the human-

scale perspective. For example, pedestrian system indicators

including the three-dimensional indicators such as metro

entrances/exits number and overpass facilities, and visual

perception indicators of street space such as green view rate

and sky rate are usually ignored (Yang et al., 2021b). In addition,

the traditional linear models (OLS, SEM, etc.) and the

burgeoning nonlinear models (GBDT, RF) employed in

relevant studies are all global models. These models fail to

explain the local spatial effects of the built environment on

vibrancy. Some previous studies employed GWR models to

reveal the spatial heterogeneity of built environment effects on

vibrancy. While due to the time-varying tidal characteristics of

MSA-level human activities with typical morning and evening

peak fluctuations, this phenomena lead to significant spatio-

temporal heterogeneity of the influencing factors. Hence, the

GWRmodel fails to explain the spatio-temporal non-stationarity

of the impact factors. For the above reasons, there is a need to

establish a modeling approach that considers both spatial and

temporal effects.

3 Study area and data

3.1 Study area

Chengdu, located in southwest China and as one of the

largest cities in the west of the country, is selected as the case

study in this work. With a population of 21,192,000, Chengdu

becomes the fourth largest city in China, only after Chongqing,

Shanghai, and Beijing. Chengdu currently has one of the fast-

developed metro systems in the world, with the rail network has

grown to 518.5 km in 2021 since the opening of the 1st subway

line (Line 1, Phase 1, 18.5 km) in 2010. Considering the dramatic

impact of the Covid-19 epidemic on the city’s human activities,

we chose November 2019 as the time point of this study. As of

November 2019, the length of the Chengdu metro lines in service

is 226 km, and the average daily ridership reaches 3.834 million.

A total of 6 lines are opened, namely metro lines 1, 2, 3, 4, 7, and

10, with 156 metro stations in all (Figure 1). In recent years,

Chengdu has released development strategies such as “TOD

City”, TOD has become an important mean to achieve low-

carbon city development and cultivate urban vibrancy. In this

study, we use an 800 m buffer zone outward from the core of the

station as the scale of MSA.

3.2 Data sources

According to the definition of urban vibrancy by previous

studies of Jacobs (1961) and Montgomery (1998), we consider

the intensity of human activities in a certain area, or the total

number of vibrant populations at different times periods through

the day, as the concentrated expression of this area’s vibrancy.

Mobile Signaling Data (MSD) has the advantages of large sample

size, wide coverage, and real-time continuity and serves as an

important data basis for travel trajectory identification and

spatio-temporal behavior calculation (Shi et al., 2020). In

order to ensure the continuity and smoothness of mobile

phone signals, cellular networks have been recording the

real-time location of users at the mobile station (MS).

Therefore, the mobile phone signaling data contains

information related to the cell phone base stations which

are associated with the subscribers (where the location area

code (LAC) is located) and also contain rich information on

crowd attributes. Compared with other emerging big data

such as social media, POI, and business reviews, mobile

phone signaling data can continuously record people’s

activity trajectories and activity time (Tu et al., 2020).

Hence, the human activity information recorded by mobile

phone signaling is more abundant and more accurate.

Moreover, since most of the metro stations are built

underground, a large number of human activities in MSA are

in the city’s underground spaces. It is worth noting that most of

the big data is unable to record the pedestrian flow in

underground spaces. Given that mobile operators such as

China Mobile, China Unicom, and China Telecom, have built

a large number of underground base stations in China’s major

cities to secure mobile communication networks, the mobile

signaling data not only records the MSA ground-level pedestrian

flow but also the underground-level pedestrian flow. Thus, the
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mobile signaling data can further ensure the accuracy of the

human activity intensity recorded.

For the above reasons, in this study we use mobile phone

signaling data dating from 11–17 November 2019 in Chengdu

as the data basis of urban vibrancy characterization. The

mobile phone signaling data are obtained from DASS

platform of SmartSteps, which is owned by China Unicom

(one of the three major communication companies in China).

We consider that the pedestrian flow which generates staying

activities (leisure, consumption or employment, etc.) is the

real vibrancy of the MSAs (Figure 2). Therefore, we use the

time periods kept by the mobile phone signaling data to record

the vibrant populations that stay within 800 m of the MSA for

more than 30 min as the manifestation of urban vibrancy.

Also, according to the daily routines of city residents and the

operating hours of the metro system, we only record the MSA-

level vibrant populations of each hour from 6:00 to 23:00.

Then we divide the number of vibrant populations by the area

of each MSA to obtain its density, and treat it as an indicator of

urban vibrancy.

In the past few years, multi-source big data has greatly

enriched the set of built environment elements and promoted

the refinement and three-dimensionality of built environment

indicator calculation (Li et al., 2021). For the selection of built

environment indicators, we use Jacobs’ four conditions for the

built environment that influence the diversity of urban activities

as theory basis. Then we refer to the “5D” model of the built

environment from Ewing and Cervero (2010). Finally, combined

with the situations of the study area, we select six dimensions

including density, diversity, pedestrian system, function,

transportation accessibility, and economic attributes as the

MSA-level built environment indicators. The data of the built

environment in this study are mainly obtained from open online

maps, mobile phone signaling data, and the official website of

Chengdu Metro. The sources of indicators and data are as

follows:

(1) Density: The density indicators of the MSAs are mainly

measured using building footprint data (https://www.baidu.

com/) and mobile phone signaling data (provided by

SmartSteps). Based on these data we calculate the floor

area ratio and resident population density of the MSAs

respectively. In addition, we correct the resident

population data using the seventh census data.

FIGURE 1
Study area of Chengdu.
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(2) Pedestrian system: We use Gaode Map (https://www.

amap.com/), the structure of Chengdu metro

stations(https://www.chengdurail.com), Baidu Street

View (http://quanjing.baidu.com), road network data of

OSM, Chengdu transport development annual report

(2019), and field investigation to calculate the number

of entrances/exits, road density, green view index (Yang

et al., 2021c), and the overpass facilities around the MSA.

These data are considered as the indicators of the MSA-

level pedestrian system. The green view index is

calculated by

VGI � ∑4
i�1Green pixelsi

∑4
i�1Total pixelsi

We selected four orientations for each point. In this equation,

where “VGI” is the average green view index of each point. We

use the semantic segmentation method to recognize the green

space in each image, and the recognition effect is shown in

Figure 3.

(3) Diversity: We calculate the land-use mix (obtained from

POI) of the MSAs based on the land mix calculation method

of relevant research (Yue et al., 2017).

(4) Function: According to the POI data, seven categories of

facilities such as density of commercial facilities, parks,

restaurant facilities, financial facilities, enterprises,

educational facilities, and medical facilities in the MSA

are calculated separately. Then we treat these data as the

function indicators.

(5) Transportation accessibility: In this work, the bus stop

density of the MSA, which is calculated based on the bus

stop distribution and route data provided by the map service

provider, serves as the MSA-level transportation accessibility

indicators.

(6) Economic attributes: Using the points of housing price data

on the internet, we calculate the average housing price

around MSAs and treat it as the economic attributes

indicator (Yang et al., 2020b). The descriptive statistics of

all indicators are shown in Table 1.

3.3 Methodology

We use the stepwise regression method (Li et al., 2020b) to

filter the 18 built environment variables. However, stepwise

regression models fail to reflect the spatio-temporal non-

stationarity and spatio-temporal dynamics of variables.

Therefore, to reveal the spatio-temporal impact of MSA-level

built environment factors on urban vibrancy, we employ the

GTWR model formulating weekdays (14 independent variables)

and weekends (15 independent variables) separately to

investigate their effects on urban vibrancy. The overall

research framework is shown in Figure 4. The GTWR model

incorporates the spatio-temporal structure into the regression

analysis (Huang et al., 2010), and its regression coefficients serve

as the function of spatio-temporal coordinates. The coordinates

of spatio-temporal location “i" are denoted as (ui, vi, ti) in the

spatio-temporal coordinate system. There is strong randomness

and rhythm in urban residents’ activities, so GTWR is more

FIGURE 2
The results of the vibrant populations for 18 h at different
times.
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suitable for analyzing the impact of built environment

characteristics on urban vibrancy (Chen et al., 2022c), and the

model expression is

Yi � β0(ui, vi, ti) +∑
k

βk(ui, vi, ti)Xik + εi

i � 1, 2,/, n

Where Yi is the vibrancy (intensity of human activities) of the

station i; n is the number of observations; ui is the longitude

coordinate of the station i; vi is the latitude coordinate of the

station i; ti is the temporal coordinate of the station i; β0 (ui, vi, ti)

denotes the spatio-temporal intercept term of the station i; Xik

denotes the value of the kth explanatory variable of the station i;

βk (ui, vi, ti) denotes the regression coefficient of the kth

FIGURE 3
The recognition effect of green space in MSA.

TABLE 1 Descriptive statistics.

Variables Std Mean Min Max

Density Residential density (104/km2) 2.865 4 0.096 12.834

FAR (floor area ratio) 0.612 1.219 0.031 2.928

Pedestrian system Road density (km/km2) 4.589 13.648 3.758 28.728

Number of entrances 1.821 4.699 2 13

Overpass 1.198 0.974 0 7

Road network integration index 0.186 0.642 0.078 1.227

Green view index (%) 0.048 0.187 0.05 0.324

Diversity Land-use mix 0.083 0.76 0.271 0.893

Function Enterprise density (1/km2) 106.45 90.526 0.569 612.112

Financial facility density (1/km2) 24.289 19.579 0 138.335

Educational facility density (1/km2) 53.148 56.183 0 242.086

Medical facility density (1/km2) 38.126 40.148 0 291.303

Restaurant density (1/km2) 186.256 193.649 0 1518.053

Park density (1/km2) 3.46 2.32 0 21.484

Distance to CBD (km) 6.77 9.518 0 28.698

Commercial facility density (1/km2) 490.068 335.317 0 4258.328

Transportation accessibility Bus stop density (1/km2) 4.726 8.514 0.572 27.362

Economic attribute Housing price (104 yuan/m2) 0.492 1.556 0.38 3.54
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FIGURE 4
Research framework of the spatio-temporal analysis for urban MSA-level vibrancy.

FIGURE 5
The spatio-temporal distribution of the MSA-level vibrancy.
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explanatory variable of the station i, which serve as the function

of spatio-temporal coordinates; εi is the error term.

4 Results and discussion

4.1 The spatio-temporal distribution of the
metro station area-level vibrancy

Figure 5 shows the spatio-temporal distribution of the MSA-

level vibrancy based on mobile phone signaling data (Yue et al.,

2017). The spatio-temporal distribution of vibrancy on weekdays

possesses obvious dynamic characteristics of “dispersion and

agglomeration”. The most vibrant MSAs are mainly

concentrated in two areas which are located within the “1st

Ring Road” and in “Gaoxinnan”, reflecting the “dual-core”

spatial structure of Chengdu. The stations with high vibrancy

during the morning peak are mainly Xipu, Guangfu,

Shenxianshu, and others. These stations are mostly

surrounded by large scale of residential districts, with typical

characteristics of “commuter towns”. During the afternoon and

evening peak, the stations with high vibrancy are mainly Tianfu

Sanjie, Century City, and Gaoxin station, which are surrounded

by abundant employment facilities and commercial facilities.

Stations such as Chunxi Road, Tianfu Square, and Huaxiba in the

central part of the city maintain a consistently high level of

vibrancy throughout the day. The main reasons for this are that

these stations possess strong attractiveness and influence due to

their location and comprehensive service functions. In addition,

some of the stations at the southern end of the city and outside

the 3rd Ring Road are generally less vibrant, possibly since these

stations’ development is still in its infancy.

Compared with weekdays, residents have more flexible

schedule of travel and activities on weekends, and spare more

time for daily leisure activities such as shopping, sports, and

visiting friends. Therefore, the spatial distribution of the MSA-

level vibrancy on weekends is relatively homogeneous. MSAs

with high vibrancy are mainly located in the traditional central

areas of the city (within the 2nd Ring Road) where commercial

facilities are concentrated and transportation facilities are

developed. The vibrancy around these stations shows a

continuous increase from 8:00 to 14:00 and keeps at a high

level from 14:00 to 23:00, which is closely related to the vibrant

nightlife and thriving food culture in Chengdu. As can be seen,

the distribution of the MSA-level vibrancy basically reflects the

dynamic patterns of residents’ rail commuting on weekdays and

consumption habits on weekends.

4.2 Results of stepwise regression and
geographically temporally weighted
regression model

Table 2 shows the model results of the stepwise regression

and GTWRmodel on weekdays, and the R2 of the twomodels are

0.808 and 0.941, respectively. The R2 of the GTWR model is

TABLE 2 Stepwise regression model and GTWR model summary results for weekdays.

Stepwise regression
Model

GTWR Model

Coef. Std.Err Mean Min. 1st Q 3rd Q Max.

Residential density 0.540*** 0.015 0.499 0.113 0.404 0.616 1.095

Road density 0.148*** 0.012 0.100 −0.115 0.016 0.180 0.365

Number of entrances 0.039*** 0.010 0.027 −0.125 −0.006 0.066 0.169

Overpass 0.042*** 0.011 0.094 −0.055 0.034 0.154 0.276

Road network integration index 0.024** 0.009 0.025 −0.134 −0.016 0.062 0.181

Green view index 0.048*** 0.010 −0.017 −0.423 −0.062 0.035 0.288

Enterprise density 0.203*** 0.015 0.103 −0.256 −0.041 0.208 1.182

Financial facility density 0.187*** 0.018 0.256 −0.108 0.110 0.314 4.221

Educational facility density −0.133*** 0.020 −0.125 −1.755 −0.146 −0.032 0.523

Medical facility density 0.050*** 0.013 0.010 −1.053 −0.057 0.117 0.588

Restaurant density 0.147*** 0.018 0.199 −2.582 0.045 0.331 1.759

Distance to CBD 0.074*** 0.011 0.002 −1.080 −0.149 0.167 0.903

Bus stop density −0.023** 0.012 −0.030 −0.416 −0.087 0.016 0.170

Housing price −0.094*** 0.010 −0.037 −0.272 −0.100 0.011 0.314

R2 0.808 0.941

AIC 3365.124 582.444

***p < 0.01, **p < 0.05, *p < 0.1.
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significantly higher, which indicates that the GTWR model is

suitable for the spatio-temporal data structure of this study. The

results of the stepwise regression method on weekdays show that

density indicators (residential density) and pedestrian system

indicators (road density, number of entrances, overpass, road

network integration index, and green view index) are positively

correlated with vibrancy. Function indicators including distance

to CBD, enterprise density, financial facility density, restaurant

density, and medical facility density are also positively correlated

with the MSA-level vibrancy. However, housing price, bus stop

density, and educational facility density are negatively correlated

with the MSA-level vibrancy. Notably, the commercial facility

density and park density indicators are not significantly related to

vibrancy, suggesting that people traveling on weekdays are more

interested in work-related facilities such as companies in MSAs,

but less interested in leisure activities such as shopping and

hanging out. It is believed that these findings are reasonable. The

results are consistent with the research of Huang et al. (2020), Tu

et al. (2022), and Xiao et al. (2021).

Table 3 shows the model results of the stepwise regression

method and GTWR model on the weekends. It can be seen that

the R2 of the GTWR model (0.959) is still larger compared to the

R2 of the stepwise regression model (0.852). We find that the

results of the stepwise regression method are mostly relatively

similar for weekdays and weekends. The difference is that both

commercial facility density and park density are significantly and

positively correlated with the MSA-level vibrancy on weekends.

In addition, enterprise density is negatively correlated with

vibrancy. This is more identical to the travel and activities

routines of residents on weekends. Surprisingly, there is no

significant relationship between the vibrancy and two

important indicators, FAR and land-use mix, for both

weekends and weekdays. The same results are obtained in the

study of De Nadai et al. (2016) and Tang et al. (2018). The study

of Lu et al. (2019a) based in Chengdu indicates that excessive

spatial development leads to a decrease in the neighborhood

vibrancy. However, in this study, we suggest that maybe the

vibrancy of multiple time periods dilutes the effect of FAR and

Land-use mix.

4.3 Analysis of the spatio-temporal
variation

4.3.1 Temporal heterogeneity of average
coefficients

The temporal variation trend of the influence coefficient for

theMSA-level built environment indicators on vibrancy is shown

in Figure 6. The red and blue lines represent variables on

weekdays and weekends, respectively. It can be seen that the

impact of built environment indicators on the MSA-level

vibrancy has typical time-varying characteristics, and there are

differences in the coefficient fluctuations between weekdays and

weekends. The temporal variation of the coefficients has a strong

TABLE 3 Stepwise regression model and GTWR model summary results for weekends.

Stepwise regression
Model

GTWR Model

Coef. Std.Err Mean Min. 1st Q 3rd Q Max.

Residential density 0.620*** 0.013 0.559 −0.692 0.428 0.747 1.678

Road density 0.080*** 0.010 0.019 −1.056 −0.070 0.146 1.088

Number of entrances 0.042*** 0.009 0.049 −0.664 −0.033 0.097 0.708

Overpass 0.051*** 0.011 0.101 −0.092 0.021 0.175 0.588

Road network integration index 0.025*** 0.008 −0.010 −1.334 −0.041 0.078 0.855

Green view index 0.023*** 0.008 −0.033 −0.927 −0.060 0.054 0.181

Enterprise density −0.071*** 0.014 0.010 −0.673 −0.234 0.098 2.623

Financial facility density 0.114*** 0.017 0.221 −4.899 0.041 0.380 6.149

Educational facility density −0.090*** 0.018 0.155 −1.673 −0.162 0.068 7.649

Medical facility density −0.021* 0.011 −0.327 −8.436 −0.238 0.064 1.924

Restaurant density 0.309*** 0.019 0.347 −3.771 −0.067 0.421 7.405

Park density 0.042*** 0.010 0.013 −2.242 −0.022 0.128 0.733

Distance to CBD 0.049*** 0.010 0.058 −1.219 −0.142 0.274 1.730

Commercial facility density 0.067*** 0.014 0.559 −2.797 0.012 0.309 15.226

Housing price −0.107*** 0.009 −0.058 −1.029 −0.132 0.020 0.378

R2 0.852 0.959

AIC 2627.598 −524.473

***p < 0.01, **p < 0.05, *p < 0.1.
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relationship with the life patterns of Chinese urban residents (Li

et al., 2019; Wang et al., 2022b). For example, we find that the

coefficients generate time-varying inflection points at 9:00, 13:00,

and 17:00, which are the time points for going to work, taking a

lunch break, and getting off work, respectively.

Firstly, residential population density possesses the largest

average coefficient of all indicators (Tables 2, 3), and it has a

positive influence coefficient on MSA-level vibrancy both on

weekdays and weekends. A high-density residential population

tends to create a scale effect and provides more social contacts,

which is important for the creation of vibrancy in TOD

communities. In addition, the coefficient is generally higher

on weekends than on weekdays. The coefficient of residential

density has a “U-shaped” characteristic, which decreases from 6:

00–11:00, stays the same from 11:00–17:00, and increases after

17:00. This time pattern is significantly consistent with the “go

out early and come back at dusk” travel habits of communities

(Wu et al., 2018a; Huang et al., 2019). As shown in Figure 6, the

separation of work and residential spaces leads to less attractive

of MSAs during the daytime, despite the high accessibility

provided by the TOD (Wu et al., 2018a; Li et al., 2020a).

Secondly, compared with the residential density, the

variation trends of enterprise density are opposite, with a

positive correlation before 19:00 and a negative correlation

after 19:00. The variation trend of the coefficient on weekends

basically remains flat. While, on weekdays, there is an inverted

U-shaped characteristic that maintains a high coefficient value

from 11:00 to 17:00. This is the time period with the highest

employment population density around the TOD of the day. It

can be seen that there is a certain lag in the dissipation of work-

related activities in MSAs due to the “Nine-nine-six work

system” (Xiao et al., 2020) working overtime culture (the

usual clocking out time in China is around 17:30). The

variation trends of the restaurant density coefficient are very

interesting, with positive coefficient for both weekends and

weekdays throughout the day. Meanwhile, the variation trend

of coefficient peaks at around 16:00 on weekends and at 19:00 on

weekdays, respectively. Chengdu owns a well-developed food

FIGURE 6
Temporal average coefficients of the built environment factors.
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culture and is known as the “Gastronomic Capital and City of the

Night” in China. The MSAs are at core locations with high

concentration of restaurants in Chengdu. Residents often choose

to start lining up for dinner at around 16:00 or 17:00 on

weekends due to a large number of consumers. On weekdays,

the time of getting off work is usually 17:30, and those who

choose to dine out usually arrive at the nearby restaurant at

around 19:00.

Thirdly, in terms of pedestrian system design, the average

influence coefficients of road density, number of entrances, and

overpass facilities on vibrancy are positive, as is the coefficient of

road network integration, on weekdays. MSA is a highly

spatialized and populated neighborhood in the city, and it is

also a “fast-paced area” of urban life, where people work, live, and

consume with more emphasis on the efficiency of walking.

Therefore, people are more focused on the spatial accessibility

of the pedestrian system in MSAs. Interestingly, the coefficients

of road density and integration are higher on weekdays than on

weekends. Oppositely, the coefficients of the entrance number

and overpass facilities are higher on weekends than on weekdays.

This indicates that commuting traffic is more concerned with the

plane accessibility in the MSA, while leisure and consumption

traffic on weekends is more concerned with the three-

dimensional accessibility of the pedestrian system. As a result,

commercial complexes in MSAs generally use three-dimensional

pedestrian systems to connect ground-level spaces for the

introduction of pedestrian flow (Yang et al., 2021b). In the

studies of Lu et al. (2019b), the positive impact of the green

view index on urban vibrancy has been confirmed. In this study,

however, we find that the coefficient of green view index on

MSA-level vibrancy is always negative with time-varying. The

possible reason is that, unlike other zones in the city, the high-

density development of TOD generates the need to evacuate

people quickly, and the larger volume of greenery may affect sight

as well as the mobility of people to some extent. Some studies are

similar to our findings: Meng and Xing (2019) pointed out that

the area of ecology spaces, such as water bodies and green spaces,

have a negative impact on urban vibrancy. Chen et al. (2022c)

also point out that green space is not significantly related to urban

vibrancy.

Fourthly, the average coefficient of housing price is negative

and the negative effect of weekends is stronger than that of

weekdays. The possible reason is that there exists a relationship

between housing prices and floor area ratio in China’s major cities.

The houses with higher prices usually have smaller floor area ratios

and residential density, which means a higher quality of living

space and lower population density. Also, the housing prices are

higher in MSAs than in other parts of the city due to the excellent

location and transportation resources. However, high housing

prices are often accompanied by gentrification, which can cause

the lower- and middle-income classes to relocate and thus affect

the vibrancy of the community. A study by Tu et al. (2022) on

FIGURE 7
Spatial heterogeneity of average coefficients for the built environment factors on weekdays.
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TOD in Singapore reveals that high income negatively affects

MSA-level vibrancy. Jia et al. (2021) also find that high housing

prices have an inhibiting effect on urban vibrancy.

4.3.2 Spatial heterogeneity of average
coefficients

The spatial distribution of average influence coefficients for

theMSA-level built environment indicators on vibrancy is shown

in Figure 7 (weekdays) and Figure 8 (weekends), respectively.

Moreover, we classify the coefficients into six categories based on

the natural breakpoint method (Wu et al., 2018a). In order to

distinguish the positive and negative effects of the coefficients, we

manually grade the values of the coefficients.

4.3.2.1 Density

As Jacobs (1961) argues, we find that high-density

development is closely related to the maintenance of urban

vibrancy. The findings also show that the spatial distribution

of the coefficient for the residential density on vibrancy is

generally positive on both weekdays and weekends. The

negative values only exist in a few undeveloped sites in the

southern end of the city with relatively few residential

population. Similarly, as Glaeser (2013) proposes in the

“Triumph of the city”, spatial agglomeration contributes to

the creation of urban vibrancy.

4.3.2.2 Pedestrian system

The spatial distribution of the coefficient for the number of

entrances and overpasses is generally positive, with the highest

values in areas near the “3rd Ring Road” and the expressway at

the southern end of the city. The roads around MSAs in these

districts are relatively wider with larger traffic flow, which is not

suitable for walking. Therefore, the provision of overpass

facilities and the reasonable layout of metro entrances in these

areas can significantly enhance the spatial accessibility, thus

meeting people’s demand for travel as well as other activities.

On the contrary, the coefficients of road density at the southern

end of the city, such as Science City, Xinglong Lake, and

Guangzhou Road, exert a significantly negative effect on

vibrancy. This may be due to the typical ring-radial city

structure of Chengdu, and the road network structure here is

“dense inside and sparse outside”. Furthermore, the construction

of new areas in Chinese cities is usually “the road first, then the

city”. Thus, the road density and the building construction

around these new district sites, which are far from the city

center, are at a low level and cannot attract enough people in

a short time. It is worth noting that the spatial distribution of the

coefficient for the green view index shows a negative correlation

between the central region and the northeastern region, and the

average coefficient is also negative, which is different from the

previous studies (Lu et al., 2019b).

FIGURE 8
Spatial heterogeneity of average coefficients for the built environment factors on weekends.
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4.3.2.3 Function

The spatial distribution of the coefficient for the enterprise

density is negative in the central part of the city. While the

coefficient is positive in the southern part (Gaoxin and Tianfu

New District) and southeastern part (Longquan) of the city. This

spatially divergent feature is more obvious on weekdays. The

main reason is that the development strategy of Chengdu is

guiding the city to grow toward the east and south, which was

enacted in the overall plan in 2016. Currently, the MSAs in the

south, as well as the east of the city, are urban high-tech industrial

clusters (Century City, Financial City, Tianfu Sanjie, and other

sites), while the MSAs in the traditional employment centers

(South Taisheng Road, Qianfeng Road, and Luomashi) are

dominated by retail business and service-oriented businesses.

In recent years, the vibrancy of employment clusters in urban

centers has declined due to the continued impact of the

burgeoning online shopping and the outward shift of high-

tech industries. The spatial distribution of coefficient for

restaurant density is positive in most areas on weekdays, but

the coefficient on weekends shows an “inside positive and outside

negative” spatial characteristic. This may be related to the

difference in the demand orientation of restaurants in

different locations. On the one hand, most catering service

facilities in the city center are chains or well-known brands,

they tend to choose these hot areas in order to attract more

consumers, and generally the peak consumption periods of these

restaurants occur on weekends. On the other hand, most of the

catering service facilities in the urban periphery are small in scale

that rely heavily on residential and employment populations, so

these restaurants usually have more stable consumption during

weekdays. Moreover, after comparing the spatial distribution of

coefficient for the enterprise density and restaurant density on

working days, we can obviously find that the spatial distribution

of these two variables is basically the same in most regions, except

for some sites in the central areas.

4.3.2.4 Housing price

The distribution of coefficient for housing price on the MSA-

level vibrancy is also strongly spatially heterogeneous. The study by

Fan and Khattak (2008) shows that higher income groups have

more travel activity options. Thus, they are more likely to engage in

non-work activities in the city center than in the urban periphery.

However, we find the opposite result. The housing prices of MSA in

the city center are negatively associated with vibrancy, both on

weekdays and weekends, while the high housing prices in new areas

such asGaoxinnan have a positive impact on urban vibrancy. This is

because settlements of the MSAs within the 2nd Ring Road in

Chengdu have been built for a long time and there are a large

number of old neighborhoods with poor environmental quality.

These old neighborhoods are close to the city center and metro

stations, so housing prices here are generally higher, contributing to

the difficulties of urban renewal (Demolition costs are high). As a

result, a large number of local people move to the suburban areas to

improve their living quality, leading to the “inner city decay”

(Farjam and Motlaq, 2019) and the decline of vibrancy.

Conversely, new areas such as Gaoxinan are emerging as

another core of Chengdu, where the government has promoted

the rapid development through the TOD strategy and constructed a

number of high-quality TOD communities with developed

infrastructure and complete services. These areas become the

new vibrant hotspots of the city. With the rapid urbanization

and urban expansion in China over the past three decades, this

shift of vibrant hotspots (inner city decline) has occurred in cities of

many regions, including the northeast and north. Since then, urban

renewal policies for inner city revitalization are being advocated in

major cities.

5 Conclusion

In this study, we first use the mobile signaling data (based on

staying time and mobile trajectories of cellular users) to quantify

the spatio-temporal distribution of the metro station areas’

(MSA) vibrancy in Chengdu. Then, we measure the 18 built

environment indicators of MSA based on Jacobs’ four conditions

of vibrancy and the 5Ds built environment framework. Finally,

we employ the stepwise regression model and the geographically

temporal weighted regression model (GTWR) to analyze the

effect that the MSA-level built environment exerts on urban

vibrancy. The results show that: 1) Chengdu’s highly vibrant

MSAs are concentrated in two districts: the traditional city center

and the Gaoxinnan District, which are consistent with the city’s

“dual core” spatial structure. 2) Density indicators (residential

density), pedestrian system indicators (road density, number of

entrances, overpass, road network integration index, and green

view index), and function indicators (enterprise density,

restaurant density) are positively associated with the MSA-

level vibrancy. However, economic attributes (housing price)

and transportation accessibility (bus stop density) are negatively

correlated with the MSA-level vibrancy. 3) The associations

between built environment factors and the MSA-level

vibrancy exhibit strong spatio-temporal non-stationarity

patterns. This is in line with the spatio-temporal patterns of

residents’ daily work, leisure, and consumption activities in TOD

communities. For example, the spatial distribution of the

influence coefficients for enterprise density, housing price,

and restaurant density has the characteristic of “low within

the city center and high outside the city center”. The

temporal variation of the influence coefficients of enterprise

density and residential density embraces the symmetrical

characteristics of “U-shaped” and “inverted U-shaped”,

respectively. The temporal variation of the coefficients for the

plane pedestrian system indicators (road density and road

network integration index) and the three-dimensional

indicators (overpass facilities and green view index) differ

significantly between weekdays and weekends.
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These findings provide theoretical support for the creation of

MSA-level vibrancy. Urban planners should recognize the spatio-

temporal impacts ofMSA-level built environment characteristics on

urban vibrancy at the micro-scale, and develop differentiated

planning interventions for different types of metro stations.

Based on this, we propose the following planning suggestions:

First, the creation of vibrant TOD communities should not only

consider the design of the built environment but also the spatio-

temporal heterogeneity of its influence on vibrancy. For example,

the allocation of dining service facilities needs to match the

distribution of urban vibrancy and the different activity patterns

(work and leisure activities) of urban residents. Secondly,

appropriate neighborhood-scale and street-space design are of

great importance for the enhancement of TOD vibrancy. MSA

in urban peripheral areas should also be accompanied by the

development of small-scale neighborhoods and complex road

networks to promote sufficient spatial accessibility and attract

more pedestrian flows. Thirdly, in the dense and populous

MSAs of city centers, planners should establish three-

dimensional pedestrian systems to connect crucial spatial nodes

such as subway entrances and exits, office buildings, and

commercial complexes to increase the efficiency of pedestrian

flow (Yang et al., 2022b). Fourthly, this study shows that the

green view index exerts a negative effect on the vibrancy of

MSAs in CBD. We argue that the applicability of the ultra-high

green view index in MSAs still requires further justification. Small

green plants or flat green spaces (lawns, potted plants, etc.) may be

more suitable for high-dense TOD neighborhoods. Considering the

need for large-scale pedestrian evacuation and visual accessibility,

planners may need to be cautious about the utilization of tall

greenery in high-density MSAs.

The main contributions of this study are as follows: 1)

providing the method that measures the urban vibrancy

considering the staying time of crowd, which is oriented from

human activity perspective, and analyzing the spatio-temporary

distribution of MSA-level vibrancy. 2) revealing the spatio-

temporary non-stationarity of the effect that the MSA-level

built environment exerts on TOD vibrancy based on the plane

dimension and human scale. 3) providing insights for urban

planners and management departments when proceeding

community plan and design of TOD.

This study has several limitations. Firstly, although the

mobile phone signaling data has the advantages of wide

coverage and large sample size. While, due to the different

market shares of mobile operators, and the low-frequency

usage of cell phones by some age groups (children and senior

citizens), the study is unlikely to cover all ages. Secondly, this

study only uses the mobile phone signaling data in November,

while several studies have pointed out that climatic factors

such as season and temperature can affect human activeness.

This important factor is ignored in our study due to the

difficulty of data acquisition. In this regard, the next study

should add multiple months of mobile phone signaling data to

explore the spatio-temporal distribution characteristics of

urban vibrancy in different seasons.
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