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Dioxins (PCDD/Fs) are one of themost toxic environmental pollutants known to

date. Due to their structural stability and extreme hydrophobicity dioxins persist

in the ecosystems and can be bioaccumulated to critical levels in both human

and animal food chains. Soils are the most important reservoirs of dioxins, thus

soil microbes are highly exposed to dioxins, impacting their diversity, genetics

and functional characteristics. To experimentally evaluate these effects, the

diversity and functionality of soil microbes were assessed in seven local sites

potentially exposed to PCDD/Fs.

Concentration of dioxins in soils samples was firstly determined and the soils

cultivable microbes were identified andmolecularly characterized as a function

of their in vitro ability to degrade the TCDD. Our results revealed that the

diversity of microbial communities largely varied among the sites and was likely

inversely proportional to their level of contamination with PCDD/Fs.

Furthermore, the genetics profiling of dioxin-degrading bacteria revealed

that the Cytochrome P450 CYPBM3-positive species largely belong to the

genus Bacillus and were randomly distributed among the soils samples, while

the angular dioxygenase (AD)-positive species were mainly found in highly

polluted soils with a major presence of the genus Pseudomonas. Finally, the

functionality of dioxin-biodegrading genes (AD or CYPBM3), was confirmed by

the ability of bacteria to consume 2,3,7,8-TCDD, and this was synchronizedwith

an induced level of both pathways. Our results suggest that different dioxin-

metabolizing pathways exist under the same environmental conditions and

work differentially for an effective removal of PCDD/Fs.
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Introduction

Polychlorinated dibenzo-p-dioxins (PCDDs) and

polychlorinated dibenzofurans (PCDFs), collectively termed

“dioxins” are highly potent class of persistent organic

pollutants (POPs) that are covered by the Stockholm

Convention (Stockholm, 2001). According to chlorination

degree (P = 1–8), dioxins comprise 75 PCDD congeners and

135 PCDF congeners with different toxicities. Specifically,

PCDD/F congeners possessing chlorine atoms in 2′, 3′, 7′ and
8′ positions of the aromatic rings are the most toxic. Typically,

the toxicity of PCDD/Fs is defined as Toxicological Equivalence

or TEQ units. The sum of TEQ for a given environmental sample

is depending on the Toxic Equivalency Factors (TEFs). The TEF

values indicate the level of toxicity compared to 2′,3′,7′,8′-
tetrachlorinated dibenzo-p-dioxin (2′,3′,7′,8′-TCDD), the most

toxic congener of dioxins, that has been given a reference TEF

value of 1 (World Health Organization, 2016).

Naturally, dioxins can be released into the environment

through volcanic eruptions and forest fires (Hay, 1981). Such

scenarios are becoming more frequent with the actual increases

of forest fires (Salamanca et al., 2016; Oliveira et al., 2020).

Dioxins can also enter the environment through domestic and

municipal incinerations (Tuppurainen et al., 2003), by various

manufacturing processes including the synthesis of chlorinated

aromatic products, such as herbicides, pesticide and paper

processing. Electronic waste (e-waste) is also an important

and active source of PCDD/Fs (Jin et al., 2020). Once emitted

into the environment, dioxins contaminate specific

environmental compartments, bioaccumulate, and therefore,

transmit through the food chain due to their structural

stability and high lipid-solubility (Geyer et al., 1993). Their

adverse effects on human health are now well established, e.g.,

immunotoxicity (Marshall and Kerkvliet, 2010), wasting

syndrome (Huuskonen et al., 1994), dysfunction of immune

and reproductive systems (Carney et al., 2006), carcinogenicity

(Toth et al., 1979), and teratogenicity (Baker et al., 1995).

Due to their high affinity to soil organic matter, PCDD/Fs

have a high value of organic carbon–water partition coefficient

(KOC). This confers a low mobility together with a low water

solubility to such compounds, thus enabling them to accumulate

in soil, affecting plants as well as soil microorganisms

(Chrostowski and Foster, 1996; Hanano et al., 2014b; Hanano

et al., 2015a; Hanano et al., 2018a; Hanano et al., 2018b). Once

accumulated in the soil, PCDD/Fs affect “soil health” (Gul et al.,

2021). Soil microbiota plays determinant roles in the

maintenance of soil health and in the detoxification of

detrimental chemicals, including PCDD/Fs (Cerniglia et al.,

1979). Soil microbes respond to dioxin exposure by a set of

biological modulations that impact their diversity and

functionality. In this context, multiple parameters, e.g.,

density, diversity and enzymatic activities, are now used as

indicators for monitoring and assessing the exposure levels of

soil microbial communities to stressors (Yao et al., 2018;

Mahfouz et al., 2020). Consequently, diverse bacterial and

fungal species were identified and characterized as potential

biodegraders of dioxins (Magan et al., 2010; Stella et al., 2017;

Hanano et al., 2019a).

So far, diverse bacterial enzymatic pathways have been

characterized with respect to the biodegradation of dioxins

such as the angular dioxygenases (Sato et al., 1997;

Armengaud et al., 1998; Habe et al., 2001), certain microbial

peroxidases and anaerobic dehalogenases (Bumpus et al., 1985;

Bunge et al., 2003). Furthermore, it was shown that specific

enzymes of bacterial P450s, initially identified as homologs of

xenobiotic-mammalian metabolizing P450s, exhibited similar

activities towards dioxins (Narhi and Fulco, 1987; Boddupalli

et al., 1992). The first bacterial P450 was characterized in Bacillus

megaterium ATCC 14581 by the group of Fulco et al. (Matson

et al., 1977), conducting a detailed characterization of three

distinguished isoforms of P450 from B. megaterium, referred

as to P450BM-1, P450BM-2 and P450BM-3 (Kim and Fulco, 1983;

Schwalb et al., 1985). Beyond their original activities as fatty acids

oxygenases, both native or engineered P450BM-1 and P450BM-3

have shown remarkable activities to oxidize an emergent range of

exogenous substrates including certain drugs such as phenacetin

and methoxyresorufin (Kim et al., 2010), certain chlorinated

insecticides (Seralathan et al., 2014; Meena et al., 2016) and even

more certain dioxins notably 2,3,7-trichloro-dibenzo-p-dioxin

(Sulistyaningdyah et al., 2004).

The main objective of this work is firstly to demonstrate

whether the diversity, genetics and functional signatures of soil

microbial community are specifically affected by the

contamination of soil with dioxins. Secondly, if these

signatures vary according to the concentration of dioxins in

soil. Our work presents a new set of data on the composition,

genetics and functional properties of microbial communities in

soil samples contaminated with PCDD/Fs. Soil microbial

communities were subjected to a detailed characterization in

terms of density and diversity linked with contamination level of

soils with PCDD/Fs. Moreover, large-scale analyses were

performed for genes transcripts of specific dioxin-degradation

pathways in Gram-positive and Gram-negative bacterial species.

Our report suggests that the most characterized bacterial

pathways responsible for degradation of dioxins, angular

dioxygenase (AD) and cytochrome P450 BM3 (CYPBM3), are
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found in both Gram-negative and Gram-positive bacteria.

Effectively, this new statement raises questions on a possible

functional connection between these two distinct dioxin-

degradation pathways when both are found in such bacteria.

Materials and methods

Information about the sites and soil
sampling

Supplementary Table S1 presents a set of informative data

about the sampling sites (A1, A2, A3, A4, B, C, and D) that have

been targeted in this study. The sites A1 to A3 are located at

10 km (6.2 mi) Southwest of Damascus, the Syrian capital,

corresponding to waste incineration stations. The site

A4 corresponds to an olive grove located next to waste

incineration sites (A1, A2, and A3). The site B is an open site

of industrial and domestic wastewater collection located in Deir

al-Asafir, 12 km Southeast of Damascus. The site C is nearby

Homs’s refinery, located in Western Syria, 162 km North of

Damascus. The site D corresponds to an open waste incineration

site in Al Suwayda city located in southwestern of Damascus.

Two soil samples were collected form the site A4 and three soil

samples were respectively collected form the sites A1, A2, A3, B,

C, and D. The samples (S1-S20) (about 500 g each) were taken

from the surface of soil (0–5 cm depth), put in sterile bags and

promptly stored at + 4°C until further use.

Nitrogen content analysis in soil samples

The soil samples were air-dried, sieved using a 1 mm-sieve to

eliminate rough materials. Total organic nitrogen, NO3 and NH4

were determined as described before (Kjeldahl, 1883). Briefly, the

Kjeldahl method consists of three successive steps: 1) the soil

sample is digested by sulfuric acid in the presence of a catalyst

that helps in converting the amine nitrogen to ammonium ions

(NH4
+); 2) the NH4

+ ions are then converted into ammonia gas

that is heated, distilled and trapped into a solution where it is

dissolved again; 2) finally the amount of the ammonia that has

been trapped is determined by titration with a standard solution.

Bacteria isolation and culture conditions

One Gram of each soil sample was added into 5 ml of one X

PBS (Phosphate buffer Saline, pH 7.2) and vigorously shaken for

5 min. The suspensions were diluted by the same buffer, then

100 µL of dilutions from 10−3 to 10−6 were cultured on

Luria–Bertani (LB) agar plates. The plates were incubated at

28 ± 2°C until the appearance of distinct colonies (Hanano et al.,

2014c). Single colonies were transferred onto fresh LB plates and

kept at 4°C for further analysis. The density of cultured bacteria

was estimated by measuring colony forming unit (CFU) per

Gram dry weight soil and expressed as CFU g−1 DW. Finally, all

bacterial isolates were stored at—80°C in LB with 20% glycerol.

Extraction of total PCDD/Fs from soil
samples

Before proceeding, soil samples were dried at room

temperature, ground and sieved. PCDD/Fs extraction was

performed as described previously (Hanano et al., 2014c).

Briefly, 5 g of soil were mixed with 20 ml of hexane

containing 20% acetone and the mix was horizontally shaken

at 200 rpm for 1 h at room temperature. The organic phase was

separated by a brief centrifugation at 4,000 rpm for 5 min, then

carefully recovered and promptly mixed with 8 ml of sulfuric acid

(~0.9 mM) and briefly shaken for 2 min in the same conditions.

Subsequently, the upper organic phase, corresponding to hexane

extract, was carefully transferred into a clean 40-ml vial. The

cleaned up of fractions was performed with a column composed

of 0.5 g anhydrous Na2SO4 on top and 1.0 g of florisil at the

bottom. This column was first activated with 3 ml of

dichloromethane/hexane/methanol (50:45:5). PCDD/Fs were

then eluted with 5 ml of the same solvents mix. The extract

volume was reduced to 1 ml under nitrogen flow. One hundred

microlitres of Dimethyl sulfoxide (DMSO) was added to the

extract and the mix was dried to remove all trace of solvents.

500 μL of DMSO was added and the final volume of the extracts

was adjusted to 1 ml by deionized H2O. Dilution of 1:10 with 50%

DMSO in deionized water was used for analysis of dioxin by

enzyme-linked immunosorbent assay (ELISA). To evaluate the

quality of extraction protocol, a TCDD-free soil sample was

spiked with 100 ng L−1 of 2,3,7,8-TCDD and the same extraction

protocol was applied.

Detection and measuring of PCDD/Fs by
enzyme-linked immunosorbent assay

An Abraxis TCDD-ELISA kit was used to determine the

PCDD/Fs concentration in the extracts according to the

manufacturer’s instructions (Abraxis LLC, United States ).

The absorbance was measured at 450 nm by a microplate

reader (Multiskan EX, Thermo/Labsystems, United States ).

PCR amplification of 16S rRNA

The extraction of bacterial genomic DNA was done using a

Genomic DNA extraction kit (Qiagen-Germany) according to

the manufacturer’s manual. The isolated gDNA was eluted in

50 μL of distilled water and the concentration was adjusted to
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200 ng μL−1 and kept at −20°C. A 1450 bp-fragment of 16S rRNA

gene was amplified by PCR using the primers 27F and 1492R

(Supplementary Table S2, Supplementary Material S1) (Marcial

Gomes et al., 2008). The PCR was performed as described before

by (Hanano et al., 2014c). The 25 μL final volume reaction was

composed of 3 mM MgSO4, 200 μM each of the four dNTPs,

10 μM of each primers, 2.5 U Taq DNA polymerase and 200 ng

of gDNA. PCR conditions were 94°C for 4 min, 35 cycles at 94°C

for 30 s, 56°C for 30 s, 72°C for 1 min, followed by a final

extension step at 72°C for 10 min.

Molecular identification of bacteria by 16S
rRNA sequencing

The PCR products of 16S rRNA were sequenced using an ABI

310 Genetic Analyzer (Applied Biosystems). 16S rRNA PCR

products were sequenced in both direction forward and reverse.

The quality of sequencing was confirmed by sequencing a 16s rRNA

amplicon of reference strain of B. megaterium (Hanano et al.,

2019b). The reads of 16S rRNA sequence were analysed using

the BLAST search program from GenBank-NCBI database

(https://www.ncbi.nlm.nih.gov/). Bacterial genus and species were

identified with a score of similarity of (≥99%). The 16S rRNA

sequences reported in this study were submitted to the GenBank-

NCBI (GenBank ID: from MW475085 to MW475154).

Analysis of dioxin-degrading genes
transcripts

Transcripts of dioxin-degrading genes were quantified by

reverse-transcription quantitative PCR (RT-qPCR) according to

(Hanano et al., 2015b). RNAs were extracted from cultured

bacteria as previously described (Hanano et al., 2019b). The

extracted RNA was diluted to 50 ng μL−1 using RNase-free water

and conserved at –80°C. One μg total RNA were used for first-

strand cDNA synthesis (Hanano et al., 2014c). Real-time PCR

was carried out in 96-well plates using an AriaMx Real-time PCR

System (Agilent technologies, United States ). Where, 25 μL-

reaction mixtures were composed of 0.5 μM of each primers

(Supplementary Table S2), 12.5 μL of SYBR Green PCR mix

FIGURE 1
Level of PCDD/Fs in soil samples. (A) PCDD/Fs were extracted from soil samples and the total PCCD/Fs in each sample was determined by a
PCDD/Fs-specific ELISA kit. Dioxins levels in soil samples were categorized into three levels; level L 1 (~50 ng L−1), the level L2 (from 12 to 20 ng L−1),
and level L3 (from 5 to ~10 ng L−1). (B) The relation between the total nitrogen content in soil samples and their levels of contamination with PCDD/Fs.
All measurement were done in triplicate. Values are means ± S.D (n = 9).
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(Bio-Rad, United States) and 100 ng cDNA. Fragments of 168,

144, and 433 bp from the coding sequence of bacterial angular

dioxygenase (ADα-subunit), CYPBM1 and 16S rRNA, were

respectively amplified using gene-specific primers as described

before (Hanano et al., 2019b). The relative quantification (RQ =

2(−ΔΔCT)) of target genes was determined by the AriaMx qPCR

system.

Essay of 2,3,7,8-TCDD biodegradation

Bacterial isolates that harbor dioxin-degradation genes were

assessed for their ability to metabolize 2,3,7,8-TCDD in a

laboratory-scale experiment. A pure colony of the bacterial

isolate was pre-cultured in LB medium and incubated overnight

at 28 ± 2°C. Five hundred microlitres (500 µL) of bacterial culture

having an OD600 = 1 was taken, centrifuged and washed with 1 ml

of mineral salt medium (MSM) to eliminate all traces of LB

medium. Mineral salt medium was composed as reported

before (Hanano et al., 2014c). Isolates were cultured into 10 ml

of MSM supplemented with 100 ng L−1 (0.1 ppb) of 2,3,7,8-TCDD

(final concentration), as a sole carbon source. The cultures were

incubated for 6 weeks at 28 ± 2°C. A negative control, the same

culture without 2,3,7,8-TCDD was performed. Bacterial growth

was measured and expressed as CFUmL−1.

Statistics and biodiversity indices

Data were expressed as means ± standard deviation (SD).

The comparisons between control and treatments were

statistically confirmed by one-way analysis of variance

(ANOVA) SPSS Statistics software. Differences between

control and treatments were significant as p < 0.05 or very

significant as p < 0.01. Microbial diversity for each soil

samples was assessed using two diversity indexes;

Shannon’s diversity index (H) and Simpson’s diversity

index (D). Shannon’s diversity index (H), an informative

statistic index, which means that all species present in a

sample are randomly sampled. Shannon’s Index (H) is

calculated by the following equal: H’ = ─ ∑ S
i=1 pi ln pi,

where p is the proportion (n/N) of individuals of one given

species found (n) divided by the total number of individuals

found (N), ln is the natural log, ∑ is the sum of the

calculations, and s is the number of species. Simpson’s

diversity index (D) is calculated by the following equal:

TABLE 1 CFU and Gram stain results of cultivable bacterial isolates.

Site Soil sample Microbial
density CFU g−1dw

Total bacteria isolates Gram+/−

A1 S1 60 × 106 5 1/4

S2 29 × 105 6 5/1

S3 34 × 105 6 5/1

A2 S4 28 × 105 8 3/5

S5 58 × 105 10 5/5

A3 S6 23 × 106 5 4/1

S7 159 × 107 3 0/3

S8 23 × 107 7 2/5

A4 S9 64 × 107 8 3/5

S10 84 × 106 9 7/2

S11 77 × 106 5 1/4

B S12 24.5 × 107 4 0/4

S13 10 × 107 3 1/2

S14 15 × 106 4 2/2

C S15 35 × 106 4 0/4

S16 135 × 107 2 0/2

S17 212 × 107 2 0/2

D S18 75 × 104 7 6/1

S19 92 × 105 6 3/3

S20 56 × 105 3 2/1

Total 107
( total of isolates)

50/57
(ratio of +gram/-gram staining)
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D = 1/∑ S
i=1 pi

2, where p is the proportion (n/N) of individuals

of one specific species found (n) divided by the total number of

individuals found (N), ∑ is still the sum of the calculations,

and s is the number of species. Bacterial species richness was

evaluated by Margalef’s index DMg and calculated by the

following equal: DMg = (S-1)/(ln N), where S is the number

of species recorded, N is the total number of individuals in the

sample and ln is the natural log. DMg, H′ and D indices were

calculated using an online calculator for species richness and

biodiversity at http://www.alyoung.com/labs/biodiversity_

calculator.html.

Results

Evaluation of the PCDD/Fs pollution level
in soil samples

The analysis of PCDD/Fs content in the soils samples (S1-

S20) showed that they vary significantly in respect to the

concentrations of PCDD/Fs, compared to a reference soil

sample (SDF; dioxin-free soil) (Hanano et al., 2014c). As

shown in Figure 1A, the concentration of dioxins in soil

samples ranged from 5 to ~50 ng L−1. Accordingly, the

concentration of PCDD/Fs was categorized into three levels.

The highest one, Level I (LI) corresponds to a concentration

of 50 ng L−1 of PCDD/Fs, and comprises soils samples S15,

S16 and S17, collected from the site C. The Level 2 (L2)

categorizes the soils samples that contained 12 and 20 ng L−1

of PCDD/Fs, including S1 to S9, S18, S19 and S20 collected from

the sites A1, A2, A3 and D. Whilst, the lowest level, Level 3 (L3),

represents concentrations ranged from 5 to ~10 ng L−1 of PCDD/

Fs, comprising soil samples S12, S13, S14, S10 and S11 collected

from the sites B and A4, respectively. These data indicate that the

soils samples of the site C, situated nearby Homs refinery showed

the highest level of dioxin contamination. Soils samples of the

sites A1, A2, A3, and D, located around the waste incineration

stations, were moderately contaminated with dioxins. While, the

lowest contaminated soil samples belonged to the site A4,

corresponding to the olive grove located close to a waste

incineration sites as well as to the site B, corresponding to an

open site of industrial and domestic wastewater collection.

PCDD/Fs level of soils in connection with
their content of organic nitrogen

Total N2 in soils samples of the sites A1, A2, and A3,

presented in Supplementary Table S3, ranged between 0.12%

and 0.18%, which was relatively similar to the total N at site D

(from 0.14% to 0.16%). Whereas, the highest values of the total N

were detected in the soil samples of site C with a range of 0.33%–

0.36%. Also, high levels of total N were found in the samples of

site A4 that ranged between 0.26% and 0.33%. Furthermore, the

NH4/NO3 ratio considerably varied among soil samples, the

highest NH4/NO3 ratios (8.4–9.6) were found in soil samples

from the site A4, while the lowest ones (1.9–2.7) were in soil

samples from the sites A1, A2, and A3. However, the NH4/NO3

ratio was similar (5.5–7.9) for the sites B and D and lower in the

site C (3.5–5.1). Next, the total N content of soil samples was

evaluated as a function of their level of contamination with

dioxins, and as Figure 1B shows, there is no correlation

between the total N content in soil samples and their level of

contamination with dioxins. In exception of that, the highest

polluted soil samples with PCDD/Fs (S15, S16 and S17 from site

C) showed a significant correlation (p < 0.01) with the content of

total nitrogen. Altogether, these data indicate that soils from the

site C, situated nearby Homs refinery, showed the highest level of

contamination with dioxins and this was significantly correlated

with a high level of total nitrogen.

Density of culturable microbial
communities in soils samples

The bacterial population densities, evaluated for each soil

samples and expressed as CFU g−1 of dry weight, differed

considerably among soil samples. As Table 1 shows, the

highest bacterial densities were found in soil samples S7, S17,

S16, S9, S12, S8 and S13 (from sites C, A3, A4 and B)

corresponding to 159 × 107, 212 × 107, 135 × 107, 64 × 107,

24.5 × 107, 23 × 107 and 10 × 107 CFU g−1dw, respectively. Whilst,

FIGURE 2
Density of microbial communities in soil samples with
respect to PCDD/Fs concentrations. The densities of soil microbial
communities are expressed as CFU × 107 per g of dry soil (dw).
Level of PCCD/Fs in soil samples was determined as
described before. CFUs were determined in triplicate. Values are
means ± S.D (n = 3).
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the bacterial densities in soil samples S10, S11, S1, S15, S6 and

S14 were ranged between 15 × 106 and 84 × 106 CFU g−1 dw.

However, the samples of sites A1, A2 and D (S2, S3, S4, S5, S18,

S19, and S20), with densities ranging between 92 × 105 and 75 ×

104 CFU g−1dw, were less populated compared to other sites. In

respect to their level of contamination with PCDD/Fs, two of the

highest bacterial densities were found in the highest

contaminated soil samples (S16 and S17) (Figure 2). This was

supported a relatively strong positive Pearson correlation (r =

0.7759), which means that high bacterial densities scores go with

high PCDD/Fs level scores (and vice versa). These data indicate

that the highest densities of bacterial populations were found in

soil samples from sites A3, A4, B and C and the lowest were

found in soil samples from the site D.

Compositional characteristics of
culturable bacterial communities

We noted that Bacillus genus was the most abundant in soil

samples with 37.3% of total bacterial genera identified, followed

by the genera Pseudomonas and Acinetobacter that represent

21.4% and 14%, respectively (Table 2). The genera Enterobacter

and Klebsiella constitutes about 4.6% to 3.7% of the whole

bacterial community. Beyond the top five, the bacterial genera

e.g., Massilia, Staphylococcus, Arthrobacter and Cronobacter

were also identified and constitutes 8.83% of the total

bacterial community. Bacteria genera with less than 1%

contribution to the bacterial community include Solibacillus,

Lysinibacillus, Brevibacillus, Brevundimonas, Oxalicibacterium,

Microbacterium, Macrococcus, Chryseobacterium, Pantoea,

Citrobacter and Cellulosimicrobium.

Supplementary Table S4 shows that the bacterial community

of site A1 (S1, S2 and S3) was predominantly composed of

Bacillus genus with B. subtilis and B. cereus being the most

abundant. Also, the genus Pseudomonas was interestingly

represented by P. stutzeri and P. putida. While Bacillus and

Pseudomonas genera also dominated at site A2 (S4, S5, and S6),

different species of the genera were recovered at the site. These

include B. mycoides, B. circulans, B. mobilis, P. bauzanensis and P.

saudiphocaensis. The composition of bacterial community in the

site A3 (S7, S8 and S9) was remarkably typified by the presence of

Acinetobacter genus, where A. calcoaceticus, A. tjernbergiae, A.

radioresistence andA. pittiiwere themajor species of the bacterial

TABLE 2 Relative abundance of bacterial genera in each soil sample.

Site A1 A2 A3 A4 B C D

Soil sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Bacterial isolates Total (%)

Bacillus sp. 1 3 4 3 4 2 2 3 5 1 2 6 2 2 37.38

Pseudomonas sp. 3 1 5 2 1 3 2 1 1 3 1 21.49

Acinetobacter sp. 1 2 5 5 2 14.01

Enterobacter sp. 1 1 1 2 4.67

Klebsiella sp. 1 2 1 3.73

Massilia sp. 1 1 1 2.80

Staphylococcus sp. 2 1.86

Arthrobacter sp. 2 1.86

Cronobacter sp. 2 1.86

Solibacillus sp. 1 0.93

Lysinibacillus sp. 1 0.93

Brevibacillus sp. 1 0.93

Brevundimonas sp. 1 0.93

Oxalicibacterium sp. 1 0.93

Microbacterium sp. 1 0.93

Macrococcus sp. 1 0.93

Chryseobacterium sp. 1 0.93

Pantoea sp. 1 0.93

Citrobacter sp. 1 0.93

Cellulosimicrobium sp. 1 0.93

Total 107
(ratio of +gram /-gram staining)

5 6 6 8 10 5 3 7 8 9 5 4 3 4 4 2 2 7 6 3 100
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community in this site. Although the structure of bacterial

community at the site A4 (S10 and S11) was comparatively

similar to those of sites A1 and A2, the bacterial species,

Arthrobacter crystallopoietes, was exclusively detected at the

site. Bacterial community in the site B (S12, S13 and S14) was

proportionally composed of Bacillus, Pseudomonas,

Acinetobacter and Klebsiella genera with a particular

appearance of K. aerogenes and K. pneumonia. The structure

of bacterial community of the site C (S15, S16, and S17) was

limited in term of species number, these species were mainly

belonging to Enterobacter and Cronobacter. Finally, the

composition of bacterial community of the site D (S18, S19,

and S20) was predominantly consisting of Bacillus and

Pseudomonas genera, and the species Bacillus licheniformis

and Pseudomonas stutzeri were the most abundant in this site.

The bacterial strains identified by sequencing of 16S rRNA with a

high score of certainty (72 strains) were submitted in the NCBI

GeneBank databases under the accession numbers from

MW475085 to MW475154 (please refer to Supplementary

Table S4).

Informative relationship between soil
microbial diversity and dioxin level

Microbial diversity for each site was determined using

two diversity indices, the Shannon’s diversity Index (H) and

the Simpson’s diversity index (D), however, the microbial

species richness was determined by Margalef’s index DMg

(please refer to Supplementary Tables S5–S11). Figure 3A

shows the variation in H index according to sites, while this

index ranged between 2.5 and 2.2 for the sites A1, A2, A3, A4,

and B, it showed its lowest value (1.49) in the site C, and was

~2.0 in the site D. In a similar tendency, the index D held a

record (~13.8) in the site A1, then lowered in the sites A2, A3,

A4 and B, and was about 4.0 in the site C (Figure 3B). In

parallel, the Margalef’s index DMg, expressing the species

richness of microbial communities varied according the sites

and showed high values (4.59 and 4.78) in the sites A1 and

A2, intermediated values in the sites A3, A4 and B, and a low

value (1.92) in the site C (Figure 3C). In connection with the

level of PCDD/Fs detected in the sites, it is worth noting that

the values of H, D and DMg indices were significantly lower in

soil samples that are contaminated with the highest

concentration of PCDD/Fs (p < 0.01). While, the highest

values of H, D and DMg (2.5, 13.8, 4.78) were found in the

sites with low levels of PCDD/Fs (A1 and A2), the lowest

values of H, D and DMg (1.49, 4.0, 1.92) were found in the

heavily contaminated sites with PCDD/Fs, C and D (Figures

3D–F). Together, our data show that the indices of

biodiversity and species richness of microbial

communities largely varied according to the sites and are

inversely proportioned to their level of contamination with

PCDD/Fs.

FIGURE 3
Diversity indices of microbial communities as a function of contamination level with PCDD/Fs in different sites. (A–C) Diversity and bacterial
species richness were evaluated by The Shannon’s diversity Index (H), The Simpson’s diversity index (D) and Margalef’s indexDMg. (D–F) The relations
between diversity and richness species, H, D and DMg, and the concentration of PCDD/Fs in different sites. Values are means ± S.D (n = 3). Diversity
indices were significantly lower in soil samples that are contaminated with the highest concentration of PCDD/Fs (p < 0.01).
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Genetic profiling for potential PCDD/Fs-
degrading bacteria

The bacterial communities of soil samples were genetically

screened for the presence of angular dioxygenases (AD) and the

cytochrome P450 BM3 (CYPBM3) genes, the most

characterized bacterial pathways responsible for degradation

of dioxins. We identified 22 Gram-negative isolates possessing

an AD-encoding gene and 14 Gram-positive isolates with a

CYPBM3-encoding gene. Figure 4A shows that although there

is random distribution of AD-positive species among soils

samples, about 31% of them were found in the highest

PCDD/Fs-polluted soils (S15-S20). A moderate positive

Pearson correlation (r = 0.6427) was found, which means

there is a tendency for high AD-positive species number

scores go with high PCDD/Fs level scores (and vice versa).

The identities of AD-positive species were determined for each

soil samples, and as Figure 4C shows, the AD-positive bacterial

species that found in the highest PCDD/Fs-contaminated soils

(S15-S20) belonged mainly to the genus Pseudomonas

(57.14%), and to the genera Citrobacter, Cronobacte and

Pantoea with 14.25% for each. A different scenario was

observed for the CYPBM3-positive species, while the highest

abundance of these species was detected in the soil samples

collected from the sites A1, A2, A3 and A4, showing an

intermediate level of contamination with PCDD/Fs. These

species were absent in the highest contaminated soils

samples (S15-S20) (Figure 4B). The most abundant

CYPBM3-positive species belonged to the genus Bacillus

(85.71%), while one species belong to Arthrobacter and

another to Solibacillus (Figure 4D). Our data indicate that

most of bacterial species that harbor the AD encoding gene

were found in the highest polluted soils with a major presence of

the genus Pseudomonas.

Functional identification of 2,3,7,8-TCDD-
degrading bacteria

Laboratory-scale experiments were conducted to evaluate the

ability of 36 bacterial isolates, harbouring the dioxin-degrading

genes, to degrade 2,3.7.8-TCDD using the pollutant as the sole

carbon source. Results showed that only six bacterial strains grew

on the 2,3,7,8-TCDD, with different abilities. Figure 5A shows

the growth curves of these stains expressed as CFU mL−1. Of

them, the strain A4-2 d of Bacillus megaterium grew more

FIGURE 4
Genetic screening for dioxin-degrading genes in bacterial communities. Screening for dioxin-metabolizing genes in bacterial isolates was done
using gene-specific primers against the bacterial angular dioxygenase (AD) and cytochrome P450 CYPBM3. (A,C) The number in AD-positive or
CYPBM3-positive bacterial isolates in connection with the concentration of PCDD/Fs in soil samples are presented respectively. (B,D)Distribution of
bacterial species among the soil samples. The number of isolates from each species found in the soil samples are presented.
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actively in comparison with others strains and reached about of

15.7 × 106 CFU ml−1 after 5 weeks. Bacillus pumilus (A1-2c and

A4-2d) showed a weak growth curve with a maximum CFUmL−1

of 7.2 × 106 and 5.4 × 106, respectively. On the other hand, the

strain Pseudomonas stutzeri D2e effectively grew in the presence

of 2,3,7,8-TCDD plateauing to 11.44 × 106 CFU ml−1 at week 5,

which is relatively higher than the growth of Pseudomonas putida

A1-1d, while Pseudomonas fluorescens A4-3d, reached 9.52 × 106

and 7.28 × 106 CFU ml−1 at the same time point.

Furthermore, the transcripts of bacterial angular dioxygenase

(AD a-subunit) and the cytochrome CYPBM3 was quantified

using RT-qPCR following the growth of the studied strains in the

presence of 2,3,7,8-TCDD. As shown in Figure 5B, the level of

CYPBM3 gene transcripts in the strain B. megaterium A4-2d was

significantly (p < 0.01) increased and reached about 5-fold at

week 5 compared with first week of inoculation. While, the

transcripts level of CYPBM3 gene did not changed

significantly in both strain of B. pumilus (A1-2c and A4-2d).

On the other hand, a significant abundance (p < 0.05) (~3-fold)

for the AD α-subunit gene transcripts was measured in P. stutzeri

D2e growing on 2,3,7,8-TCDD at week 5. Whereas a tight change

in AD α-subunit gene expression (1.65-fold) was detected in P.

putida A1-1d and P. fluorescens A4-3d at week 5 and week 2,

respectively (Figure 5C). Our data suggest that both AD- and

CYPBM3-mediating pathways for degradation of dioxin were

identified in the microbial communities isolated from soil

samples polluted with dioxins.

Discussion

Dioxins are extremely potent environmental toxins with

proven toxicological effects in humans, animals, plants and

microorganisms (Wu et al., 2002; Kong et al., 2018; Hanano

et al., 2019a; Hanano et al., 2019b; González and Domingo,

2021; Hanano et al., 2021; Li et al., 2021; Sun et al., 2021).

FIGURE 5
Functional identification of 2,3,7,8-TCDD-degrading bacteria. (A) The functionality of dioxin-biodegrading genes (AD and CYPBM3) was
assayed by evaluating bacterial growth on 2,3,7,8-TCDD, as sole carbon source in a laboratory-scale experiment. The growth of each strain was
expressed as CFU × 106 ml−1 per week for a period of 6 weeks. (B,C) The transcripts levels of CYPBM3 and AD α-subunit genes in different strains
growing in the presence of 2,3,7,8-TCDD at 2, 5 and 6 weeks. The colour scale (white-red-black) indicates relative changes of transcript
abundance of 1, 5 and 10 fold, respectively. All measurement were performed in triplicates. Values are means ± S.D (n = 9).
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Nowadays, it is well known that the main pathway by which

mammalians are exposed to dioxins is occurring via the

consuming of dioxin-contaminated food, thus it is worth to

avoid, as downstream as possible, these contaminants to go

into the food chain. Following this logic, the investigation of

interaction between dioxins and soil microbes should be

prioritized because soils, together with sediments, are

considered the major reservoirs of such contaminants in

most ecosystems. In this context, the contaminated soils

with dioxin have been considered as rich sources for the

isolation of microorganisms with potential abilities in

metabolizing such compounds (Hiraishi, 2003; Jacques

et al., 2009; Hanano et al., 2014c; Hanano et al., 2019b;

Nguyenag et al., 2021). Therefore, the current study

highlights the interrelationship between the contamination

level of soils with dioxin and the composition, genetic and

functional characteristics of soil microbial communities, and

follows up our previous works for identifying bacterial strains

as potential dioxins degraders (Hanano et al., 2014c; Hanano

et al., 2019b; Almnehlawi et al., 2021; Nguyenag et al., 2021).

Compared to our pervious study, selectively conducted on

environmental sites of coastal and middle regions in Syria with

potential contamination sources of PCDD/Fs, the current study

particularly targets sites that historically were dedicated as waste

incineration stations around the capital, Damascus. Our results

indicated that the soils samples of the sites located around the

waste incineration stations, were moderately contaminated with

dioxins while the soil samples collected from a site nearby Homs

refinery showed the highest level of contamination with dioxins

(Hanano et al., 2014c). Although the total N content of soil

samples did not correlate with their level of contamination with

dioxins, it is well worth noting that the highest polluted soil

samples with PCDD/Fs had also the highest content of total

nitrogen. This statement could be possibly supported by the high

affinity of dioxin towards soil organic materials (Huyen et al.,

2015; Li et al., 2021; Yuan et al., 2021).

Next, the soil microbial communities of the selected sites

were characterized in terms of population densities, diversity

and species richness. Our results showed that although the

density of microbial communities varied largely between soil

samples, the highest densities of cultivable bacteria were found

in the highest contaminated soil samples which comes in line

with previous reports (Hanano et al., 2014c). Regarding the

composition of microbial communities, it was observed that the

five most abundant genera in soil samples were Bacillus,

Pseudomonas, Acinetobacter, Enterobacter and Klebsiella. The

presence of such genera was reported in soils contaminated

with dioxins, thus suggesting the implication of certain Bacillus

species (B. megaterium and B. pumilus), Pseudomonas sp. and

Klebsiella sp. in the transformation of PCCD/Fs in the

environment (Choi et al., 2003; Hong et al., 2004; Hanano

et al., 2019b). In this context, it was suggested that the

contaminants can induce an immediate increase in the

tolerance of soil microbial community due to their initial

toxicity followed by a more gradual enhancement (Van Der

Meer, 1994). Expectedly, our data show also that the indices of

biodiversity and species richness of microbial communities

largely varied according to the sites and inversely

proportioned to their level of contamination with PCDD/Fs.

These results can be supported by the event that any stressor

will lead to a preliminary decrease in biodiversity of soil

microbes (Van Bruggen and Semenov, 2000).

Microbial biodegradation of dioxins is now well established

for various microorganisms. In bacteria, several mechanisms

involved in the biodegradation of dioxins have been described

in detail, including but not limited to oxidative degradation by

the angular dioxygenases (AD) of aerobic bacteria (Habe et al.,

2001) and the cytochrome P450 (CYPBM3) (Sulistyaningdyah

et al., 2004) or reductive dechlorination by anaerobic bacteria

(Bunge et al., 2003). As we showed, plenty of bacterial strains

that harbor the AD encoding gene were found in the highest

polluted soils. While, the B. megaterium CYPBM3 was

randomly distribution among soils. The genetic screening of

microbial communities for AD α-subunit and CYPBM3

encoding gene revealed that the AD-positive bacteria found

in the highest PCDD/Fs-contaminated soils belonged mainly to

the genera Pseudomonas, Citrobacter, Cronobacte and Pantoea.

While, the CYPBM3-positive species were abundant in the soil

samples having an intermediate level of contamination with

PCDD/Fs. A similar scenario was also found on a previous

study, where the abundance of bacteria possessing the AD α-

subunit encoding gene was more abundant in the highly

polluted soils (Hanano et al., 2014c). In this regard, it was

reported that the functional profiling of dioxin-degrading

pathways in soils microbes could possibly be affected by the

chlorination degree of PCDD/Fs substituents. Apparently, the

angular dioxygenases (AD) attack the position 1,10a in

dibenzo-p-dioxin and the position 4,4a in dibenzofuran

without preference for the level of chloride substituent

(Habe et al., 2001; Desta et al., 2021). Therefore, three types

of angular dioxygensases have been characterized; a carbazole

1,9a dioxygenase (CARDO) from Pseudomonas sp. strain CA10

(Habe et al., 2001); a dibenzofuran 4,4a dioxygenase (DFDO)

from Terrabacter sp. strain DBF63 (Kasuga et al., 2001); and a

dibenzo-p-dioxygenase 1,10a from Sphingomonas sp. strain

RW1 (Wittich et al., 1992; Armengaud et al., 1998;

Armengaud and Timmis, 1998). In a different fashion, a

particular link between the CYPBM3 activities and the

number of chloride substituent of PCDDs has been

documented. While, the highest activity of CYPBM3 was

found with substrates with one or two chloride substituents

(Sulistyaningdyah et al., 2004), other isoforms of

CYPBM3 actively metabolized tetrachlorinated substituents

(Hanano et al., 2019b).

The functional abilities of AD and CYPBM3-positive strains

were assayed by evaluating the bacterial growth in the presence of
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2,3,7,8-TCDD. Of particular interest, the strain B. megaterium

A4-2 d grew more actively in comparison with others strains and

reached the highest values of CFU mL−1 at week 5 after

inoculation and this was likely correlated to a remarkable

induction of CYPBM3 gene expression. While two other stains

of B. pumilus (A1-2c and A4-2d) showed a weak growth. In line

with this, other strains of B. megaterium were identified as

potential metabolizers of environmental pollutants such as

dioxins, petroleum hydrocarbons, agrochemicals and

polystyrene (Quensen and Matsumura, 1983; Thavasi et al.,

2011; Bardot et al., 2015; Achiles Do Prado et al., 2021; Meng

et al., 2021). Interestingly, these catalytic activities are likely

synchronized to specific biological adaptations assisting

microorganisms to uptake such hydrophobic contaminants in

an efficient manner. e.g., enhancing biosurfactant production,

modulating of surface hydrophobicity and composition of the

cell membrane in B. megaterium (Thavasi et al., 2008; Bouassida

et al., 2018; Hanano et al., 2019b; Singh et al., 2021) or in other

microorganisms (Hanano et al., 2014a; Hanano et al., 2015b;

Plaza et al., 2016; Hanano et al., 2017; Paraszkiewicz et al., 2018).

Intriguingly, the PCDDs-biotransforming activity of CYPBM3

has been experimentally demonstrated for the native or

recombinant P450BM-3 protein, where the purified enzymes

can hydroxylate 2,3-dichloro-, 2,3,7-trichloro-dibenzo-p-dioxin

and 2,3,7,8-tetrachloro-dibenzo-p-dioxin into less toxic

intermediates (Sulistyaningdyah et al., 2004; Hanano et al.,

2019b). On the other hand, our result also showed that

certain strains of P. stutzeri, P.putida and P. fluorescens

effectively grew on 2,3,7,8-TCDD with a significant increase of

the AD α-subunit gene transcripts in the P. stutzeri D2e. Indeed,

several earlier studies reported that such species, and others from

the genus Pseudomonas were remarkable degraders of carbazole

and dioxins (Shintani et al., 2003; Larentis et al., 2011).

In conclusion, the current study presents a set of biological

indicators on the density, diversity, species richness and

functional genetics of microbial communities in

contaminated soils with dioxins. This was with the objective

of identifying new bacteria species with remarkable

metabolizing activities against dioxins. This led to identify

two bacterial strains with remarkable abilities to metabolize

2,3,7,8-TCDD in laboratory-scale experiment, B. megaterium

A4-2d and P. stutzeri D2e with distinct catalytic pathways for

the biotransformation of TCDD, the angular dioxygenase (AD

α-subunit) and cytochrome P450 (CYPBM3). Based on the

different composition of PCDD/Fs and subsequently of their

toxicities, the microbial biodegradation of dioxins seems to be

a complicated process, requiring different metabolizing

pathways that work cooperatively for an effective removal

of PCDD/Fs from contaminated soil. As future work, it will

be important to focus on certain Gram-positive isolates,

mainly those from Bacillus megaterium, with more detailed

molecular and biochemical characterization of their angular

dioxygenases (AD), which are typically found in Gram-

negative bacteria. Moreover, it would be interesting to

determine the functional aspect of these distinct dioxin-

degradation pathways (AD and CYPBM3) when both are

found in such bacteria.
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