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Studying the impact of agricultural machinery services (AMS) on cultivated land

productivity is conducive to scientifically improving agricultural production and

has far-reaching significance for ensuring food security. Taking Handan City in

the North China Plain as the research context and using a surveyed sample of

1918 farming households, this paper examines the effect of AMS on the

productivity of cultivated land using OLS estimation and estimates the

average treatment effect on the treated (ATT) using the propensity score

matching (PSM) method. The research findings are as follows. 1) AMS has a

significantly positive impact on cultivated land productivity, and a heterogeneity

analysis finds that the effects are larger for farmers with relatively less cultivated

land and the marginal effects decrease as the adoption of AMS increases. 2) In

various planting activities, AMS adoption in basic activities (e.g., ploughing,

seeding, and harvesting) has positive effects on cultivated land productivity,

while AMS adoption in management activities (e.g., fertilizing, irrigation, and

pesticide spraying), has no obvious effect on cultivated land productivity. 3)

According to the results of ATT, the conversion of non-adopting farmers to

adopting AMS would increase cultivated land productivity by 7.6%–12.1%. 4) A

mechanism analysis reveals that AMS adoption relieves financial constraints,

improves technical efficiency, and increases smallholders’ crop yields. These

results suggest that AMS has a positive effect on cultivated land productivity and

therefore have valuable policy implications for increasing smallholders’ access

to various types of AMS to improve the productivity of cultivated land in regions

dominated by smallholders.
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1 Introduction

Cultivated land productivity is an important indicator for

facilitating agricultural production, ensuring food security, and

alleviating poverty as well as improving the welfare of farmers

(Desiere and Jolliffe 2018; Khan et al., 2019; Zhou andMa, 2022).

In developing countries that have undergone the green

revolution and structural transformation (such as China,

Thailand, and Myanmar), the rural population has been

attracted by increasing wage rates in the urban sector (Belton

et al., 2021). A trend towards a gradual shortage of agricultural

labor has emerged. Mechanization is an effective labor-saving

method, although smallholders have only a limited capacity to

acquire and apply machinery as it carries a heavy financial

burden and their farms are both small in scale and

fragmented (Benin 2015; Adekunle et al., 2016; Qiao 2020;

Wang et al., 2020; Mahasuweerachai and Suksawat 2022). In

this context, increasing the availability of agricultural machinery

may contribute to the viability of smallholder farming and

therefore boost cultivated land productivity (Rigg et al., 2016;

Takeshima, 2017; Zhang et al., 2017).

China, with 232.1 million farms occupying less than 10 mu

(0.67 ha) of cultivated land, has experienced rapid agricultural

mechanization during the last few decades (Yu and Zhao, 2009).

This trend toward mechanization has relied on the growth of

agricultural machinery services (AMS) (Yang et al., 2013; Wang

et al., 2020; Qiu et al., 2021; Liu et al., 2022). Some of

smallholders’ planting activities can be undertaken by

mechanized service providers on a much larger scale. For

example, Zhang et al. (2017) described harvesting services, a

typical AMS offering that utilizes the time lag between regional

crop harvesting in China, which can last up to 8 months per year.

By tapping into the national machinery services market, AMS

may be able to overcome the constraints facing mechanization

stemming from the small scale of farms and the fragmentation of

cultivated land. This dynamic is not unique to China. Similar

services have existed, for example, in Myanmar, Bangladesh, and

Thailand in Southeast Asia (Mottaleb et al., 2017; Chaya et al.,

2019; Belton et al., 2021), and in Ghana and South Africa in

Africa (Benin, 2015; Emmanuel et al., 2016; Lyne et al., 2018).

The contemporary context of AMS gives rise to two major

themes in the mechanization literature. First, the role of AMS in

enhancing machine availability for smallholders and the

determinants of AMS adoption (Yang et al., 2013; Lyne et al.,

2018; Justice and Biggs 2020; Belton et al., 2021). Second, the

impact of AMS on overcoming the shortage of family labor in

agricultural production (Zhang et al., 2017), reducing the cost of

agricultural production (Tang et al., 2018), and increasing crop

income and household welfare (Wang et al., 2016; Mi et al.,

2020). AMS adoption is also associated with the farm size

adjustment and off-farm employment decisions of rural

households (Ji et al., 2012; Qiu et al., 2021; Qian et al., 2022).

Considering the effects of AMS on agricultural inputs and

outputs, it follows that it may also affect cultivated land

productivity. To date, although the potential impact of AMS

adoption on cultivated land productivity has been mentioned in

some studies (e.g., Justice S and Biggs S; Qiu et al., 2022), few

studies examined how AMS may affect cultivated land

productivity.

The objective of this paper is therefore to understand whether

AMS improves cultivated land productivity and to examine its

potential impact mechanisms, which have broader implications

for farmers’welfare and national food security. The results of this

study will help to reveal the impacts and obstacles to increasing

cultivated land productivity in the presence of AMS. China is a

new frontier for AMS research and the results may be of general

relevance to other developing countries where AMS has emerged

and agricultural systems are dominated by smallholders. The

North China Plain is used as the research context in this paper

considering that it is dominated by smallholders and its plain

terrain is suitable for mechanization. In fact, AMS has been

developed for decades in this area. This paper estimates the

impact of AMS adoption on agricultural production in general

and in different planting activities (e.g., ploughing, seeding,

fertilizing, pesticide spraying, irrigation, and harvesting) in

particular on arable land productivity, and estimates the

average treatment effect on the treated (ATT). We collected

our data through face-to-face interviews. The potential

mechanisms of the impact of AMS on cultivated land

productivity, such as the inputs of labor, capital, and

technology, are further examined.

Our study extends the findings of previous studies and

contributes to the literature on several fronts. First, our

research focuses on the effect of AMS on cultivated land

productivity at the micro-level by taking smallholders as the

research sample. Despite evidence that mechanization affects

cultivated land productivity (e.g., Ito, 2010; Zhou and Ma, 2022),

the potential effects of AMS have been neglected in the existing

literature. The adoption of AMS, as a market service purchase

decision, represents neither an agricultural investment nor the

acquisition of a household asset, but may allow smallholders to

access mechanization that may have previously been held out of

reach by financial constraints or small farm size. In addition, this

paper provides implications for ensuring food security and

promoting agricultural production, both of which remain

serious challenges in many developing counties.

Second, this paper provides insights into AMS, including its

adoption rate in general as well as that in various planting

activities. Basic services include ploughing, seeding, and

harvesting, and management services include fertilizing,

spraying, and irrigation. As such, we follow the existing

studies in measuring the overall adoption of AMS and adopt

other, more detailed measures based on this. Meanwhile, this

paper analyzes the heterogeneous impact of different types of

AMS and estimates the ATT, which can provide a more targeted

reference for policy-makers.
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Finally, this study develops a conceptual framework for

understanding the underlying mechanisms between AMS

adoption and cultivated land productivity that includes factors

such as agricultural labor substitution, financial constraints,

technological improvements, and output quality and quantity

enhancement and empirically tests these mechanisms. This

extends upon the existing research and provides more detailed

information with which to explain the pathways of the effects of

AMS on agricultural production.

The rest of this paper proceeds as follows. Section 2 illustrates

the conceptual framework. Section 3 introduces the data sources

and describes the identification strategy. The results are

presented and analyzed in Section 4. Section 5 concludes and

suggests policy implications.

2 Conceptual framework

The essential elements of farming are land, labor, capital, and

technology. For developing countries, the contributions of AMS

are mainly reflected by its capacity to relieve the input constraints

of agricultural labor, capital, and technology (Yang et al., 2013;

Benin, 2015; Tang et al., 2018). In this study, we analyze the effect

of AMS on cultivated land productivity through these

mechanisms. Figure 1 depicts a simplified framework of

potential mechanisms and illustrates how AMS adoption

affects cultivated land productivity.

The first mechanism highlights the impact of AMS on cultivated

land productivity by alleviating the constraints caused by

agricultural labor shortages. The rising wage rate and the wage

gap between rural and urban sectors have attracted increasingly rural

labor migration, which has resulted in the agricultural labor pool

shrinking and aging over time (Ji et al., 2012; Yamauchi, 2016; Min

et al., 2017; Yu et al., 2021). Input constraints on the quantity and

quality of agricultural labor may lead to extensive farming

operations and lagging technology adoption, and ultimately

reduce cultivated land productivity. AMS, as an available source

of mechanization for smallholders, can reduce labor drudgery and

alleviate agricultural labor shortages at a relatively lower cost than

hired labor and/or purchased machinery (Tang et al., 2018; Daum

and Birner, 2020; Qiao, 2020). As such, the adoption of AMS can

reduce or compensate for the loss of cultivated land productivity due

to agricultural labor shortages.

The second mechanism focuses on the impact of AMS on the

application of agricultural technology. The adoption of

specialized agricultural techniques, such as deep soil

ploughing, straw returning, and soil formula fertilization,

often requires specific types of machinery (Shikuku, 2019;

Zhou et al., 2020; Yu et al., 2021). Smallholders are

constrained by factors such as access to information and

capital as well as the limited size of cultivated land, and their

adoption of new technologies is often slow and/or limited as a

result (Tan et al., 2006; Zhang et al., 2017). AMS provides

mechanized operations and acts as a transmitter of

agricultural technology (Mi et al., 2020; Yu et al., 2021). As

such, AMS may lead to technological improvement via the

substitution of agricultural labor by mechanization as well as

through the use of specialized machinery. In this way, AMS can

facilitate the adoption of agricultural technologies and improve

the technical efficiency of smallholders and thus potentially

increase cultivated land productivity (Pfeiffer et al., 2009;

Kousar and Abdulai, 2016).

The third mechanism refers to the effect of AMS on financial

constraints in agriculture. Various types of AMS can relieve the

financial burden of purchasing machinery. Most agricultural

machines have strong asset specificity; that is, they cannot easily

be adapted for other purposes. Purchasing multiple complex and

specified agricultural machines would require smallholders to

assume a prohibitively heavy financial burden (Yu et al., 2021).

Moreover, the mechanisms for labor-saving and adopting new

FIGURE 1
Conceptual framework of the impact of AMS on cultivated land productivity.
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technologies can separately reduce the cost per unit of cultivated

land or the unit output yield. Therefore, the adoption of AMS may

relieve smallholders’ financial constraints and allow them to secure

the capital inputs needed to increase their cultivated land

productivity (Ma and Abdulai, 2016).

In light of the aforementioned mechanisms, AMS adoption

may allow smallholders to secure essential inputs for agricultural

production, reduce financial constraints and productivity loss

due to agricultural labor shortages, and increase productivity

through technology improvements. These effects manifest in

terms of increased crop yield and/or quality. For example, the

adoption of deep soil ploughing as a soil improvement measure

may contribute to improving yield and/or output quality and

thus improve cultivated land productivity (Pfeiffer et al., 2009;

Kousar and Abdulai 2016). We therefore hypothesize that the

adoption of AMS can increase cultivated land productivity.

Due to the unique characteristics of each planting activity, AMS

adoption may have different effects in different activities. For

example, a mechanized harvesting service allows farmers to

reduce labor inputs as well as relieve financial constraints as they

are not required to purchase the harvester. However, sprayers are

relatively cheaper than harvesters, and AMS for pesticide spraying

mainly substitutes labor rather than financial input. We divide

planting activities into basic activities and crop management

activities based on their characteristics. The former includes

ploughing, seeding, and harvesting, all of which are essential and

the mechanization of which relies on relatively expensive large

machinery such as tractors and harvesters. The latter concerns

fertilizing, spraying, and irrigation. Farmers may engage in these

activities a variable number of times during planting, and their

mechanization is largely based on the use of small machinery. As an

example, the frequency of pesticide spraying depends on seasonal

pest conditions, and the required sprayer is relatively inexpensive. In

terms of the intensity of the labor input required for the different

planting activities, basic activities often require intense physical

input, while management can be done by older workers who are

relatively less physically capable.

Considering the differential impact of AMS adoption in basic

and management activities on capital constraints and labor input

intensity, it follows that smallholder that predominantly use

family labor are more likely to adopt AMS in basic activities

and thus be more affected by it overall. Therefore, we hypothesize

that AMS adoption in basic activities has a larger impact on

cultivated land productivity than AMS adoption in management

activities.

3 Materials and methods

3.1 Data source

The data used in this study were obtained from a rural

household survey conducted in the North China Plain. This

survey was conducted in February 2018 through face-to-face

interviews in collaboration with Nanjing Agricultural University

and China Agricultural University. With the assistance of

computer-assisted personal interviewing techniques, we used

an open-source software, ODK, to design the questionnaire

and collect rich data (such as photos, GPS location and

agricultural production data). It provides detailed information

on the input and output of agricultural production in 2017 as well

as the basic characteristics of rural households and villages.

Handan city, a prefecture-level city in Hebei Province, is set

as a case study area in the North China Plain. The topography in

Handan city is diverse, the west of which is the mountain and the

hill (46%), while the east is the plain (54%). We selected four

adjacent counties in the northeast, including Feixiang, Jize, Qiu,

and Quzhou. The locations are shown in Figure 2. These four

counties share some key characteristics which could help focus

on our key research questions. First, they are all plain topography

and are dominated by smallholders. Second, the majority of

farmers grow double-season crops that consist of winter wheat

and summer maize. Third, AMS has been developed for a few

decades. (Liu et al., 2022). Moreover, these four counties differ in

distance from Handan city center and then imply the variance in

off-farm employment and AMS, which is necessary for the

empirical identification. Therefore, the study area is

representative of the North China Plain, which not only

reduces the concerns about inconsistent results caused by

agricultural production conditions, but also provides the

necessary variation in key explanatory variables.

A multi-stage random sampling method was used in these four

adjacent counties.Most townships in these four countieswere selected

as surveyed regions1, and the townships were divided into three

groups according to the number of villages in the township (i.e., 1–10,

11–20, and >20 villages). From each of these three groups, two, four,

or six villages were randomly selected. In each of the selected villages,

16 households were randomly selected from a list of household heads.

In total, 2080 households were randomly chosen from 130 villages.

We used a sample of 1918 of those households that engaged in

farming. The majority of the farmers in this area grow double crops,

including winter wheat and summer maize. The composition of the

sample is shown in Supplementary Appendix.

3.2 Variable definitions and descriptive
analysis

The dependent variable for cultivated land productivity is

measured as output per unit of cultivated land area. This is

consistent with many existing studies (e.g., Martey et al., 2019;

Zhou and Ma., 2022). In our study area, farmers usually grow

more than one crop. To ensure consistent estimates of cultivated

land productivity among the sampled households, we took the

logarithm of the total value of maize and wheat per mu

(15 mu = 1 ha).
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In this study, the treatment variable refers to farmers’ AMS

adoption status. The treatment and non-treatment groups are

classified as adopters and non-adopters based on their adoption

of AMS. This is consistent with many studies that have focused

on the impact of AMS on farm size adjustment, agricultural

income, and the welfare of rural households (e.g., Chaya et al.,

2019; Mi et al., 2020; Qian et al., 2022). Crop cultivation

encompasses a variety of activities, such as ploughing, seeding,

fertilizing, spraying, irrigation, and harvesting, which, in the

study area, may require mechanization in the cultivation of

wheat and maize. Thus, to identify the different effects of

AMS in various planting activities, the treatment groups can

be divided according to AMS adoption in general as well as that

in each planting activity.

As described in Chapter 2, we divide planting activities into

basic activities and crop management activities based on the

characteristics of each. The overall proportion of AMS adoption

in basic activities is relatively high (i.e., 86.9%–92.5%; see Table 1)

and has been largely mechanized, while the average proportion of

AMS adoption in crop management activities, which are

generally performed manually or through the use of owned

machines, is relatively low and ranges from 1.1% to 13.7%

(also see Table 1). The obvious difference in the adoption rate

between basic and management activities is consistent with the

theoretical analysis in Section 2. As such, this study seeks to

examine the impact of AMS adoption on cultivated land

productivity, including overall adoption, adoption in different

types of services, and adoption in each planting activity.

Drawing upon the work of Takeshima (2017), Baiyegunhi

et al. (2019), Amoozad-Khalili et al. (2020), Zhou andMa (2022),

this study adds control variables in three categories that describe

the characteristics of the household head, family, and village. The

variables in the household head category include age, gender,

education (in years), participation in agricultural training, off-

farm experience, and membership in village cadres. Family-level

variables include household size, contract land area, the net

change in cultivated land area through land rental, main soil

type of cultivated land, number of tractors owned, and the

availability of loans. The variables in the village category

include distance to the nearest township, the total number of

households, and the total area of arable land. Detailed definitions

and descriptive statistics for the above variables are presented in

Table 1. To detect the collinearity, we tested for the degree of

multicollinearity amongst the independent variables. The mean

VIF (Variance inflation factors) for the independent variables

was 2.42. Therefore, there was no significant multicollinearity

amongst the independent variables.

3.3 Estimation strategy

As mentioned above, this study is interested in assessing the

impact of AMS on cultivated land productivity. We begin by

estimating the relationship between AMS adoption and

cultivated land productivity at the household level. The

specified equation is set as follows:

FIGURE 2
Geographical location of the study area.
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Yi � α0 + α1AMSi + α2X i + σTi + μi (1)

where Yi represents the dependent variable for household i

(i.e., cultivated land productivity) measured as the logarithm

of output value per unit area of cultivated land. AMSi is a set of

variables on the AMS adoption of household i that includes the

AMS adoption rate in total planting activities and that in

different activities, including basic and management activities.

Xi controls the characteristics of the household head, family, and

village, which also affect land productivity. Ti is a series of

dummy variables at the township level to control for

differences across townships (e.g., agroclimate) . μi is the error

term. Because the dependent variable in this paper (i.e., cultivated

land productivity) is a continuous variable, the OLS estimator is

suitable for Eq. 1.

Because farmers are not randomly assigned into the groups of

those who adopt AMS and those who do not, the adoption of

AMS by rural households may be self-selective and thus the OLS

estimator in Eq. 1 may be biased (Takeshima, 2017; Khan et al.,

2019). To achieve an unbiased estimation of the impact of AMS

adoption on cultivated land productivity, we should first address

the selection bias. Several solutions have been used in the existing

studies to solve the self-selection problem, such as the Heckman

selection model, Endogenous switching regression, and the

instrumental variable method. However, all such approaches

face challenges in identifying appropriate instrumental

variables (Mendola, 2007; Zhang et al., 2020). In this study,

AMS involves a range of adoption variables related to the total

planting process and to different planting activities. It is

challenging to find suitable instrumental variables that affect

TABLE 1 Variable definitions and summary statistics.

Variable Definition Mean S.D.

Dependent variables

Land productivity Total output value of cultivated land (RMB/mu), log 7.464 0.203

Independent variables

AMS ratio Percentage of planting activities adopted AMS (%) 42.07 14.67

Basic services 1, if any basic activities (ploughing, seeding, harvesting) adopted AMS 0.947 0.224

Ploughing 1, if AMS was adopted in ploughing activity; 0, otherwise 0.869 0.337

Seeding 1, if AMS was adopted in seeding activity; 0, otherwise 0.925 0.263

Harvesting 1, if AMS was adopted in harvesting activity; 0, otherwise 0.885 0.319

Management services 1, if any management activities (fertilizing, spraying, irrigation) used AMS 0.208 0.406

Fertilizing 1, if AMS was adopted in fertilizing activity; 0, otherwise 0.137 0.344

Spraying 1, if AMS was adopted in spraying activity; 0, otherwise 0.011 0.104

Irrigation 1, if AMS was adopted in irrigation activity; 0, otherwise 0.092 0.289

Control variables

Household head

Age Age of the household head (years) 57.550 10.300

Gender 1, if the household head is male; 0, if female 0.943 0.232

Education Number of years of education of the household head (years) 6.981 3.589

Village leader 1, if the household is a village cadre; 0, otherwise 0.314 0.464

Training 1, if the household participated in agricultural training; 0, otherwise 0.063 0.243

Off-farm 1, if the household has held an off-farm job; 0, otherwise 0.105 0.307

Family

Household size Number of household members 4.752 2.207

Contract land Area of contracted land (mu) 7.224 4.117

Rented land Area of rented-in land from land rental market (mu) 0.880 3.972

Soil typea Main soil types of arable land cultivated by family 1.950 0.897

Tractor Number of tractors owned by household 0.143 0.386

Credit 1, if a loan can be obtained from banks; 0, otherwise 0.198 0.399

Village

Township distance Village distance to the nearest township (km) 12.719 7.368

Household number Total number of households in the village 306.070 191.319

Village cultivated land Total size of village arable land (mu) 1840.884 955.747

Note: 6.18 RMB, 1 dollar (2018).a 1 = sandy soil; 2 = loamy soils; 3 = clay; 4 = others.

Data source: Authors’ survey.
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the AMS adoption in the ploughing, seeding, irrigation,

fertilizing, pesticide spraying, and harvesting activities while

not directly affecting cultivated land productivity.

Following Dehejia and Wahba (2002) and Zhang et al.

(2020), this study uses a statistical matching approach to

estimate the average treatment effect on the treated (ATT). In

particular, the matching method matches AMS adopters and

non-adopters that have similar observable attributes. The

matching estimator will have a consistent treatment effect

when the dependent variable is independent of AMS adoption

(Mendola, 2007). To estimate the average treatment effect of

AMS on land productivity, for each rural household i, Yio andYi1

represent the outcomes for treated and untreated groups (i.e., the

cultivated land productivity of AMS adopters and non-adopters),

respectively. For a rural household, the treatment effect of AMS

adoption on cultivated land productivity can be derived from

E(Yi1 − Yi0). Because the treatment is exclusive, it is impossible

to observe the cultivated land productivity of non-adoption for

those who actually adopt AMS. Similarly, for non-adopters of

AMS, we could not observe their cultivated land productivity if

they adopt AMS. Using the counterfactual framework proposed

by Rosenbaum and Rubin (1983) to randomize the non-random

data, this study estimates the counterfactual probabilities for the

treatment and control groups. To estimate the impact of AMS

adoption on cultivated land productivity, we use a matching

method to calculate the ATT, which we estimate by the following

equation:

ATT � E[(Yi1 − Yi0)|T � 1] (2)

where T represents a binary variable for treatment status and

takes the value of 1 if household i in the treated group is an AMS

adopter and 0 otherwise. Matching methods usually assume

ignorability, common support selection on observables, or

confoundedness (Dehejia and Wahba, 2002; Imbens and

Wooldridge, 2008). This implies that the differences in land

productivity between the treatment and control groups after

matching are uniquely attributed to the treatment attributes

and that the matched observations assigned to the treated

group are random (Uematsu and Mishra, 2012).

Propensity score matching (PSM) is employed to match the

AMS adopters to non-adopters with similar characteristics and to

ensure that dissimilar households and outliers will have little or

no influence on the treatment effects (Rosenbaum and Rubin,

1985). As a commonly used matching estimate in treatment

effect analysis, PSM has been widely used in the agricultural

economics literature (e.g., Mendola, 2007; Imbens and

Wooldridge, 2008; Uematsu and Mishra, 2012; Mishra et al.,

2017). It is popularly used as a non-experimental method to

estimate ATT for specific program participation or technology

adoption (Smith and Todd, 2005; Caliendo and Kopeinig, 2008;

Mi et al., 2020). For example, Zhang et al. (2020) used PSM to

estimate the effect of land rental market participation on the

labor productivity of rural households. PSM is a non-parametric

type of estimate without any specific functional forms or

distribution assumptions (Imbens and Wooldridge, 2008).

With the matched sample, ATT can be estimated directly by

comparing outcomes between the treated and untreated groups

(Austin, 2011). In this study, the control group is a sample of

farm households that do not adopt AMS but have similar

characteristics to those that do. We construct a near-random

counterfactual dataset to compare the impact of AMS on

cultivated land productivity.

The shortcoming of the PSM approach is that it cannot

eliminate the selection bias caused by unobservable factors. If an

unobservable factor simultaneously affects both the observations

assigned to the treated group and the outcome variable, a hidden

bias may arise to which matching estimation is not robust

(Rosenbaum, 2002). For example, a farmer’s agricultural

ability is difficult to observe, although it may affect both AMS

adoption and cultivated land productivity. In recognition of this,

a sensitivity analysis of the robustness of the estimates is

conducted to determine how strongly unobservable factors

affect AMS adoption. We estimate a critical odds ratio as

proposed by Rosenbaum and Rubin (1983) and Rosenbaum

(2002) and followed by studies such as Khan et al. (2019) and

Zhang et al. (2020).

4 Results

4.1 OLS estimation results

4.1.1 Main results
The estimated results of Eq. 1 are reported in Table 2. In

column (1), the estimated coefficient of AMS is positive and

statistically significant. The results show that the adoption rate of

AMS increases cultivated land productivity when controlling for

the characteristics of the household head, family, and village. A

similar positive relationship between mechanization and land

productivity was found by Paudel et al. (2019) in Nepal, and

Zhou and Ma (2022) in China. This result is consistent with the

hypothesis that the adoption of AMS has a positive impact on

cultivated land productivity and implies that AMS can play an

active role in promoting agricultural production and ensuring

food security.

In addition to AMS, several control variables have a

significant effect on cultivated land productivity.

Specifically, the coefficients on the years of education and

the membership in the village cadre of household heads are

positive and significant. These are in line with existing

studies that have found that the efficiency of household

agricultural production is related to the capacity of the

household head (Khan et al., 2019; Zhou et al., 2019;

Zhang et al., 2020). Moreover, loan availability has a

significant and positive impact on cultivated land

productivity, thus indicating that the less financial
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constraints, the higher possibility that farmers can increase

land productivity. The village-level variables are not

significant, most likely because the township fixed effect

controls for most regional differences.

4.1.2 Heterogeneity analysis results
In columns (2) to (5) of Table 2, we explore the heterogeneity

of the impact of AMS adoption on cultivated land productivity to

deepen our understanding of this relationship. First, the sample is

TABLE 2 OLS regression for the effect of AMS on cultivated land productivity.

Full sample Farm size AMS ratio

[0,50] (50,100] [0,50] (50,100]

(1) (2) (3) (4) (5)

AMS ratio 0.002*** 0.003*** 0.002*** 0.004*** -0.000

(0.001) (0.001) (0.001) (0.001) (0.002)

Age 0.000 0.000 0.000 0.000 -0.000

(0.000) (0.001) (0.001) (0.001) (0.001)

Gender 0.005 −0.012 0.044 0.000 0.037

(0.020) (0.024) (0.036) (0.022) (0.043)

Education 0.003* 0.004** 0.000 0.003* 0.003

(0.001) (0.002) (0.002) (0.002) (0.003)

Village leader 0.029** 0.008 0.047* 0.023 0.037

(0.014) (0.019) (0.025) (0.018) (0.027)

Training 0.026* 0.034 0.025 0.034** -0.047

(0.015) (0.023) (0.021) (0.017) (0.042)

Off-farm −0.002 −0.011 0.010 −0.006 0.015

(0.010) (0.016) (0.016) (0.013) (0.020)

Household size 0.003* 0.004 0.003 0.004* −0.003

(0.002) (0.003) (0.003) (0.002) (0.005)

Contract land 0.002* 0.005 0.004** 0.001 0.006**

(0.001) (0.004) (0.002) (0.001) (0.002)

Rented land 0.000 0.001 0.001 0.001 −0.001

(0.001) (0.009) (0.001) (0.002) (0.002)

Soil type 0.008 0.003 0.017** 0.009 0.011

(0.006) (0.008) (0.008) (0.007) (0.011)

Tractor 0.014 0.009 0.017 0.012 0.041

(0.015) (0.030) (0.016) (0.016) (0.033)

Credit 0.047*** 0.032* 0.064*** 0.050*** 0.014

(0.010) (0.017) (0.014) (0.012) (0.024)

Township distance −0.001 0.001 −0.003** −0.002 −0.002

(0.001) (0.002) (0.002) (0.001) (0.003)

Household number −0.000 −0.000 −0.000 −0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Village cultivated land 0.000 0.000 0.000 0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Township FE Yes Yes Yes Yes Yes

Constant 7.372*** 7.266*** 7.246*** 7.251*** 7.255***

(0.052) (0.064) (0.079) (0.055) (0.126)

F test 8.74*** 2.46*** 3.48*** 4.00*** 2.20***

R2 0.105 0.125 0.140 0.120 0.243

Observations 1918 967 951 1596 322

Note: The standard errors clustered at village level are shown in parentheses. *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively.

Data source: Authors’ survey.
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divided into two subsamples based on the median farm size, with

columns (2) and (3) reporting the results of AMS adoption for

farmers operating relatively smaller and larger farms. We find

that AMS is more effective in increasing the cultivated land

productivity among farmers with relatively small farms.

Considering that smallholders usually operate fragmented

plots and lack collateral, it is likely that they face financial

constraints. As a result, it is more difficult for smallholders to

access mechanization through machinery ownership, which is

the standard method of mechanization (Tan et al., 2006; Wang

et al., 2020). Furthermore, AMS can offer smallholders easier

access to mechanization in various planting activities and thus

has a greater effect on cultivated land productivity among

farmers with relatively small farms. This finding is largely

consistent with that of Zhou and Ma (2022) that small farms

are more beneficial to land productivity through mechanization.

We separate the sample into observations with below-

median and above-median AMS adoption rates for separate

analyses. The estimated results are reported in columns (4)

and (5). We find that households in the lower adoption rate

group benefit more from AMS in terms of cultivated land

productivity. In contrast, the coefficient for the higher

adoption rate group is not significant. These results imply

that the marginal effects of AMS adoption decrease as the rate

of AMS adoption increases.

4.1.3 Effects of AMS adoption in different
planting activities

Table 3 presents the estimated results of the adoption of AMS

in different activities. The results in columns (1) to (4) reveal that

the general adoption rate of AMS for basic activities and the

specific adoption in the ploughing, seeding, and harvesting

activities have significant and positive effects on land

productivity at the 1% significance level. The effects of AMS

adoption in basic activities on cultivated land productivity are

between 7.6 and 12.1%. In contrast, columns (5) to (8) show that

the adoption of AMS in management activities has no significant

effect on cultivated land productivity. Combined with the reality

that the rate of AMS adoption in management activities is very

low compared to that in basic activities (see Table 1), the

difference in the impact on cultivated land productivity

between management and basic activities may be partly

explained by the following two reasons. Machinery used in

management activities (e.g., pumps) is less expensive than that

used in basic activities (e.g., tractors), thus smallholders rely more

on AMS in basic activities. And the agricultural labor force used

TABLE 3 OLS regression for the effect of AMS on cultivated land productivity by planting activity.

Dependent variable: Cultivated land productivity

(1) (2) (3) (4) (5) (6) (7) (8)

Basic services 0.109***

(0.038)

Plaughing 0.076***

(0.019)

Seeding 0.101***

(0.032)

Harvesting 0.121***

(0.027)

Management services −0.016

(0.000)

Spraying −0.018

(0.012)

Irrigation −0.090

(0.060)

Fertilizing −0.005

(0.014)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Township FE Yes Yes Yes Yes Yes Yes Yes Yes

F test 9.02*** 8.58*** 9.34*** 8.48*** 7.81*** 7.70*** 7.53*** 7.69***

R2 0.091 0.092 0.093 0.111 0.078 0.079 0.080 0.078

Observations 1918 1918 1918 1918 1918 1918 1918 1918

Note: The standard errors clustered at the village level are shown in parentheses. *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively.

Data source: Authors’ survey.
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by smallholders is often the residual family labor force after off-

farm migration, which has a low opportunity cost and allows for

the engagement in management activities that are relatively less

physically demanding. The above results are therefore consistent

with the hypothesis in the theoretical analysis that AMS adoption

in basic activities has a larger impact on cultivated land

productivity than AMS adoption in management activities.

4.2 Average treatment effects on the
treated

Table 4 presents the results of the ATT of AMS on cultivated

land productivity. We use the nearest neighbors matching

method, and the radius matching method and kernel

matching method are performed for comparison (see

Supplementary Appendix). In particular, the households that

adopt AMS in general, basic, and management activities are

compared separately to the counterfactual households that do

not adopt AMS. The results reveal a significant and positive

impact of AMS adoption in general and basic activities as well as

in each individual activity in basic services on cultivated land

productivity. Since the dependent variable is in logarithmic form,

the estimated results of ATT suggest that the overall adoption of

AMS increases cultivated land productivity by between 16.3%

and 17.9%. Furthermore, the AMS adoption in basic activities in

general and in each individual activity increase land productivity

by 10.3%–17.2%. However, the adopters of AMS in management

activities are not significantly different from non-adopters in

terms of cultivated land productivity.

Based on the results in Table 4, it can be concluded that in the

absence of selection bias, cultivated land productivity for rural

households who adopt AMS is significantly higher than that for

non-adopters. This finding is similar to those of the studies that

TABLE 4 Average treatment effect of AMS adoption on land productivity by PSM.

Nearest neighbors Mean outcome Treatment effect

Treated Controls ATT

AMS adoption 1 7.471 7.292 0.179** (0.047)

2 7.471 7.303 0.168*** (0.044)

3 7.471 7.308 0.163*** (0.044)

Basic activities 1 7.468 7.296 0.172*** (0.047)

2 7.468 7.296 0.172*** (0.045)

3 7.468 7.303 0.164*** (0.044)

Plaughing 1 7.473 7.365 0.108*** (0.030)

2 7.473 7.365 0.108*** (0.030)

3 7.473 7.368 0.105*** (0.028)

Seeding 1 7.469 7.338 0.131*** (0.041)

2 7.469 7.341 0.128*** (0.038)

3 7.469 7.349 0.119*** (0.038)

Harvesting 1 7.476 7.335 0.141*** (0.036)

2 7.476 7.354 0.122*** (0.033)

3 7.476 7.355 0.121*** (0.032)

Management activities 1 7.456 7.466 −0.010 (0.017)

2 7.456 7.470 −0.013 (0.015)

3 7.456 7.475 −0.019 (0.014)

Fertilizing 1 7.446 7.471 −0.025 (0.020)

2 7.446 7.473 −0.027 (0.018)

3 7.446 7.473 −0.027 (0.017)

Spraying 1 7.377 7.392 −0.015 (0.087)

2 7.377 7.422 −0.045 (0.073)

3 7.377 7.451 −0.074 (0.070)

Irrigation 1 7.470 7.491 −0.021 (0.024)

2 7.470 7.488 −0.018 (0.019)

3 7.470 7.488 −0.018 (0.018)

Note: ATT, the average treatment effect on the treated; The standard errors are shown in parentheses. *, **, and *** denote p < 0.10, p < 0.05, and p < 0.01, respectively.

Data source: Authors’ survey.
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previously found a significant and positive effect of agricultural

technology adoption on cultivated land productivity (e.g., Asfaw

et al., 2012; Khonje et al., 2015; Zhou and Ma, 2022). In addition,

the above results are also consistent with the results of the OLS

estimation in Table 3 and support our first hypothesis. Given the

consistency between the OLS and PSM results, it is convincing to

use the ATT results of PSM to interpret the economic

significance of the effect of AMS on cultivated land

productivity, as well as to use the results of OLS regression to

compare the effects among different groups mentioned above.

A Rosenbaum bounds sensitivity analysis is used to assess the

presence of unobserved factors when the key assumption is

relaxed by a quantifiable increase in uncertainty (Rosenbaum,

2002). The measurement of the critical value of hidden bias, Γ, is
expressed in terms of the odds ratio of differential treatment. The

magnitude of hidden bias, which would make the finding of a

positive and significant effect of AMS adoption on cultivated land

productivity questionable, should be higher than one2. At each Γ,
we calculate the lower and upper hypothetical significance levels,

which represent the bound on the significance level of the ATT in

cases of endogenous self-selection into the treatment

group. From the results of Rosenbaum’s sensitivity in

Supplementary Appendix, a hidden bias of Γ between 2.0 and

2.1 is required to declare that the finding of a positive effect of

AMS adoption on cultivated land productivity is false. This small

Γ suggests that the results of the ATT estimation can be trusted.

4.3 Mechanism test of the effect of AMS
adoption on cultivated land productivity

Our analysis in the previous section demonstrates that AMS

adoption increases cultivated land productivity both in general

and in basic planting activities. This study also examines the

heterogeneity in this effect across farm sizes and rates of AMS

adoption. While limitations in the available data prevent us from

revealing all possible mechanisms that link AMS adoption to

cultivated land productivity, we consider the main mechanisms

discussed in the conceptual framework (i.e., those shown in

Figure 1), namely, labor substitution, technology

improvement, financial constraints, and output yield and

quality. The mechanism variables are defined and summarized

in Supplementary Appendix.

The first mechanism is via the effect of AMS adoption on

agricultural labor input. Column (1) of Table 5 shows that

increasing the rate of AMS adoption has a negative effect on

the amount of agricultural labor input needed by

smallholders, although the coefficient is not significant.

We speculate that the potential reasons for this

insignificant result may be as follows. First, the labor force

used by smallholders is usually the residual labor, that is,

unable to obtain off-farm employment opportunities. In such

a situation, even if AMS could reduce the input intensity of

agricultural labor, this component of the household labor

force may still engage in agriculture. Second, the adoption of

AMS may result in the expansion of farm sizes, as found by

Qian et al. (2022). Those households may then not be able to

reduce the total amount of family labor needed for

agriculture. Third, AMS adoption varies by planting

activity, and activities for which AMS adoption is

relatively weak generally rely on manual labor.

The second mechanism (i.e., technological improvement)

is motivated by the idea of mechanization and has been cited

in the literature as a mechanism for technological adoption.

Because the adoption of AMS for different planting activities

may involve different agricultural technologies that are not

necessarily directly comparable with each other, we use

technical efficiency as a more comparable measure of

technological progress. We expect the adoption of AMS to

improve the technical efficiency of adopters. As in previous

studies (e.g., Villano and Fleming 2006; Michler and Shively

2015; Ma et al., 2017), we estimate technical efficiency using

stochastic frontier analysis. In column (2) of Table 5, we find

that AMS adoption has a significant and positive effect on

technical efficiency. This is largely consistent with the existing

studies that find that mechanization enhances technological

improvement at the household level in Iran, Bangladesh, and

parts of rural China (Hormozi et al., 2012; Zhou et al., 2019;

Vorita et al., 2021).

The third mechanism is the effect of AMS on alleviating

financial constraints. Financial constraints have been an

important obstacle to smallholders purchasing agricultural

machinery, adopting new technologies, and investing in

agriculture. Given their lack of collateral, inter-farmer

borrowing is the main method through which they alleviate

financial constraints. In this paper, the number of times

farmers borrowings from other villagers in the past 5 years

is used to measure financial constraints. As the results in

column (3) of Table 5 show, a rising adoption rate of AMS

significantly reduces the frequency of borrowings from other

villagers. This result is consistent with the theoretical analysis

of Yu et al. (2021).

Increases in land productivity may be the result of quantity

and/or quality improvements (i.e., increases in output yields and/

or selling prices). Columns (4) and (5) show that the AMS

adoption rate has a positive effect on crop yield, although

there is no significant effect on selling price. Our results reveal

that AMS adoption can increase the output yield per unit area of

cultivated land. The insignificant coefficient on selling price can

be partly explained by the low bargaining power of smallholders

in agricultural markets, which makes selling prices relatively

2 Readers who are interested in the Rosenbaum sensitivity test are
advised to read Rosenbaum (2002) and Diprete and Gangl (2004)
for a detailed understanding of the method.
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exogenous to smallholders (Rutten, et al., 2017; Pingali et al.,

2019).

5 Conclusions and policy implications

The importance of AMS for improving smallholders’ access

to mechanization and the need for mechanization to boost

agricultural production and ensure food security have been

greatly highlighted in the existing studies. However, few

studies consider the effect of AMS, as a new mechanization

source, on cultivated land productivity. In response to this gap,

this study investigates the broad impact of AMS adoption and the

adoption of AMS in various production activities on cultivated

land productivity, and further identifies the mechanisms of those

impacts. In the context of the North China Plain and based on the

survey data of 1918 smallholders, this study uses OLS estimation

as its basic results and PSM to address self-selection bias and

estimate the average treatment effect on the treated (ATT).

The results of the OLS estimation show that AMS increases

cultivated land productivity, especially for farmers with relatively

small farms and relatively low AMS adoption rates. Moreover, we

find that the adoption of AMS in basic activities (e.g., ploughing,

seeding, and harvesting) significantly increases cultivated land

productivity, while the adoption of AMS in management activities

(e.g., spraying, irrigation, and fertilizing) has no obvious effect on land

productivity. In addition, the results of PSM show that the adoption

of AMS both in general and in basic activities increases cultivated

land productivity by between 10.5% and 17.9%. Furthermore, we find

that technological improvement, easing of financial constraints, and

increasing yields are important mechanisms through which AMS

affects cultivated land productivity.

Our findings have important implications for promoting

agricultural modernization and ensuring food security. First,

this study finds that AMS adoption can increase cultivated

land productivity and suggests that improved adoption of

AMS by smallholders can facilitate agricultural production.

Second, the findings from the mechanism analysis suggest that

AMS adoption can be an effective pathway for alleviating

financial constraints, promoting technological improvement,

and increasing crop yields. The existence of these mechanisms

implies that there will be a complementary relationship between

the extension of AMS and the support policies of the agricultural

credit as well as the agricultural technology systems.

There are a few limitations that should be taken into account

in interpreting and generalizing the results of this study. First,

this study was conducted in a plain area dominated by

smallholders with a similar crop structure, while for the other

areas of rural China where the topography and crop structure are

more diverse, the results may need some caveats. Future research

should examine whether the effects of AMS on cultivated land

productivity vary with topography and crop structure. Second,

this study mainly examines the cultivated land productivity of

smallholders. In recent years, however, the Chinese government

has actively encouraged the development of farmer cooperatives

and agricultural companies. These new actors in Chinese

agriculture may also be providers of AMS. Taking these

developments into account may provide a complete picture of

the relationship between AMS and cultivated land productivity.
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