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This study aimed to identify the impact of an annular solar eclipse i.e., 21 June

2020 on the variation of meteorological parameters along with trace gases

using statistical analyses. The study site is located at Poornima University, Jaipur

(26.7796°N, 75.8771°E), Rajasthan, India. The observational analysis indicates a

rapid decrease in solar direct radiation (SDR) which varied between 706 and

79 W/m2 during the eclipse. SDRwas reduced to 79 W/m2 at themaximumpeak

of the solar eclipse at 11:55 a.m. at the study location. The comparative analysis

shows the variation of SDR during the solar eclipse day, the previous day, and

the day after the event. A strong dip was observed in SDR during the annular

eclipse day concerning before (734.31 W/m2) and after (734.375 W/m2) eclipse

event. Furthermore, the impact of the solar eclipse on temperature (Ts) and

Relative Humidity (RH) was analyzed over Jaipur. The statistical analyses

demonstrate an apparent decrease in temperature of about 2°C while RH

shows a slight increment (3.45%) during the solar eclipse event. The results

show an inverse correlation between the solar eclipse and trace gases variations

during the eclipse due to the changes in solar radiation, surface temperature,

and variation in winds that might affect the photochemical processes.

KEYWORDS

solar eclipse, solar radiation, Temperature, energy budget, trace gases, Northwestern
India

Introduction

The solar eclipse is a rare natural phenomenon, which provides a unique opportunity

to study the sudden changes in the atmosphere due to variation in solar direct radiation

(SDR) (Tzanis et al., 2008). SDR plays a very important role in shaping the Earth’s thermal

balance. Solar eclipse leads to rapid cut-off in SDR for a duration of a fewminutes to hours

and has the ability to alter the Earth’s Energy Budget. Abbott (1958) measured the

radiative changes during the partial eclipse and reported that a small reduction in net SDR
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was much greater than the small obscuration of the Sun’s disc

and stated that the phenomenal decrease was due to penumbra in

the atmosphere. The variation in the SDR is responsible for the

abrupt changes in meteorological variables and photochemical

processes in the atmosphere. A large number of studies carried

out to understand the impact of the solar eclipse on the

atmospheric phenomenon. The impact of the solar eclipse on

meteorological variables i.e., RH, solar radiation, temperature,

wind speed, wind direction, and precursor gases is quantified by

many researchers (Srivastava et al., 1982; Fernadez et al., 1993a;

Abram et al., 2000; Fabian et al., 2001; Zanis et al., 2001; Zerefos

et al., 2001; Kolev et al., 2005; Tzanis, 2005; Zerefos et al., 2007;

Gerasopoulos et al., 2008; Sharma et al., 2010a). The variation in

RH and Ts occurs during a solar eclipse. The drop and rise in

meteorological parameters are different for each location due to

the percentage of Sun coverage, time of the day, latitude, synoptic

condition, etc. during the solar eclipse. The change in surface

temperature is one of the most noticeable meteorological

parameters experienced by the observer. Generally, when the

Sun is half covered the temperature drop becomes noticeable

(Anderson, 1999), while other observers reported the immediate

temperature response after the start of the solar eclipse

(Anderson, 1972; Szalowski, 2002). In contrast, the RH shows

the opposite signature during a solar eclipse. The minimum

temperature found during a solar eclipse when the Sun is

maximum covered by a celestial body.

The solar ultraviolet radiation at 312 and 365 nm showed a

reduction of 3% and 7%, respectively at four stations in the

greater Athens basin in Greece (Founda et al., 2007) during a

solar eclipse. The air temperature dropped to ~0.7°C while RH

increased and was found to be maximum at the end of the

eclipse at the center of Athens. Jain et al., 2020 studied the

impact of the solar eclipse on meteorological parameters and

trace gases over Gadanki and reported that the Global

Horizontal irradiance (GHI) decreased ~95.5% during the

eclipse and was responsible for a temperature decrease of

4.36°C, sustained 100% RH and delayed atmospheric

boundary layer development. The concentration of O3

decreases up to 48% whereas NO2 concentration has been

increased by ~8 times. There has been a time lag (~52 min)

in observing the effects which are generally attributed to the

production and destruction mechanisms of these species and

the meteorological parameters of the observation site. Similarly,

the reduction in wind speed and ambient temperature was

recorded at Thiruvanathapuram, India during a nearly total

eclipse on 15 January 2010, whereas RH experienced the

increment (Sharma et al., 2010a).

This is the first study of its kind on annular solar eclipse over

Jaipur in the vicinity of the Thar Desert to understand the effect

of eclipse on meteorological parameters and trace gases. In the

current work, an investigation has been conducted to understand

the impact of the solar eclipse that occurred on 21 June 2020, on

meteorological variables i.e., RH, Ts, SDR, wind speed (WS), etc.

and trace gases i.e., O3, NH3, NOx, and NO over Jaipur,

Northwestern India. The study further compares these

parameters with pre- and post-annular solar eclipse event.

Observation site and solar eclipse

This solar eclipse study was conducted at Poornima

University, Jaipur (26.7796°N, 75.8771°E). Jaipur is located in

the vicinity of the Thar Desert. Jaipur experiences a semi-arid

climate with an average rainfall of ~60 cm (Verma et al., 2013).

Jaipur is the capital of Rajasthan, the largest state of India. Jaipur

has a very rich traditional culture and is known as Pink City

(Prakash et al., 2013). Jaipur is a colorful city with an oscillation

of organized architecture unveiling the royal culture, arts, and

traditions as the heritage of Rajasthan.

The first solar eclipse of 2020 occurred on 21st June over

Jaipur, Rajasthan (Figure 1). This annular solar eclipse started

in Afric h and 45 min with start at the eastern part of the

Democratic Republic of Congo at 4.48 GMT just at sunrise

and ended in the Pacific Ocean at 8.32 GMT (Pratap et al.,

2021). This eclipse is unique in a manner as it took place on

June solstice (21st June i.e., the day which brings the longest

day of the year). The maximum obscuration over Jaipur has

been 88.1% (the eclipse intensity has been expressed in

obscuration rather than phases because this has been a

partial solar eclipse over Jaipur) with a maximum

magnitude of 0.88 at around 11:56 IST (06:26 GMT). The

total eclipse period observed at Jaipur has been about 3 h and

29 min starting at 10:14 IST (Indian Standard Time or 04:

44 UTC) and ending at 13:44 IST (8:14 GMT).

Methodology

For this study, an AutomaticWeather Station (AWS) is installed

on the rooftop of theAcademic Block of PoornimaUniversity, Jaipur.

The changes in meteorological parameters were recorded by the

Automatic Weather Station (WatchDog 2900 ET Weather Station)

manufactured by Spectrum Technologies, Aurora, IL, United States)

during the Solar eclipse. The accuracy of WatchDog Sensor for Ts,

RH, WS, wind direction, SDR, and Dew point is ± 0.6°C, ±3%, ±

3 km/h or ± 5%, whichever is greater; ± 4°, ± 5%, and ± 2°C,

respectively. The meteorological parameters were recorded with a 1-

min temporal resolution during the solar eclipse.

The trace gases observations were collected by the

Continuous Ambient Air Quality Monitoring Stations

(CAAQMS) under the national air quality monitoring

network at Police Commissionerate Jaipur (26.916, 75.801)

and this monitoring site is maintained by Rajasthan State

Pollution Control Board (RSPCB), Jaipur. All the trace gases

data set used in the present study is freely available at the website

of the Central pollution control board (CPCB): https://app.

Frontiers in Environmental Science frontiersin.org02

Prakash et al. 10.3389/fenvs.2022.1005888

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1005888


cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data.

CPCB has deployed different types of instruments fitted with

sensors certified by world meteorological organization to collect

data (CAAQMS Guidelines, 2019). The monitors are reported to

be regularly calibrated by operating bodies by the instruction

manual of the equipment for ensuring the quality of the data.

Results and discussion

The solar eclipse of 21 June 2020, at Jaipur, northwestern

India, started at 10:14 a.m. (IST) and ends at 01:44 p.m. (IST)

with maximum solar coverage (88.1%) at 11:55 a.m. (IST) over

the observation site. This solar eclipse occurred more than 3 h

over Jaipur. The changes in meteorological parameters and trace

gases during a solar eclipse are discussed in this section.

1) Impact of the annular solar eclipse on Solar Radiation

Figure 2 shows the temporal variation of SDR during the eclipse

at Jaipur. The value of SDR varies between 706 and 79W/m2 during

the eclipse. As the percentage of Sun’s covered area started to increase,

SDR started to decrease. For themaximum Sun coverage (88.1%), the

SDR was reduced to 79W/m2 at the maximum peak of the solar

eclipse at 11:55 a.m. The SDR’s comparative analysis is also done a day

before and after the solar eclipse. Figure 3 shows the variation of SDR

during the solar eclipse and the day before and after the event. A

strong dip was observed in average SDR during annular eclipse day

(384.16W/m2) concerning previous (400.81W/m2) and after day

(406.45W/m2) of the event (Figure 3).

The statistical analysis of the observed value was carried out

to understand variation in SDR with Ts and RH as shown in

FIGURE 1
The location of study region and observational site for the solar eclipse study.

FIGURE 2
Temporal variations (10:15 a.m. to 1:45 p.m.) of SDR during
the solar eclipse at Jaipur.
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Table 1. From Table 1, it can be seen that the maximum and

average SDR during solar eclipse day is found to be low than on

other days during study period.

2) Meteorological parameters during an annular solar eclipse

The meteorological parameters play the important role in

any natural phenomenon. The Temperature (Ts) and Relative

humidity (RH) are the important meteorological parameters to

understand the synoptic meteorology of any location. The

variation in temperature and RH was also observed during the

solar eclipse event. Jaipur experiences a hot temperature with less

humidity during the summer season. The highest temperature in

Jaipur reaches more than 45°C in the summer season.

The impact of the solar eclipse on temperature and RH was

quantified over Jaipur and it is found that the temperature

decreases about 2°C while RH shows a slight increment

during the solar eclipse event (Figure 4).

Figure 5 shows the temporal variation of temperature during

the event, a day before, and a day after. The temperature before

the start of the event was higher than the day before and the day

after but during an eclipse, the temperature dropped (−2°C) due

to less availability of SDR.

The variation in wind speed was also observed during the solar

eclipse and the average WS was found higher (78%) during the

event than on previous as well as upcoming days (Figure 6). The

wind speed did not show any specific trend during the solar eclipse.

The previous studies reported a decrease inWS (e.g., Clayton et al.,

1901; Anderson and Keefer, 1975; Fernandez et al., 1993b).

The wind direction was found mostly southwesterly during

the annular solar eclipse (Figure 7).

3) Impact of the solar eclipse on Trace Gases

The concentration of trace gases plays important role to

understand its adverse impact on human health. Concentration of

ground Ozone can trigger a variety of health problems including

chest pain, coughing, throat irritation, and congestion. Similarly, the

Nitrogen Oxides also gives the adverse effect to human health, it may

cause brief, nonspecific symptoms such as cough, shortness of breath,

tiredness, and nausea. The high concentration of Ammonia causes

immediate burning of the eyes, nose, throat and respiratory tract and

can result in blindness, lung damage or death.

Previous studies also reported the changes in surface

temperature, variation in winds, boundary layer height, and

photochemical processes during the eclipse event over India

FIGURE 3
Temporal variations (6 AM to 7 PM) of SDR during the solar eclipse, a day before and a day after the event.

TABLE 1 Statistical analysis of observed parameters.

S.
No.

Date Solar radiation (W/m2) Temperature (°C) Relative humidity (%)

Max. Min. Mean Std. Max. Min. Mean Std. Max. Min. Mean Std.dev

1 20 June 846 10 400 284 39.5 27.8 34.9 4.08 72.7 38.4 52 11.17

2 21 June 782 4 384 247 39.5 25.6 34.54 3.86 84.2 40.6 53.35 11.87

3 22 June 921 12 406 302 38.2 27.6 34.15 3.30 81.5 43.3 56.58 11.71
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(Naja and Lal, 1997; Sharma et al., 2010b; Venkat Ratnam et al.,

2010; Girach et al., 2012; Girach et al., 2020; Jain et al., 2020).

They have reported substantial variations in the surface level

concentrations of the photochemical species such as O3 and NOx

which have a direct linkage to solar irradiation.

The concentration of trace gases i.e., O3, NH3, NOx, and NO

shows the high variability during the solar eclipse at Jaipur

(Figure 8). Ozone (O3) is a secondary pollutant that forms in

the presence of sunlight and its precursors viz, nitrogen oxides

(NOx), and volatile organic compounds (Yadav et al., 2016;

Yadav et al., 2020). Its concentration depends on

photochemistry, physical/chemical removal, and transport

over local, regional, and global scales (Lal et al., 2000). The

concentration of O3, NO, NOX, and NH3 over Jaipur varies

between 38.65–54.17 μg/m3; 5.33–7.54 μg/m3; 17.16–22.35 μg/

m3; 26.12–32.37 μg/m3, respectively. The lowest concentration

FIGURE 4
Temporal variations of meteorological parameters during the eclipse.

FIGURE 5
Temporal variations (6 a.m.–7 p.m.) of temperature during a solar eclipse, a day before and a day after at Jaipur.
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FIGURE 6
Temporal variations of wind speed during a solar eclipse, a day before and a day after at Jaipur.

FIGURE 7
Wind rose diagram during the Solar Eclipse Day.
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of NO and NOX is found at the maximum Sun obscuration

during a solar eclipse. The concentration of O3 and NH3

shows contradictory behavior during the solar eclipse.

O3 concentration decreased by 23% during the solar

eclipse day than the previous day (Figure 9). Even after

more ozone formation due to the availability of more solar

radiation on post-solar eclipse days, it is not visible in Figure 9

due to the non-availability of data. A similar trend in ozone

concentration at Gadanki (Jain et al., 2020) and Yunnan

province (Tian et al., 2022) during a solar eclipse. O3 has

shown a reduction in its concentration by up to 48% during

solar eclipse days at Gadanki (Jain et al., 2020) and about 40%

at Yunnan province (Tian et al., 2022). Similarly, the

concentration of NO, NOX, and NH3 also decreased by

4.08%, 8.16%, and 7.19%, respectively during the solar

eclipse day than the previous day. The concentration of

NH3 was also compared during the event. The

concentration of NH3 found low during solar eclipse days

than pre and post-event.

Conclusion

The annular solar eclipse of 21 June 2020 brought the

opportunity of studying changes in meteorological parameters

and comparing them with a day before and a day after

meteorological parameters. The value of SDR decreased from

706 and 79 W/m2 during the eclipse. The temperature dropped to

about 2°C during the solar eclipse due to less SDR reaching to the

surface. As the temperature decreases, a slight increment was

observed in RH. The wind speed also decreased due to a stable

atmosphere during the solar eclipse. The concentration of trace

gases also shows variability with about 23% deduction in O3

during a solar eclipse.
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