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The present research uses machine learning, panel data and time series

prediction and forecasting techniques to establish a framework between a

series of renewable energy and environmental pollution parameters,

considering data for BRICS, G7, and EU countries, which can serve as a tool

for optimizing the policy strategy in the sustainable energy production sector.

The results indicates that XGBoost model for predicting the renewable energy

production capacity reveals the highest feature importance among

independent variables is associated with the gas consumption parameter in

the case of G7, oil consumption for EU block and GHG emissions for BRICS,

respectively. Furthermore, the generalized additivemodel (GAM) predictions for

the EU block reveal the scenario of relatively constant renewable energy

capacity if gas consumption increases, while oil consumption increases

determine an increase in renewable energy capacity until a kick point,

followed by a decrease. The GAM models for G7 revealed the scenario of an

upward trend of renewable energy production capacity, as gas consumption

increases and renewable energy production capacity decreases while oil

consumption increases. In the case of the BRICS geopolitical block, the

prediction scenario reveals that, in time, an increase in gas consumption

generates an increase in renewable energy production capacity. The PCA

emphasizes that renewable energy production capacity and GHG,
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respectively CO2 emissions, are highly correlated and are integrated into the

first component, which explains more than 60% of the variance. The resulting

models represent a good prediction capacity and reveal specific peculiarities for

each analyzed geopolitical block. The prediction models conclude that the EU

economic growth scenario is based on fossil fuel energy sources during the first

development stage, followed by a shift to renewable energy sources once it

reaches a kick point, during the second development stage. The decrease in

renewable energy production capacity when oil consumption increases

indicates that fossil fuels are in trend within the G7 economy. In the case of

BRICS, it is assumed that gas consumption appears because of increasing the

industrial capacity, followed by the increase of economic sustainability,

respectively. In addition, the generalized additive models emphasize

evolution scenarios with different peculiarities, specific for each analyzed

geopolitical block.
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1 Introduction

Nowadays, considering the political challenges which create

massive disruptions in the global energy system and increase

energy prices, the renewable energy strategy must be powered in

order to increase both energy safety and security.

Thus, European Commission (EC) had elaborated the

REPower Plan among which, one of the main desiderata is to

diversify energy sources and to replace gas, oil and coal with

renewable electricity and fossil-free hydrogen, with action on the

supply side, creating, therefore, a strong capacity and framework

to roll out and produce renewable energy. Also, the EC Green

Deal Plan encourages the long-term transition to a modern and

competitive economy, characterized by resource use efficiency

for assuring sustainable development.

Thriving economies rely on high energy usage which

generates environmental degradation associated with health

risks on human population (Khan et al., 2021a). Based on

economic crisis, the destabilized production and distribution

mechanisms have generated negative effects on resource

consumption and citizen wellbeing. In order to mitigate these

effects, the world states have taken several measures, including

the activation of already existing specific interest groups (Ibrahim

and Alola, 2020). Therefore, supranational organizations with

global influence as the European Union (EU), the Organization

for Economic Co-operation and Development (OECD) and the

organization of countries with emerging economies BRICS

(Brazil, Russia, India, China and South Africa) must take

action on order to elaborate proper resilience policies based

on frameworks which include environment, energy and

economic growth nexus. The new geopolitical context

highlights the fragility of alliances and nowadays new

premises for BRICS extension arise in the context of the

Russian-Ukrainian war.

The main objective of the research at hand is to offer a

universally applicable tool for optimizing the policy strategies

pertaining to the sustainable energy production sector-by

considering a multi-dimensional predictors sheet, which

merges economic, environmental, and renewable energy

perspectives. This will offer responses to questions as follows:

How different are the prediction models associated with

renewable energy within the world’s main geopolitical blocks?;

Are there any forecasting instruments, based on basic indicators,

that can define an accurate impact of different multi-dimensional

decisions, on the renewable energy sector?; Can renewable energy

consumption be predicted by using a basic group of predictors

representative of the tridimensional economic-environment-

energy nexus? Are there any similarities, between EU, G7 and

BRICS, related to the methodologies proposed for assisting the

decision management surrounding the sustainable energy sector?

Therefore, the hypothesis development within the present

study is focused on economic-environment-energy nexus and

considers that main parameters including in energy dimension,

as oil and gas consumption, environmental dimension, as CO2

and GHG emissions and economic dimension, as GDP and GDP

from industry, respectively, can represent basic independent

variables in predicting total renewable energy production.

The originality of this present study is revealed, firstly, by the

synergic methodology which combines supervised learning tools

as generalized additive models—XGboost and panel data analysis

with unsupervised learning as partial component analysis. On the

secondary, it can be considered the structure of predictors

dataset, transposed on a comparative analysis between the

main global geopolitical blocks. However, as the final original

input, all gathered results of the current study represent a high-

accuracy model-driven decision support tool which can be used

by policy-makers in order to optimize their decision process,

especially in complex political and economic global scenarious.
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2 Literature review

A bibliometric analysis was undertaken (Figure 1A) by using the

connected keywords “analysis of environment”, “energy” and

“economic growth” considering only Web of Science (WOS)

publications. The bibliometric analysis revealed that during the

years 2012–2022, 185 published articles are identified as

published, which are cited in 1,461 studies with an average of

18 citations per article and a H-index of 23. This reveals the

actuality of the current tridimensional nexus and its multi-

dimensional applicability in different research contexts.

Furthermore, in their review study, Mahy et al. pointed out the

increasing interest in issues related to climate change, carbon dioxide

(CO2) emissions and sustainability by conducting a thorough

bibliometric analysis of the scientific papers included in Web of

Science database in the last 30 years (Mahi et al., 2021).

It is well known that these on-going environmental challenges

have extended their effects on the economic environment also.

However, long-term monitoring and correlation between

economic and environmental indicators are needed. The fuel

consumption in industrial activities has been attributable to the

annual increase in CO2 emissions by up to 20 billion tons (Khan

et al., 2022b). In their study, Dellink et al. developed a methodology

for the projection of GDP trends based on the main indicators of

economic growth (population, total factor productivity, physical

capital, employment, human capital, and energy and fossil fuel

resources) (Dellink et al., 2017). According to Topcu et al. energy

consumption and GDP has a positive impact on the economic

growth of high-income countries whereas the aforementioned

indicators generate a negative impact in low-income countries

(Topcu et al., 2020). Also, using renewable energy in sectors such

as wastewater treatment can increase process efficiency and buffer

the negative effects of economic growth on the environment (Khan

et al., 2022a). In their study, Khan et al. used the econometric panel

quintile regression (PQR) to describe the causal heterogeneous

behaviour of treated wastewater based on the variables on

environmental technology, the renewable energy consumption,

GDP, trade and industrialization, in 16 OECD countries during

the years 2000–2019 (Khan et al., 2022a).

Global warming is directly influenced and potentiated by

energy consumption (Fu et al., 2021). Currently global

warming and the energetic crisis represent the main

challenges societies have to face; the need for sustainable

economic development arises through limiting

environmental pollution and adopting new solutions for the

production of green energy. According to Sohag et al. green

economic growth can be achieved by a society by using clean

energy and implementing innovative technologies (Sohag

et al., 2019). Khan et al. developed an equation by using the

fully generalized least square (FGLS) technique and

generalized method of moments (GMM) to describe the

relationship between health expenditure, renewable energy

consumption, economic growth, and environmental

performance, in 10 Central European countries between

2005 and 2018. The variables included in the equation

were: RENG (renewable energy), HLTE (number of deaths

associated to water pollution and health expenditure), ECON

(economic performance evaluated based on trade openness,

foreign direct investments and GDP per capita) (Khan et al.,

2021a). The authors highlighted the negative effect of non-

renewable energy sources (fossil fuels) usage on

environmental quality and human population health (Khan

et al., 2021a). It has been pointed out that the use of green

energy boosts economic performance and contributes to

FIGURE 1
Bibliometric network correlation analysis for (A) environment—energy—economic growth nexus (B) renewable energy as search nucleum.
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achieving environmental efficiency, by reducing the level of

carbon emissions (Khan et al., 2021b; Umar et al., 2021).

Several studies (Leal et al., 2019; Akram et al., 2020b; 2020a,

2021) highlight the importance of energy efficiency for the

promotion of economic growth at the level of BRICS

countries. Akram et al. (2020b) conducted a study over a

period of 25 years (between the years 1990–2014) in which

they pointed out the positive influence of energetic efficiency

on economic growth, especially the positive correlation between

the consumption of green energy and the promotion of

sustainable economic development (Akram et al., 2021).

Another study conducted by Danish et al. focused on the

BRICS countries and concluded that in these countries the

development of new environmentally friendly technologies are

positively correlated to green growth while the consumption of

energy generated by non-renewable sources is deleterious

(Danish and Ulucak, 2020).

Another study conducted in China (Ahmad and Zhao, 2018)

investigating energy consumption and economic growth,

highlighted that the impact of urbanization is significant and

is generated by industry expansion. Moreover, the study pointed

out the relationship between economic growth and the emissions

of CO2 and the authors show that in the more developed regions

of China, CO2 emissions decrease simultaneous with the

economic growth, while in the less developed regions the

effects are reversed (Ahmad and Zhao, 2018).

In India, economic growth is correlated to energy security

and environmental sustainability (Zhang et al., 2020; Nepal et al.,

2021). In the study of Nepal et al. the relationship between energy

consumption, economic growth, CO2 emissions and foreign

direct investments (FDI) was demonstrated. The authors

concluded that an increase of 1% in FDI generates a decrease

in energy consumption by 0.013% and thus reducing CO2

emissions in India (Nepal et al., 2021).

In the case of Asian countries, a study conducted by Mohsin

et al. analysed the correlation between renewable energy, economic

growth, and energy efficiency in 25 states by applying Hausman

Taylor Regression and Random Effect. The authors concluded that

increasing the usage of renewable energy by 1% decreases the CO2

emissions by 0.193% (Mohsin et al., 2021). A representative case

study conducted in a socio-economic area where monetary trade

surpluses meet energy trade deficits quantified the effects of

structural changes, economic growth and energy efficiency

measures (Moreau and Vuille, 2018). Another study conducted

in the BRICS and OECD countries highlights the relationship

between energy consumption, CO2 emissions and economic

growth. During their monitoring conducted over a period of

35 years (1980–2016) the trilemma association of energy

consumption, carbon emission and economic growth was

estimated based on quantile regressions (Nawaz et al., 2021). The

authors concluded that the use of non-renewable energy has effects

on environmental health, whereas a positive correlation was

observed between renewable energy and economic growth

(Nawaz et al., 2021). Other studies show the impact of

investment on economic growth and in correlation to

optimization of green productivity in the primary, secondary and

tertiary industrial sectors (Wang et al., 2020).

The bibliometric analysis related to renewable energy

publications within the WOS database reveals a huge number

of publications in the last 10 years, based on multiple approaches

which involve environmental, economic, technological,

modelling and AI aspects (Figure 2A).

The study conducted by Nathaniel et al. provides a panel data

analysis in which the impacts of nuclear and renewable energy

use on CO2 emissions are evaluated in G7 countries. The authors

stated that the consumption of renewable energy is not

significant for the dynamics in the CO2 emission levels

(Nathaniel et al., 2021). At the same time, they state that

economic growth initially increases CO2 emission levels but

mitigate it later. As a conclusion, the authors highlighted that

nuclear energy significantly reduces CO2 emissions in all the

countries, except in Canada and the United States (Nathaniel

et al., 2021).

Carbon reduction requirements can also generate a fast

expansion of renewable energy installations (Qiu et al.,

2022a), a fact which indicates that possible emerging

industries may rise as a consequence of adopting the new

sustainable energy policies. The areas with great potential for

renewable energy can contribute significantly to achieving

carbon neutrality if proper infrastructures are dramatically

strengthened through investments (Qiu et al., 2022a).

In the context of global carbon reduction, many countries

have established carbon–neutral commitments (Qiu et al.,

2022b). Some authors (Qiu et al., 2022b) that more than a

quarter of the renewable energy centrally developable areas

have energy synergies, indicating the applicability of

renewable energy centralized co-development.

Renewable energy emerging technologies such as those based

on energy piles have great potential to be adopted and increase

attention due to the growing energy demand and corresponding

carbon emissions (Fang et al., 2022).

The renewable energy analytical frameworks could also

include in-depth environmental analysis as those performed

by other authors (Tian et al., 2022) which proposed a Deep

Belief - BP neural network haze prediction model based on the

theory of deep learning, combining the Boltzmann machine and

BP neural network, considering a wide range of air pollutants as

PM2.5, PM10, O3, Co, NO2 and SO2. Also, the environmental

dimension of renewable energy models can include spatial and

temporal information related to pollution distribution (Liu et al.,

2022), in order to identify critical hot points and analyze their

impact on the regional energy and economic dimensions.

In the EU, some studies have evaluated the dependent

relationship between economic growth and the consumption

of renewable energy in 28 states based on panel data analysis

(Soava et al., 2018). The main conclusion of the research was
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that there is a positive impact of renewable energy

consumption on economic growth (Soava et al., 2018). As

well, Magazzino et al. have conducted an investigation in

16 European countries over a period of 27 years

(1990–2017) for the relationship between information and

communication technology (ICT), electricity consumption,

economic growth and environmental pollution through a

multivariate framework (Magazzino et al., 2021). Their

results point out the positive association between economic

growth rate and per capita electricity consumption, which

further on generates a rise in the levels of CO2 emissions and

improved GDP (Magazzino et al., 2021).

The most recent findings in terms of model-driven decision

support tools (MDST) which imply the renewable

energy—economic—environmental nexus are summarized in

Table 1.

The analysis of the recent studies (Table 1) revealed various

scenarios related to the influence of different economic and

environmental dimensions parameters on renewable energy

prediction. Thus, this confirms the knowledge gap related to

renewable energy—economic growth—environmental

sustainability nexus since the process is highly influenced by

the area of study, time-series data that were considered for

framework development and specific events that might have

occurred during the analyzed period.

3 Materials and methods

3.1 Dataset description

The analytical framework elaborated in the present study

is based on a series of seven economic indicators which are

considered highly suggestive in order to reveal, in a simple

and suggestive manner, the nexus between economic,

environmental and energy production dimensions, as

follows:

• Oil consumption - (oilcons) [mt] (source: https://www.bp.

com): the oil consumption reported by each of the analyzed

countries.

• Gas consumption—(gascons) [mtoe] (source: https://www.

bp.com): the gas consumption reported by each of the

analyzed countries.

• CO2 emissions—(co2) [mtCO2] (source: https://www.bp.

com): the total quantity of CO2 emissions reported by each

of the analyzed countries.

• Greenhouse gases emissions—(ghg_emissions) [mtCO2e]

(source: https://www.bp.com): the total quantity of GHG

emissions reported by each of the analyzed countries.

• Total renewable energy production—(REN_EN_TOTAL)

[gwh] (source: https://www.irena.org): the total quantity of

FIGURE 2
Research framework.
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renewable energy produced by each of the analyzed

countries.

• Gross domestic product per capita—(GDP_capita)

[current US $] (source: https://www.oecd.org): the gross

domestic product per capita reported by each of the

analyzed countries.

• Gross domestic product from industry—(GDP_IN) [% of

total GDP] (source: https://www.oecd.org): the share of

gross domestic product provided by industry from total

gross domestic product reported by each of the analyzed

countries.

The selection of the variables for the current research

targeted the development of a three-dimensional construct

(economic—environmental—renewable energy) considered

to be explanatory for getting new insights on the existing

relation between the economic performance of the targeted

countries and their advances towards renewable energy

usage. Thus, the seven indicators considered highly

suggestive for revealing the nexus between economic,

environmental and energy production dimensions, were

chosen based on significant studies as follows: oil

consumption (Gallo et al., 2010; Mukhtarov et al., 2020;

Guo et al., 2021), gas consumption (Dong et al., 2017,

2018; Ummalla and Samal, 2019; Çıtak et al., 2021), CO2

emissions (Dong et al., 2017, 2018; Ummalla and Samal,

2019; Çıtak et al., 2021), GHG (Dong et al., 2017, 2018;

Ummalla and Samal, 2019; Çıtak et al., 2021), GDP per capita

(Simionescu et al., 2019; Tudor and Sova, 2021) and GDP

from industry (Simionescu et al., 2019; Tudor and Sova,

2021).

For the comparability and relevance of our main aim, the

research must be performed on data series covering the same

timeline, for each of the analyzed countries. Thus, the dataset is

recorded during the years 2000–2019, the most recent period with a

complete report that includes the targeted parameters for all the

analyzed countries considered in this study. Therefore, the research

period of the current study was imposed by several facts: 1) for the

TABLE 1 The most recent studies from the year 2022 related to renewable energy MDST.

Scientific
paper

Independent parameters for predicting renewable
energy

Results and findings

İnal et al. (2022) CO2 emissions, and growth in oil-producing No significant relation between renewable energy and economic growth

Mukhtarov et al.
(2022)

Oil price, CO2 emissions, and income Negative influence of higher oil prices on renewable energy consumption
may be interpreted as a sign of satisfaction coming from higher oil prices,
which postpones the transition from traditional energy sources to renewable

Aslan et al. (2022) Economic growth, CO2 emissions, fossil fuels consumption, foreign
direct investments, and trade

Growth positively affects CO2 emissions and renewable energy. Negative
relationship between CO2 emission and foreign direct investments,

Amin et al. (2022) Trade openness, economic growth, urbanization, environmental
degradation

Trade openness, economic growth, and urbanization all considerably
increase the environmental deficit—renewable energy use minimizes total

environmental degradation in the long run

Mehmood et al.
(2022)

GDP, corruption, CO2, trade openess Economic growth decreases renewable energy consumption. A positive
effect is reported on the reduction of corruption in renewable energy

Bilgili et al. (2022) Trades indicators, economic growth, fossil energy Renewable energy growth increases at decreasing rate due to GDP and trade
growth

Xie et al. (2022) CO2 emissions, economic growth, and heterogeneous energy
consumption (coal, gas, oil)

Reducing coal and oil consumption and increasing natural gas and
renewable energy consumption will not significantly hinder economic

growth. In addition, in the long run, reducing coal and oil consumption and
increasing renewable energy consumption can significantly reduce carbon

emissions

Hussain et al.
(2022)

Non-renewable energy consumption, carbon emissions, economic
growth

Renewable energy consumption has a positive impact on economic growth

Shahzadi et al.
(2022)

Gas (GHG) emission, renewable energy, forest area, total patents, and
research and development expenditures

Increasing forest area and reduction in GHGs are powering renewable
energy

Dumor et al. (2022) CO2 emissions, human development index, and fossil energy Human development, access to electricity, and trade have a strong
correlation with carbon emissions and renewable energy in the long term,

whereas fossil energy usage and economic growth have a negative
connection with carbon emission and renewable energy. In the short run,
human development and fossil and energy usage have a positive correlation
with carbon emission and renewable energy, while economic growth and
foreign direct investment have a negative correlation with carbon emission

and renewable energy
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panel data analysis, the performed analysis needed a complete time

series data for all countries, 2) the performed analysis needed as

much data as possible. The data associated with each country from

BRICS and G7 (except the United Kingdom for which a complete

database that covers all the analyzed parameters during the targeted

period was not available), as well as with the most important

countries from EU in terms of energy production and

consumption were considered.

Therefore, 30 countries were considered; these were: Brazil,

Russia, India, China and South Africa for BRICS; Canada,

France, Germany, Italy, Japan and the United States (US) for

G7; Finland, Austria, Belgium, Czech Republic, Denmark,

Estonia, France, Germany, Greece, Hungary, Ireland, Italy,

Luxembourg, Netherlands, Poland, Portugal, Romania,

Slovakia, Slovenia, Spain and Sweden for EU, respectively. The

BRICS block dataset descriptive statistics are presented in

Table 2, Section 1, EU block in Table 2, Section 2, G7 block

in Table 2, Section 3 and the merged dataset (BRICS, G7 and EU)

in Table 2, Section 4.

The structure of the dataset used in the present study is

innovative since it covers major indicators, able to merge all three

dimensions, economic—environmental—energy production,

targeting to predict total renewable energy production for

each of the main economic groups of interest (BRICS, G7,

EU, respectively). Similar studies had regional importance, by

covering a limited geographic area (eg., Pakistan, Latin-American

TABLE 2 Dataset descriptive statistics.

Section 1. BRICS dataset

N Range Min Max Mean Std. Dev.

Year 100 19.00 2000.00 2019.00 2009.50 5.79

Oilcons 100 632.34 21.99 654.32 170.51 152.08

Gascons 100 389.89 0.905 390.79 105.24 135.22

CO2 100 9504.08 306.37 9810.45 2281.87 2802.19

ghg_emissions 100 10301.48 317.23 10618.71 2432.91 2923.00

REN_EN_TOTAL 100 1984879.90 1160.81 1986040.71 318817.14 392847.48

GDP_capita 100 15531.33 443.31 15974.64 5667.88 4004.95

GDP_IN 100 29.63 17.92 47.56 30.42 7.81

Section 2. EU dataset

Year 440 19.00 2000.00 2019.00 2009.50 5.77

Oilcons 440 130.12 1.11 131.23 26.04 30.85

Gascons 440 78.72 0.39 79.11 14.84 19.88

CO2 440 862.63 9.03 871.67 150.11 183.30

ghg_emissions 440 841.33 8.23 849.56 142.47 178.58

REN_EN_TOTAL 440 242417.00 18.00 242435.00 30064.60 37872.87

GDP_capita 440 117153.66 1669.98 118823.64 34638.80 22749.37

GDP_IN 428 27.64 10.51 38.16 24.46 5.32

Section 3. G7 dataset

Year 120 19.00 2000.00 2019.00 2009.50 5.79

Oilcons 120 870.81 56.01 926.82 240.56 278.12

Gascos 120 697.61 32.59 730.21 153.76 193.03

CO2 120 5593.26 298.95 5892.21 1464.79 1822.40

ghg_emissions 120 5742.40 302.66 6045.06 1488.21 1891.00

REN_EN_TOTAL 120 743105.01 23930.00 767035.01 148078.00 165217.13

GDP_capita 120 45030.76 20087.59 65118.35 39581.09 8953.88

GDP_IN 119 15.68 17.07 32.75 23.99 4.16

Section 4. All countries dataset

Year 600 19.00 2000.00 2019.00 2009.50 5.771

Oilcons 600 925.71 1.11 926.82 86.53 168.70

Gascons 600 729.82 0.39 730.21 53.37 119.36

CO2 600 9801.41 9.03 9810.45 731.96 1652.43

ghg_emmissions 600 10610.48 8.23 10618.71 756.94 1728.91

REN_EN_TOTAL 600 1986022.71 18.00 1986040.71 95547.71 209264.96

GDP_capita 600 118380.33 443.31 118823.64 30652.76 22829.87

GDP_IN 588 37.04 10.51 47.55 25.58 6.14
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Countries, Pearl River Delta, China) (Ur Rehman et al., 2019;

Chai et al., 2020; Li et al., 2021; Razzaq et al., 2021; Dogan et al.,

2022), or including complex structures of niche parameters (eg.,

energy use intensity related to foreign direct investments inflows,

urbanization rate or international trade) (Kahia et al., 2019;

Murshed et al., 2021), that make them difficult to be

implemented as fast and easy to use instruments for

policymakers, in a unifying policy model.

3.1.1 Development technologies
As presented in Figure 2, the methodological framework of

this research used several statistical/machine learning/

econometrics techniques for explaining the existing relation

between renewable energy capacity and fossil energy

consumption, greenhouse gases, CO2 emissions, GDP per

capita, Industry GDP: The Generalized Additive Models, the

XGBoost algorithm, Panel Data Analysis and Principal

Component Analysis.

These methods were chosen to provide a multidimensional

perspective over the renewable energy context existing in BRICS,

G7 and EU countries. Thus, the generalized additive model is a

powerful technique (Lin et al., 2022) as it easy to interpret and the

flexible predictor functions (splines) can uncover hidden patterns

in the data. The generalized additive model is flexible because the

relationships between the predictors and the dependent variable

are not assumed to be linear and the use of regularized, non-

parametric functions avoids the higher order polynomial terms

(Khamma et al., 2020).

Secondly, the XGBoost algorithm was used as a

requirement to assess the feature importance when

predicting the renewable energy capacity. By identifying the

most influential predictors for the renewable capacity

prediction, new data patterns/insights could be inferred.

There are several machine learning algorithms that could be

used to obtain the feature importance, like Random Forest, but

as presented in (Zhang et al., 2017) from the 11 algorithms

studied, that included Extreme Learning Machine (ELM),

Sparse Representation based Classification (SRC), and Deep

Learning (DL), it was found that Gradient Boosting Trees

exceeded the prediction performance of Support Vector

Machines (SVM) and Random Forests (RF), while being the

fastest algorithm in terms of prediction efficiency. By using the

panel data analysis, this research used the data also as time

series, starting from the idea that panel data can provide more

accurate inferences of model parameters, greater capacity to

capture the complexity of a domain, respectively more

simplified computation and statistical inference (Le and

Park, 2021). The principal component analysis technique

provides another facet of the renewable energy capacity

context among the three geo-politically constructs as it is a

unsupervised machine learning technique that, besides

features reduction, can also provide a perspective on how

different countries relates to different parameters, as the PCA

is also useful in visualizing possible clusters and their

associated data (Androniceanu et al., 2020).

The modelling output refers to three distinct aspects, among

which the first implies the determination of the predictors’

feature importance during the prediction of total renewable

energy production capacity. Thus, this assures the

identification of the predictors that are most important in

obtaining efficient/reliable predictive models. The second

aspect implies the determination of efficient predictive models

that could be used to assess the total renewable capacity of a

region/country, based on several relevant parameters, whereas

the third aspect formally quantified predictors influence over the

total renewable energy production capacity for each analyzed

group.

For obtaining the above-mentioned output, the current

research uses four modelling techniques: two are considered

supervised machine learning methods (generalized additive

models—GAM, XGBoost), while the other two are statistical/

econometric techniques (Panel Data Analysis, Principal

Component Analysis).

3.1.2 Metrics for model validation
The current research used two different metrics for model

evaluation/validation. The first validation metric is R2, a

statistical measure representing how close the data can be to

the fitted values, having values between 0 and 1, the closer to 1,

the higher the explanatory power (Eq. 1)

R2 � ∑n
i�1 ŷ i( ) − �y( )2

∑n
i�1 y i( ) − �y( )2 (1)

The second metric, Root Mean Square Error (RMSE)

measures the size of the error, giving more weight to large

errors and are defined in Eq. 2.

RMSE �
������������
1
n
∑n

i�1ŷ
i( ) − �y2

√
(2)

3.1.3 Generalized additive models (GAM)
According to the GLM (general linear models) theory, an

increasing number of predictors represents a key issue for various

modelling scenarios as the variance also increases. A high

variance will make it harder for a prediction algorithm to

perform well on new data (curse of dimensionality). Stone

(Stone, 1986) modified the GLM algorithm by replacing each

predictor with an additive approximation term, avoiding this way

the curse of dimensionality by fitting each predictor variable to

the dependent variable. This way it was possible to interpret how

each predictor affected the dependent variable.

In the MLR (multiple linear regression) equations, the

estimated coefficients make it possible to understand the

effects of differing scale/relationships to the dependent

variable. Hastie and Tibshirani (An Introduction to
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Statistical Learning) (1990) incorporated Stone’s idea into a

formal definition of GAM. Therefore, a GAM uses a non-

linear link function to map input data into a solution space,

similar to GLM, and represents a GLM where the linear

predictor depends linearly on smooth functions of some

predictor variables.

g E Y( )( ) � β0 + f 1 x1( ) + f 2 x2( ) + f 3 x3( ) + · · · + f m xm( ) (3)

The functions fi could have a specified parametric form like a

polynomial or a regression spline or may be specified non-

parametrically/semi-parametrically as ‘smooth functions’

estimated through non-parametric means like kernel

regression or MARS (Multivariate Adaptive Regression

Splines). A GAM model could use a scatterplot smoothing

function like a locally weighted mean, for f1(x1), and a factor

model for f2(x2). This flexibility allows obtaining better fits to

data, but with some loss of interpretability.

In this research he generalized additive model approach

for obtaining a clear overview of how the aforementioned

predictors (Figure 2) are influencing the total renewable

capacity in BRICS, G7 and EU countries, is used. However,

the GAM approach was employed in many energy-related

studies. For example, in (Khamma et al., 2020), the authors

used several data-driven statistical and machine learning

models, including GAM, to assess the energy performance

of office buildings based on historical data, as in 2018, the

commercial building accounted for nearly 18.2% of the total

energy consumption in the US, making it a significant

contributor to the GHG emissions. According to the

authors, model interpretability is essential to understand,

control and manage and for this reason, they used GAM as

a flexible, efficient, and interpretable alternative to existing

approaches in modeling and predicting the energy

consumption in office buildings. Another example can be

found in (Lin et al., 2022), where the authors proposed an

innovative approach to predicting optimal revenues of an

integrated energy generation and storage system by

examining the performance of two prediction techniques:

Generalized Additive Models (GAMs) and machine

learning (ML) models developed based on artificial neural

networks (ANN). As presented in their paper, the revenue

estimation for integrated renewable energy and energy storage

systems is important for decisions related to battery sizing

selection, in order to maximize the financial performance.

According to the authors, the two models were able to reduce

the computational time to evaluate annual revenue for one set

of battery configurations from 3 h to 1–4 min per run.

In (Shirizadeh and Quirion, 2022), the research addresses the

cost-effective role of the different energy sources and carriers,

emphasizing that energy optimization models should consider the

key energy supply, carrier, conversion, and storage options in an

endogenous way. The authors developed a GAM based model,

optimizing dispatch and investment, applying it to the French

energy system for 2050, for a wide range of social cost of carbon

(SCC) values.

3.2 XG-Boost prediction algorithm and
feature importance

XGBoost represents an optimized implementation of

Gradient Boosting Decision Trees (GBDT) (Chen et al., 2019),

a machine learning algorithm that sequentially produces and

updates base classifiers (weak learners) to build ensemble

classifiers (strong learners). If the weak learner for each step is

based on the gradient direction of the loss function, it can be

called Gradient Boosting Machines (GBM) (Jordan, 1874).

XGBoost algorithm is an ensemble learning algorithm, like

Random Forest method—another popular machine learning

technique. The main difference between Random Forest (RF)

and Gradient Boosted Machines is that while in RF trees are built

independent of each other, XGBoost adds a new tree to

complement already built ones (Stewart, 1993). The XGBoost

is a gradient boosting algorithm-it uses a gradient descent

algorithm to minimize the loss when adding new models. Due

to its high accuracy of prediction, low requirement of features

and fast running speed, XGBoost is widely used for classification

and regression problems in various engineering, medical or

economics fields (prediction of safety assessments, power

system, water absorption in different sublayers, anomalies

with gene selection or behavior models for residential

buildings, respectively) (Chen et al., 2019; Mo et al., 2019;

Zhang et al., 2019; Gertz et al., 2020; Liu et al., 2020).

XGBoost has several important characteristics that make it

one of the most efficient machine-learning predictive algorithms;

specifically: handling of the sparse data—it incorporates a sparsity

finding algorithm for handling different sparsity patterns; cache

awareness—the algorithm was designed to make optimal use of

the hardware by allocating internal buffers for each thread;

parallel computing—it can make use of multiple cores on the

CPU; regularization—it penalizes complex models through

L1 and L2 regularization, preventing the overfitting; out-of-

core computing—it optimizes the handling of huge datasets;

weighted quantile sketch—it can handle weighted data.

The algorithm performs well in various cases by using the

following approach: let bk(x) be a function, which is often

addressed as a base learner - the additive model is, thus, the

sum of base learners, as described in Eq. 4, for k = 1, 2, . . . M,

where M is the number of base learners.

x( ) � ∑M

K�1bk x( ) (4)

The minimization of the risk L=[f(x,y)] for base learners

bk(x) of Eq. 4 can be written as Eq. 7, where D = [(x,y)] is a dataset

and g(x,y), h(x, y), respectively, are presented in Eqs 5, 6,

respectively.
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g x, y( ) � zL f k−1 x( ), y( )
zf

(5)

h x, y( ) � zL f k−1 x( ), y( )
zf 2

(6)

b̂x � argminb∑1

D
L f k−1 x( ) + b x( ), y( )

� argminb∑1

D
b x( )g x, y( ) + 1

2
b2 x( )h x, y( ) (7)

The additive model of Eq. 7 is thus updated iteratively with

the boosting as described in Eq. 8.

f k x( ) � f k−1 x( ) + b̂ x( ) (8)

Here, we use XG-Boost machine learning algorithm for its

prediction capabilities - testing the hypothesis that it is possible to

build reliable predictive models that would help in assessing the

total renewable energy capacity based on oil and gas

consumption, emissions, industry GDP and GDP per capita,

as well as for assessing the feature importance when predicting

the total renewable energy capacity for the different geopolitical

blocks in order to identify which one influences the prediction

most. XG-Boost is a widely used algorithm due to its predictive

power, this includes within the renewable energy sector.

Considering a context where electricity is in high demand in

many sectors such as transportation, households, industry,

hospitals and communication, and that renewable energy is an

intermediate and unpredictable natural resource, some authors

(Abd El-Aziz, 2022) use a hybrid machine learning technique

based on multilayer perceptron (MLP), Support Vector

Regression (SVR) and Boosting algorithms to precisely predict

the energy level of natural resources. As climate and weather

conditions influence energy demand, in (Simoes et al., 2021) the

study presents the results on how considering current and future

climate variability affects the results of an energy system model

for the whole European power sector, up to 2050. For each

member-state, the authors considered six climate projections to

generate future capacity factors for wind, solar and hydropower

generation, respectively the temperature impact on electricity

demand for heating and cooling. Through their model, the

authors assessed how climate impacts the optimal operation

of the power system and if the current EU emissions target

deployment may be affected. In (Zheng et al., 2020), the authors

state that predicting corporate environmental performance can

help plan for environmental impact mitigation by adjusting

organizational practices, but the lack of environment-related

information renders it difficult to make such predictions.

Hence, they developed a five-dimensional (institutional

context, governance capability, information management

capability, system capability, and technology-related

capability) theoretical framework, populated with 14 variables

and 1,100 entries to investigate the corporate environmental

performance. The results demonstrate that the XGBoost model

can be effective for ESCO (energy service companies)

environmental performance prediction, with satisfactory

prediction accuracy. Their study adopted the SHAP (SHapley

Additive exPlanations) values for model interpretation,

indicating that the proportion of technicians, amount of

proactive environmental costs, total assets and number of

patents contribute most to corporate environmental

performance. Another example can be found in (Zaidan et al.,

2022), a study that focuses on the patterns of energy behaviors

and human-building interactions among the residents of Qatar

by collecting empirical evidence and conducting a subsequent

survey analysis. The XGBoost method was used to conduct a

feature importance analysis to determine factors contributing to

residential energy consumption. The results revealed the primary

behavioral and socio-economic factors that affect residential

energy consumption and confirmed the influence of human

factors in Qatar while considering its diverse population.

Moreover, in (Lu et al., 2021), the authors target the accurate

prediction of energy price, this being useful as a reference for

policymakers and market participants. They provide a review of

data-driven models (including XGBoost) for energy price

prediction for natural gas, crude oil, electricity, and carbon.

3.2.1 Principal component analysis (PCA)
The principal component analysis (PCA), an unsupervised

multivariate statistical technique, is used to analyze a specific

number of observations described by several variables, which

could be inter-correlated. Important information is extracted

from the data table and expressed as a set of new orthogonal

variables called principal components. It is a flexible tool allowing

the analysis of datasets containing missing values, imprecise

measurements, multicollinearity, and categorical data. The

main goals of PCA can be summarized as to: simplify the

description of the data set; extract the most important

information from the data table; reduce the size of the data

set by keeping only this important information; analyze the

structure of the observations and the variables. To materialize

these goals, PCA computes principal components, new variables

obtained as linear combinations of the original variables.

The first principal component has the largest possible

variance; therefore, this component will ‘explain’ or ‘extract’

the largest part of the inertia of the data set. The second

component is computed under the constraint of being

orthogonal to the first component and having the largest

possible inertia. The values of these new variables pertaining

to the observations are called factor scores, and these factor

scores can be interpreted geometrically as the projections of the

observations onto the principal components. The current

research uses the principal component analysis to analyze the

structure of the observations to evaluate how the observations are

intercorrelated, respectively about main component loadings.

Thus, it is possible to assess the characteristics of countries

according to the available parameters. PCA is widely used as a

research method in energy-related sectors. For example, in (Ni
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et al., 2022), the authors use PCA for exploring the impact of

natural resources volatility, fiscal decentralization, renewable

energy (RE) R&D and institutional quality in affecting CO2

emissions for seven selected developed countries. According to

their findings, there is a positive impact on income (GDP), total

natural resources rent and a negative impact of fiscal

decentralization, institutional quality and renewable energy

R&D on CO2 emissions. In (Yasmeen et al., 2022), the

authors examine, by using also PCA, the impact of business

cycles (recessions and booms) on renewable and non-renewable

energy consumption in the OECD states from 1996 to 2015. The

study shows that institutional quality is found to support

increasing renewable energy consumption even in recessions.

Foreign direct investment increases renewable energy

consumption with different effects during the recession and

boom periods.

It follows that to develop green technologies, foreign

investment in research and development is required. Another

study (Assi et al., 2021) examines the influence of five major

factors (environmental pollution, financial development,

innovation, GDP per capita, and economic freedom) affecting

renewable energy consumption for maintaining economic and

environmental sustainability in the ASEAN +3 economies during

1998–2018. By using a PCA approach, the authors confirmed

that environmental pollution and economic freedom have a

negative correlation with renewable energy consumption. Also,

the existing relationship between innovation and real GDP with

renewable energy is positive.

In a context where economies must follow decarbonization

policies to meet climate-policy objectives, in (Zhang et al., 2022)

the authors estimated the impact of green finance and digital

finance on environmental protection for G20 economies. The

results provided also through a PCA analysis show that CO2

emissions in the environment are reduced by green finance,

renewable energy investment, and technological innovation

(negatively correlated), whereas CO2 emissions are increased

by factors such as economic growth, energy consumption,

trade, and foreign direct investment (positive correlations). In

(Tutak and Brodny, 2022) the authors demonstrate the impact of

the use of renewable energy sources-based energy on economic

indicators and on the consumption of energy from conventional

sources. By using Kohonen artificial neural networks and PCA

analysis, this study analyzed some existing similarities between

the European Union countries in terms of the use of energy from

renewable energy sources in different sectors and the existing

correlations between economic and environmental parameters

and the consumption of energy from renewable energy sources,

as well as the impact of this energy consumption on the

consumption of conventional energy. As result, significant

differences were identified in the use of renewable energy

among the studied countries, their groups and sectors and

that renewable energy consumption have a positive impact on

economic growth.

3.2.2 Panel data analysis
Panel (data) analysis represents a statistical method used for

analyzing two-dimensional cross-sectional and longitudinal data,

data collected over time for the same individuals. Thus, a

regression is performed over these two dimensions according

to Eq. 9, where y is the dependent variable, x is the independent

variable, a is the intercept, b represents the coefficient and εit the

error term.

yit � a + bxit + εit (9)

In panel data analysis, the error is of importance as assumptions

about the error term involve using a fixed or random effects

approach. In a fixed effects model, ε is assumed to vary non-

stochastically over i or t, while in a random effects model, ε is

assumed to vary stochastically over i or t. Thus, there are three

approaches to panel data analysis, respectively: independently pooled

panels—no universal effects across time and no unique attributes of

individuals; random effects models−some unique, time constant

attributes of individuals are not correlated with the individual

regressors; fixed effect models (first differenced models). There are

unique attributes of individuals that do not vary over time, the

unique attributes for a given individual i are time t invariant, being or

not correlated with the individual dependent variables yi. Durbin-

Wu-Hausman test is used to test if the fixed effect approach is more

suited to random effects. Starting from the importance of the clean

energy in the context of sustainable development, in (Azam et al.,

2021), the authors, by using the panel data analysis, determine the

effect of natural gas, renewable energy and nuclear energy

consumption on economic growth and carbon dioxide emissions

in the ten highest CO2 emitting countries within a multivariate

context for the duration of 1990–2014. According to their findings,

natural gas does not contribute to economic growth and CO2

reduction like nuclear energy and renewable energy. Except for

natural gas, the expansion of renewable energy and nuclear energy

represents a key element for economic growth and for avoiding

global warming. Another panel data analysis research related to

renewable energy, can be found in (Su et al., 2022) where the authors

investigate the impact of changes in social structure, economic

structure, demographic structure, and trade structure on per

capita renewable energy consumption.

The panel regression models are developed using the updated

data of 116 countries, having economic structure, social structure,

trade structure and demographic structure as both explanatory

variables and threshold variables, whereas per capita renewable

energy consumption is the explained variable. Through the panel

data analysis, the authors verify the existence of a non-linear

relationship between social-economic-demographic-trade-

structure changes and renewable energy consumption.

The relationship between economic growth, CO2 emissions,

fossil fuel consumption, renewable energy consumption, foreign

direct investments, and trade by taking into account countries

with oil reserves and countries without oil reserves is analyzed in

(Aslan et al., 2022). By using panel data analysis, the study
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analyzes the factors impacting upon CO2 emissions in countries

with and without oil production between 1990–2015. In both

country groups, growth positively affects CO2 emissions, with a

negative relationship between CO2 emission and foreign direct

investments in the oil importing group, and a positive

relationship between CO2 and trade in the oil-exporting

group. In (Sikder et al., 2022), the authors use panel data

analysis to analyze the combined effects of gross domestic

product (GDP) growth, energy usage, industrialization and

urbanization on CO2 emissions for 23 developing countries

across the 1995 to 2018 period. According to their analysis, a

1% increase in energy use, economic growth, industrialization,

and urbanization increases CO2 emissions by 0.23%, 0.17%,

0.54%, and 2.32%, respectively. Furthermore, the panel

causality analysis identified a bidirectional causal relationship

between energy use, GDP growth, urbanization,

industrialization, and CO2 emissions. Another study (Oluoch

et al., 2021) based on panel data analysis and centered on the

renewable energy sector presents an empirical model outlining

the factors able to promote renewable energy consumption in

SSA (Sub-Saharan Africa’s). The authors considered the panel

data analysis with data describing 23 SSA countries with annual

data from 1998 to 2014. According to their analysis, the

dependent variable renewable energy consumption was

significantly and positively correlated with the independent

variables gross domestic product (GDP) per capita and

education index and negatively correlated with the CO2

emissions per capita, and life expectancy index.

3.2.3 Limitations of your methodological
approach
3.2.3.1 Problems of data definition and collection

Considering that the data are cross-sectional, more time is

needed to collect them. In addition, problems can also arise in

that data cannot be found either for a period or for a specific

section (data series).

3.2.3.2 The presence of measurement errors

Measurement errors can occur due to unclearly formulated

questions, distortion of answers, inadequate sources from which

statistical data are taken, wrong recording of answers.

3.2.3.3 The size of the data series is short

The data used for the temporal section of the panel data are

annual data and cover a medium size period. An increase in the

time interval would bring better accuracies, but for the current

scenario is impossible to implement as no data is available at this

granularity.

3.2.3.4 Cross-section dependence

In the case of panels on countries or regions that use large time

series if the dependence between them will be considered, it will be

possible to draw the most correct conclusions. Also, the panel data

analysis cannot solve all cross-section or time series problems. Due

to the relative low volume of data, the machine learning algorithms

were tested/validated on a medium size dataset. However, this issue

was mitigated by the fact that the selected algorithm’s capability was

proven to provide reliable results on small datasets.

4 Results and discussions

4.1 Main parameters’ distribution within
the analysed period

According to recent studies (Hasan and Raza, 2022) gas

consumption plays a major role in linking fossil to renewable

fuels. Some authors (Fadiran et al., 2019) pointed out that the

association of gas consumption with coal and oil consumption

can limit, considerably, environmental pollution. The gas

consumption box-plot analysis of countries, part of the

three geopolitical blocks, reveals high variation during the

analyzed period, for China and US (Figure 3A). Russia records

low variations in gas consumption during the targeted period.

However, considering the value of this indicator, Russia is

placed in second place among the analyzed countries, behind

the US, which leads in terms of gas consumption and over

China, Canada, Germany and Japan, which share almost the

same level of consumption (Figure 3A). High variations in gas

consumption are directly related to economic stability since,

as emphasized by other authors (Chrulski and Łaciak, 2021), it

is related to the production of chemistry, the chemical

industry, and the power industry. By analyzing the

countries by their geopolitical block membership, the US

registers the highest gas consumption from G7, followed by

Canada, Germany, and Japan, while Russia and China lead the

BRICS group (Figure 3A). In the EU this is Germany, Italy,

France, followed by the Kingdom of the Netherlands and

Spain (Figure 3A). However, the G7 has the most

homogenous distribution among the countries, except US.

Oil consumption is considered an important indicator of

energy-growth nexus since, as demonstrated by previous

authors (Saboori et al., 2017; Adekoya, 2021), economic

growth and income levels are positively driven by oil

abundance and negatively affect the environmental

dimension (Saboori et al., 2017). In terms of oil

consumption, China presents the highest variation during

the analyzed period, although the highest oil consumption

is attributed to the US (Figure 3B). In the G7, US lead in terms

of oil consumption, followed by Japan and Germany, while in

BRICS, China is in the first place, followed by India, Russia

and Brazil, which share almost the same level of consumption

(Figure 3B). Among EU countries, Germany leads in terms of

oil consumption followed by France, Italy and Spain

(Figure 3B). However, countries such as Canada, Germany,

France, Brazil and Russia that report high oil consumption,
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managed to maintain stable values of this parameter, during

the analyzed period (Figure 3B), a fact which can reveal their

economic stability.

The GHG emissions place China in the first place, followed by

US, Russia and India (Figure 3C). However, China registers a huge

variation of GHG in the analyzed period, followed by India, most

probably due to the accelerated increase of industrialization,

although a recent study (Welegedara et al., 2021) associates this

situation with variations in primary energy source, climate, and

population densities. However, BRICS cumulates higher GHG

emissions compared to G7 since 3 countries from this

geopolitical block are in the first 4 (Figure 3C), considering the

analyzed dataset. China records also both the highest value and

variation interval for renewable energy production, followed by US

and Brazil (Figure 3D). A recent study (Balsalobre-Lorente et al.,

2018) emphasized that if the economy starts its increasing trend, an

increase in its energy requirements, a decrease in the share of

renewable sources, and an increase in environmental pollution

from fossil sources will be registered. Among EU geopolitical

blocks, Germany, Italy, France, Spain and Sweden had reported

significant renewable energy production (Figure 3D). However,

Japan recorded a low level of renewable energy production,

considering its high level of gas and oil consumption and GHG

emission.

4.1.1 The XGBoost predictive models and feature
importance

The XGBoost modeling technique was found to be suitable to be

applied to the analyzed dataset since the present study targets to

explain the variation of renewable energy production capacity, as the

dependent variable, considering a series of independent variables

related to economic and environmental dimensions. Therefore, the

prediction models were applied for all 3 analyzed geopolitical blocks

(G7, BRICS and EU) (Figure 4) and model accuracy and overfitting

degree were evaluated for each model. The results indicate that, in

the case of BRICS block, the GHG emissions record the highest

feature importance value, followed by gas consumption and GDP

from industry-associated activities, while oil consumption has a low

to no importance in predicting renewable energy production

capacity (Figure 4A). The GDP per capita and oil consumption

FIGURE 3
The gas consumption (A), oil consumption (B), GHG emissions (C) and renewable energy production (D) box-plots for G7, BRICS and EU
countries.
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have low importance in predicting the renewable energy production

capacity (Figure 4A). Themodel has a good accuracy revealed by the

metrics (a value of 51447.95 corresponding to RMSE within the

training stage and 108544.37 for the testing stage). Considering the

data presented in Table 1, it can be concluded that the training

RMSE represents a percentage of 16.13% and the testing RMSE a

percentage of 34.05%, respectively, in relation to themean renewable

energy production capacity, a situation which indicates the high

predictive performance of the model. Also, the testing stage Rsq

value (0.95) is closed to the training stage Rsq (0.97), emphasizing

the low overfitting degree of the model, as it is observed also in

Figure 4B.

The XGBoost model for predicting the renewable energy

production capacity of G7 emphasizes that the highest feature

FIGURE 4
The feature importance of independent parameters in predicting renewable energy production capacity [for (A). BRICS; (C). G7; (E). EU] and the
actual vs. predictive values of renewable energy production capacity XGBoost predictive model in (B). BRICS; (D). G7; (F). EU].
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importance among independent variables is associated with the

gas consumption parameter (Figure 4C). However, compared to

the predictive model presented in Figure 4A, for BRICS

geopolitical block, which emphasized the relatively significant

importance of secondary variables (oil consumption and GDP

industry), among the primary variable (GHG emissions), the

G7 model (Figure 4B) reveals low feature importance for all

secondary variables. Therefore, GDP per capita, oil consumption

and GHG emissions have a low influence in predicting renewable

energy production capacity, while GDP from industry has a very

low to no impact (Figure 4C).

The model has a good accuracy revealed by the metrics (a value

of 17758.46 corresponding to RMSE within the training stage and

37402.07 for the testing stage). Considering the data presented in

Table 1, it can be concluded that the training RMSE represents a

percentage of 11.99% and the testing RMSE a percentage of 25.26%,

respectively, in relation to the mean renewable energy production

capacity, a situation which indicates the high predictive performance

of the model. Also, the testing stage Rsq value (0.94) is closed to the

training stage Rsq (0.98) confirming the low overfitting degree of the

model, as it is observed also in Figure 4D.

The prediction model for renewable energy production capacity

based on the EU geopolitical block dataset reveals that oil

consumption has the highest feature importance, followed by

GDP per capita and gas consumption (Figure 4E). Compared

with BRICS and G7 determined XGBoost prediction models, the

EU model emphasizes higher future importance among secondary

independent variables, revealing that, in the EU, an accrued

prediction of renewable energy production capacity must take

into consideration a wider set of parameters included in

economical—environmental nexus. The model has a good

accuracy revealed by the metrics (a value of

4,188.07 corresponding to RMSE within the training stage and

9,115.37 for the testing stage). Considering the data presented in

Table 1, it can be concluded that the training RMSE represents a

percentage of 13.93% and the testing RMSE a percentage of 30.32%,

respectively, in relation to the mean renewable energy production

capacity, indicating the high predictive performance of the model.

Also, the testing stage Rsq value (0.93) is closed to the training stage

Rsq (0.98) confirming the low overfitting degree of themodel, as it is

observed also in Figure 4F.

4.1.2 Generalized additive models feature
influence (GAM)

The GAM models explain the dynamic variation of

renewable energy production capacity, considering a series of

independent parameters which characterize the

environmental–economics nexus. Therefore, in the case of the

BRICS geopolitical block (RMSE: 28886.49), it can be observed

that an increase in gas consumption generates an increase in

renewable energy production capacity (Figure 5A). However, this

is valid within certain limits since the impact of renewable energy

production capacity’s upward trend is not immediately

emphasized as the gas consumption begins to rise. Thus, it is

assumed that gas consumption appears as a consequence of

increasing the industrial capacity and economic sustainability,

respectively, of a certain region. However, since economic

development remains a major objective for all world

economies, many economies are first targeting to obtain

economic growth and, after achieving a level of comfort, an

increase in investments in green technologies is considered (Nuţă

et al., 2021), a hypothesis which can confirm our findings.

Compared with gas consumption, oil consumption within

BRICS has an immediate impact on renewable energy

production capacity (Figure 5B). Thus, an increase in oil

consumption generates, almost simultaneously, a similar

increase in the renewable energy production capacity

(Figure 5B). The GDP per capita confirms the previously

mentioned hypothesis and, thus, reveals that economic growth

implies, at a certain maturity level, an increase in investments for

maximizing the capacity of sustainable energy production

(Figure 5C). Therefore, as GDP per capita increases,

renewable energy capacity will increase until achieving a

maximum predicted point, followed by a constant evolution

(Figure 5C). The GDP from the industry indicates that

investments in sustainable energy sources decrease in the first

stage of economic growth (Figure 5D) since this process is

characterized by high energy consumption (Nuţă et al., 2021).

However, after achieving an optimum level of economic growth,

a positive correlation between economic growth and energy

consumption from renewable sources is observed, a situation

confirmed also in other studies (Eggoh et al., 2011; Zhixin and

Xin, 2011; Tang et al., 2016; Gozgor et al., 2018; Shahbaz et al.,

2018; Rahman and Velayutham, 2020). Other studies suggested

that renewable energy consumption has a more effective impact

on economic growth (Doğan et al., 2020; Shahbaz et al., 2020).

However, the environmental dimension’s influence on renewable

energy production capacity reveals that the increase in GHG

generates an increase in renewable energy production capacity as

a measure of balancing the environmental impact (Figure 5F).

However, the situation is the opposite in the case of CO2

emissions, which revealed an indirect relation in relation to

renewable energy production capacity (Figure 5E). This can be

explained by the excessive use of fossil fuels to assuring economic

growth. However, there are studies which emphasize that CO2

emissions must be classified as a temporary indicator in the

evaluation of the sustainable development degree of an economy

(Bekun et al., 2019; Maneejuk et al., 2020) and recommend long

period CO2 historical data for achieving high accuracy models.

The GAM models for G7 (RMSE: 26135.50) revealed an

upward trend of renewable energy production capacity, as gas

consumption increase (Figure 5G). Also, the renewable energy

production capacity decrease when oil consumption increase,

fact which reveals the trend orientated to fossil fuels (Figure 5H).

However, when oil consumption reaches a higher level, most

probably associated to maximum economic development point,
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the renewable energy capacity starts to increase, as the economy

is mature enough and stable, to sustain future sustainable

development. However, it can be observed that the

G7 economic growth policy is different when compared to

BRICS, which targets economic growth by concomitant using

of fossil based and renewable energy sources, as presented in

Figures 5A, B. The GAM models based on GDP per capita and

GDP from industry predictors (Figures 5I, J), resulting from the

use of the G7 dataset, reveal almost similar observations as those

obtained from BRICS geopolitical block.

Therefore, the increase of GDP per capita will determine an

increase of renewable energy capacity (Figure 5I). Also, this situation

is encountered in the case of GDP from industry (Figure 5J).

However, compared to BRICS where the economic growth starts

based on fossil energy sources, in G7 the duet economic

growth—sustainable growth starts from the beginning and

records a less strong dependency. Those different perspectives

between BRICS and G7 are revealed also by GAM models which

used environmental dimension parameters as predictors. Thus, the

GHG emissions increase generates a decrease in renewable energy

capacity (Figure 5K), while the CO2 emissions increase generates an

increase in the dependent parameter analyzed (Figure 5L).

Cointegration relations, identified among lower-middle-income

economies, which involve both CO2 and GHG emissions and

renewable energy were emphasized in previous studies (Apergis

and Payne, 2010; Balsalobre-Lorente et al., 2018; Maneejuk et al.,

2020). However, these studies revealed that in the case of several

countries, economic wellbeing can influence CO2 and GHG

emissions if a certain evolution point is achieved.

The GAM models for EU geopolitical block (RMSE:

18284.74) revealed a relatively constant renewable energy

capacity if gas consumption increases (Figure 5M), while

FIGURE 5
The influence of several predictors over the renewable energy production capacity within the analysed geopolitical locks (A) gas consumption
predictor—BRICD; (B) oil consumption predictor—BRICS; (C) GDP per capita predictor—BRICS; (D) GDP from industry predictor—BRICS; (E) GHG
emissions predictor—BRICS; (F) CO2 emissions predictor–BRICS; (G) gas consumption predictor—G7; (H) oil consumption predictor—G7; (I) GDP
per capita predictor—G7; (J) GDP from industry predictor—G7; (K) GHG emissions predictor—G7; (L) CO2 emissions predictor–G7; (M) gas
consumption predictor—EU; (N) oil consumption predictor—EU; (O) GDP per capita predictor—EU; (P) GDP from industry predictor—EU; (Q) GHG
emissions predictor—EU; (R) CO2 emissions predictor–EU.
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oil consumption increase determines an increase of renewable

energy capacity until a kick point, followed by a decrease

(Figure 5N). This reveals that EU economic growth is based on

fossil energy sources during the first development stage,

followed by a shift to renewable energy sources once it

reaches a kick point, during the second development stage.

According to some authors, when an economy starts its

increasing trend, an increase in its energy requirements, a

decrease of the share of renewable sources, and an increase in

environmental pollution from fossil sources will be registered

(Balsalobre-Lorente et al., 2018). The GDP per capita increase

generates a low increase trend of renewable energy capacity

(Figure 5O), a situation similar also if considering GDP from

the industry as a predictor (Figure 5P). Other studies (Apergis

and Payne, 2010; Al-Mulali et al., 2015) performed by using

datasets from several European countries reported GDP as the

main factor which positively influences renewable energy

capacity. This reveals the necessity to segregate the

modeling approach on geopolitical blocks since the EU

countries’ energy policies differ compared to the rest of the

European countries.

The GAM models which consider GHG and CO2

emissions, respectively, as independent predictors, reveal

high similarities in the case of EU and BRICS (Figures 5E,

F, Q, R). Therefore, the increase in GHG generates an

increase in renewable energy production capacity

(Figure 5Q). However, the increase in CO2 emissions will

generate a decrease of renewable energy capacity, fact which

confirms the temporary character of this predictor

(Figure 5R).

4.1.3 Principal component analysis (PCA)
The PCA revealed two major components, with an

eigenvalue greater than 1, which manage to explain more

than 80% of data variance in the dataset (Figure 6).

Additionally, it can be observed that renewable energy

production capacity and GHG, respectively CO2 emissions

are highly correlated and are integrated into the first

component, which explains more than 60% of the variance,

while the parameters related to the economic dimension are

closely related to the second component, which explains about

20% of the data variance (Figure 6). Also, the PCA reveals a

high correlation in terms of variance for oil and gas

consumption parameters (Figure 6). Thus, it seems that

environmental dimension is highly related to renewable

energy production capacity.

4.2 Panel data analysis for BRICS

Due to non-stationary and the lack of co-integration, the

model Panel VAR was used in case of BRICS (Eq. 9), which

allows a short-term analysis with a regression order equal to 1.

REN EN TOTALit � β0i + δ1REN EN TOTALit−1

+ β1oilconsit−1 + β2gasconsit−1

+ β3co2it−1 + β4ghg emissionit−1

+ β5GDP capitait−1 + β6GDP INit−1

+ ϑit

(10)
The values obtained, by using panel least squares as a method

and renewable energy production capacity as dependent variable, are

presented in Table 3. The resulted model si emphasized in Eq. 10.

REN EN TOTALit � β0i + 0.89REN EN TOTALit−1

− 0.16oilconsit−1 + 0.09gasconsit−1

− 0.18co2it−1 + 0.34ghg emissionit−1

− 0.01GDP capitait−1

− 0.089GDP INit−1
(11)

Themodel (Eq. 10) reveals that between renewable energy and oil

consumption from the previous year there is a negative correlation.

Thus, when the oil consumption increases by one unit, the renewable

energy will decrease by 0.16 units. A positive correlation has been

identified between gas consumption from the previous year and the

renewable energy. Corresponding to an increase of gas consumption

by one unit, the value of renewable energy will increase by 0.09 units.

In terms of CO2 emissions, it was observed a negative correlation,

such as the renewable energy will decrease by 0.18 if CO2 emissions

from the previous year will increase by one unit. The same positive

correlation is registered between the total of renewable energy and gas

emissions, such as if the latter will increase by 1 unit, the renewable

energywill also increase by 0.34 units. Regarding the relationship with

other variables, a negative correlation with GDP per capita is

observed, implying that any increase in case of GDP will lead to a

decrease in the total renewable energy by 0.01 units. The GDP

industry has a reverse relation with the total of renewable energy.

Therefore, any increase in this indicator will lead to a drop in

renewable energy by 0.089 units. The intercept calculation for each

contry within BRICS geopolitical block is presented in Table 4.

The different intercept highlights the unique characteristics of

each contry. This varies for each of the studied countries and

remains fix over time. Each β1, β2, β3, β4 points out how much

different is the intercept in BRICS countries, compared to South

Africa. In the presented model, the average value of the intercept is

also estimated, which shows the mean of the total renewable energy

at the level of BRICS countries, in case of which all exogenous

variables of the model would be null (the value of the intercept is

aproximately 0.886). The model with fixed effect was estimated by

including the different intercept of each country. The intercept for

South Africa is aproximately 0.69 and it is represented by the model

constant with dummy type variables. This indicates the average

increase of the total renewable energy if the rest would be equal to 0

(the values of the intercept are representaed in Table 3). The lowest
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values of the intercept compared to South Africa, is in the case of

Russia, which registers a decrease by aproximately 0.099 compared

to the reference country, whereas the highest is in thecase of China

with aproximately 0.33 compared to the intercept of South Africa.

All the intercept values point out howmuch different are the BRICS

countries included in the present study compared to the reference

country which is considered South Africa.

4.2.1 Panel data analysis for G7
Given the fact that the time dimension is bigger than the cross-

sectional dimension, the stationary of variables must be validated,

due to the unreliability of non-stationary variables in the asymptotic

analysis. According to the data presented in Table 5, it can be

observed that all 7 variables are non-stationary, however they

become stationary at the difference of order 1.

After the validation of stationarity and the determination of the

stationary order [I(1)], the analysis is continued by applying the

Johansen test (H0 series are not co-integrated and within the

alternative hypothesis, the series are co-integrated) in order to

verify the co-integration. The validation of Pedroni and Kao tests

lead to the conclusion that these series are not co-integrated,

phenomenon which is unwanted over time since the series will

not correlate with each other. In order to counteract this

phenomenon and to estimate the relation between the REN_EN_

TOTAL variable and independent variables, a model Panel VAR

(Vector AutoRegressive) was used. The regression order of the

independent variables was established at two, so that the model

will estimate the relation between the variables as it follows:

REN EN TOTALit � β0i + δ1REN EN TOTALit−1

+ δ2REN EN TOTALit−2

+ β1oilconsit−1 + β2oilconsit−2

+ β3gasconsit−1 + β4gasconsit−2

+ β5co2it−1 + β6co2it−2

+ β7ghg emissionit−1

+ β8ghg emissionit−2

+ β9GDP capitait−1

+ β10GDP capitait−2 + β11GDP INit−1

+ β12GDP INit−2 + ϑit

(12)

FIGURE 6
The dataset Principal Component Analysis.
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The chosenmodel to represent the relationship between the variables

is a Fixed Effects model, Panel Least Squares method, in which the

individuality of each country within G7 is considered (Table 6).

The different intercept highlights the unique properties of

each country. This varies for each country and remains fixed over

time. Each β1, β2, β3, β4, β5 indicates how much the intercept of

G7 country differs compared to Canada. By analyzing the

developed model, it can be concluded that besides the oil

consumption, the gas consumption from the previous period,

the GDP from the previous period, as well as the CO2 emissions

from 2 years previous, all the other variables manifest a positive

impact on the total renewable energy. Thus, any increase in the

variables will generate an increase in the total renewable energy.

REN EN TOTALit � β0i + 0.59REN EN TOTALit−1

+ 0.25REN EN TOTALit−2

− 0.69oilconsit−1 + 0.34oilconsit−2

− 0.29gasconsit−1 + 0.66gasconsit−2

+ 0.26co2it−1 − 0.93co2it−2

+ 0.40ghg emissionit−1

+ 0.14ghg emissionit−2

− 0.03GDP capitait−1

+ 0.13GDP capitait−2

+ 0.25GDP INit−1 + 0.03GDP INit−2
(13)

TABLE 3 Panel data analysis by using panel least squares and renewable energy production.

Variable Coefficient Std. error t-statistic Prob

C 0.886000 1.220958 0.725660 0.4701

LREN_EN_TOTAL(−1) 0.897509 0.069167 12.97589 0.0000

LOILCONS(−1) −0.155417 0.373190 −0.416456 0.6782

LGHG_EMMISSIONS(−1) 0.336866 0.685566 0.491369 0.6245

LGDP_CAPITA(−1) −0.009532 0.053551 −0.178001 0.8592

LGDP_IN(−1) −0.088944 0.286751 −0.310176 0.7572

LGASCONS(−1) 0.094026 0.081704 1.150813 0.2531

LCO2(−1) −0.179181 0.645357 −0.277647 0.7820

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.995451 Mean dependent var 11.62848

Adjusted R-squared 0.994848 S. D. dependent var 2.064899

S. E. of regression 0.148207 Akaike info criterion −0.862812

Sum squared resid 1.823132 Schwarz criterion −0.540217

Log likelihood 52.98359 Hannan-Quinn criter −0.732460

F-statistic 1651.250 Durbin-Watson stat 1.634719

TABLE 4 Intercept calculation for each member of BRICS.

Member Dummy variables coefficient Calculation of intercept Intercept

South Africa β0 = 0.6929 β0 0.6929

Brasil β1 = 0.0496 β0 + β1 0.7425

China β2 = 0.3331 β0 + β2 1.0260

India β3 = 0.2347 β0 + β3 0.9276

Russia β4 = -0.099 β0 + β4 0.5939
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TABLE 5 Panel unit root tests for G7 countries.

Statistic test lco2 lgascons lgdp_cap lgdp_in lghg_emmissions loilcons lren_en_total

Levin, Lin, Chu

Level 0.81435 (0.7923) −0.34144 (0.3664) −2.65113 (0.0040) −0.63358 (0.2632) −1.59362 (0.0555) 0.16348 (0.5649) −1.1769 (0.1196)

Im, Pesaran, Shin W-test

Level 1.67993 (0.9535) 1.06107 (0.8557) −0.31894 (0.3749) −0.49194 (0.3114) −0.91677 (0.1796) −0.1151 (0.4542) 0.10282 (0.5409)

ADF-Fisher Chi-square

Level 7.42938 (0.8280) 6.88523 (0.8651) 11.4240 (0.4930) 17.1891 (0.1426) 14.9027 (0.2468) 12.4100 (0.4133) 10.0029 (0.6157)

PP-Fisher Chi-square

Level 6.26283 (0.9023) 14.4859 (0.2708) 4.34573 (0.9764) 16.5615 (0.1669) 17.7828 (0.1224) 19.5252 (0.0766) 14.8914 (0.2474)

Breitung

Level 0.20472 (0.5811) 1.80640 (0.9646) −0.09222 (0.4633) 0.11125 (0.5443) 0.86566 (0.8067) −0.5165 (0.3027) −0.88242 (0.1888)

Hadri

Level 2.79231 (0.0026) 3.94271 (0.0000) 5.10510 (0.0000) 3.75443 (0.0001) 3.44744 (0.0003) 2.25719 (0.0120) 4.29529 (0.0000)

*The values within the brackets are p-values.
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The series was stationary after the first difference, and

between the variables the phenomenon of co-integration is

lacking; thus, the use of the short-term analysis VAR Panel

was used. After the analysis of the model presented above

(Eq. 12) it can be revealed that between renewable energy and

oil consumption from the previous year there is a negative

TABLE 6 Panel data analysis by using fixed effects model—Panel Least Squares method, and renewable energy production capacity as dependent variable
for G7.

Variable Coefficient Std. error t-statistic Prob

C 0.814824 1.397848 0.582913 0.5615

LREN_EN_TOTAL(−1) 0.590139 0.093469 6.313753 0.0000

LREN_EN_TOTAL(−2) 0.257950 0.091538 2.817962 0.0060

LOILCONS(−1) −0.687519 0.379874 −1.809859 0.0738

LOILCONS(−2) 0.341035 0.391674 0.870713 0.3863

LGHG_EMMISSIONS(−1) 0.399477 0.569826 0.701051 0.4851

LGHG_EMMISSIONS(−2) 0.136438 0.627920 0.217286 0.8285

LGDP_CAPITA(−1) −0.025448 0.116792 −0.217893 0.8280

LGDP_CAPITA(−2) 0.128883 0.115354 1.117276 0.2670

LGDP_IN(−1) 0.246051 0.343468 0.716372 0.4757

LGDP_IN(−2) 0.034679 0.298426 0.116205 0.9078

LGASCONS(−1) −0.285210 0.219326 −1.300393 0.1969

LGASCONS(−2) 0.659250 0.236474 2.787839 0.0065

LCO2(−1) 0.260453 0.654349 0.398034 0.6916

LCO2(−2) −0.934158 0.658432 −1.418761 0.1595

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.993705 Mean dependent var 11.56020

Adjusted R-squared 0.992330 S. D. dependent var 0.814870

S. E. of regression 0.071366 Akaike info criterion −2.275073

Sum squared resid 0.443103 Schwarz criterion −1.775479

Log likelihood 141.7164 Hannan-Quinn criter. −2.072544

F-statistic 722.7702 Durbin-Watson stat 1.986073

The intercept calculation for each country within G7 geopolitical block is presented in Table 7.

TABLE 7 The calculation of intercept values for each member of G7 geopolitical block.

Member Dummy variables coefficient Calculation of intercept Intercept

Canada β0 = 0.5348 β0 0.5348

France β1 = 0.2833 β0 + β1 0.8181

Germany β2 = 0.3069 β0 + β2 0.8417

Italy β3 = 0.0436 β0 + β3 0.5784

US β4 = 0.7095 β0 + β4 1.2443

Japan β5 = 0.3400 β0 + β5 0.8748
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correlation meaning that when the oil consumption

increases by 1 unit, renewable energy will decrease by

0.69 units. A positive correlation between the total

renewable energy and the oil consumption from 2 years

previous was observed. When the latter increases by

1 unit, the renewable energy will also increase by

0.34 units. A reverse correlation was identified between

the gas consumption from the previous year and

renewable energy. When the gas consumption increases by

1 unit, the value of renewable energy will decrease by

0.29 units. In the case of the relation between renewable

energy and gas consumption from 2 years previous, it was

observed a direct positive correlation. Thus, renewable

energy will increase by 0.66 if the gas consumption will

also increase by 1 unit. In the case of CO2 emissions, a

positive correlation was registered with the CO2 emissions

from the previous year, whereas in terms of the relationship

with the values from 2 years previous, e negative correlation

was observed. Thus, renewable energy will drop by 0.93 if the

CO2 emissions from 2 years previous will increase by

1 unit. The same negative correlation is manifested in

the case of GDP per capita. Hence, if the latter increases by

1 unit, the renewable will decrease by 0.03 units. In the

case of the relation with the rest of the variables, a positive

correlation is observed. Therefore, any increase of the

variables will lead to an increase of the total renewable

energy. The average value of the intercept was estimated

for the present model (Eq. 12). This fact points out the

average of the total renewable energy at the level of

G7 countries, in the case of which all exogenous

variables would be null (the value of the intercept is

approximately 0.81). The fixed effect model was

estimated by including the different intercept of each

country. The intercept of Canada is approximately

0.53 and is represented by the model constant, which

indicates the mean increase of the total renewable

energy if the rest would be 0 (the values for the

intercept are represented in Table 6. The lowest

intercept value compared to Canada was registered in

the case of Italy (with 0.04 higher), while the highest

was observed in the case of the United States with

approximately 0.71 compared to Canada. All these

values of the intercept emphasize how different are the

analyzed G7 countries compared to the reference country

(Canada). Due to non-stationary and the lack of co-

integration, the model Panel Var was used, which

allows a short-term analysis (the regression order is 4).

4.3 Panel data analysis for EU

The panel data model used for EU geopolitical block is

presented above (Eq. 13).

REN EN TOTALit � β0i + δ1REN EN TOTALit−1

+ δ2REN EN TOTALit−2

+ β1oilconsit−1 + β2oilconsit−2

+ β3oilconsit−3 + β4oilconsit−4

+ β5gasconsit−1 + β6gasconsit−2

+ β7gasconsit−3 + β8gasconsit−4

+ β9co2it−1 + β10co2it−2 + β11co2it−3

+ β12co2it−4 + β13ghg emissionit−1

+ β14ghg emissionit−2

+ β15ghg emissionit−3

+ β156ghg emissionit−4

+ β17GDP capitait−1

+ β18GDP capitait−2

+ β19GDP capitait−3

+ β20GDP capitait−4 + β21GDP INit−1

+ β22GDP INit−2 + β23GDP INit−3

+ β24GDP INit−4 + ϑit

(14)
The values obtained, by using panel least squares as a method

and renewable energy production capacity as a dependent

variable, are presented in Table 8.

The different intercept highlights the unique characteristics

of each country. This varies for each country and remains fixed

over time. Each β1, β2, β3, β4 indicates how much different the

intercept of EU countries compared to Italy. In the case of the

presented model, the average values for the intercept were

estimated, which indicates the mean of the total renewable

energy at the level of G7 countries in case of all the

exogenous variables would be null (the intercept value is

approximately 1.093). The fixed effects model was estimated

by including the different intercepts of each country. The

intercept for Italy is approximately 1.609 and is represented

by the model dummy constant, which shows the average increase

ot the total renewable energy if the rest was 0 (the intercept values

are represented in Table 8). The lowest values of the intercept

compared to Italy is registered in the case of Luxembourg which

has a decrease of approximately 1.79 compared to the reference

country, whereas the highest is registered in the case of Germany

with approximately 0.26 compared to the intercept of Italy. All

these values indicate how much different are the countries from

EU compared to the reference country (Italy).

5 Discussions of policy implications

The recent finding in terms of the energy-environment-

economy nexus revealed that nuclear energy production

capacity reduces CO2 emissions, considering a dataset valid
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TABLE 8 Panel data analysis by using panel least squares and renewable energy production capacity as dependent variable for EU.

Variable Coefficient Std. rrror t-statistic Prob.

C 1.093774 0.777423 1.406923 0.1605

LREN_EN_TOTAL(−1) 0.695479 0.053441 13.01402 0.0000

LREN_EN_TOTAL(−2) −0.048543 0.062064 −0.782140 0.4348

LREN_EN_TOTAL(−3) 0.148755 0.058174 2.557065 0.0111

LREN_EN_TOTAL(−4) 0.017752 0.045249 0.392307 0.6951

LOILCONS(−1) −0.914796 0.212189 −4.311224 0.0000

LOILCONS(−2) 0.291114 0.243518 1.195452 0.2329

LOILCONS(−3) 0.092823 0.243723 0.380855 0.7036

LOILCONS(−4) 0.235477 0.201620 1.167923 0.2438

LGHG_EMMISSIONS(−1) −0.246915 0.406383 −0.607591 0.5439

LGHG_EMMISSIONS(−2) 0.231732 0.487058 0.475780 0.6346

LGHG_EMMISSIONS(−3) −0.231477 0.481613 −0.480628 0.6311

LGHG_EMMISSIONS(−4) 0.440561 0.429728 1.025210 0.3061

LGDP_CAPITA(−1) −0.043193 0.128073 −0.337251 0.7362

LGDP_CAPITA(−2) 0.411448 0.151804 2.710394 0.0071

LGDP_CAPITA(−3) −0.161274 0.151910 −1.061645 0.2893

LGDP_CAPITA(−4) −0.022918 0.110900 −0.206655 0.8364

LGDP_IN(−1) −0.311943 0.208810 −1.493911 0.1363

LGDP_IN(−2) 0.355403 0.259873 1.367604 0.1725

LGDP_IN(−3) −0.109290 0.259358 −0.421385 0.6738

LGDP_IN(−4) −0.115565 0.211890 −0.545403 0.5859

LGASCONS(−1) −0.266328 0.121193 −2.197546 0.0288

LGASCONS(−2) 0.441307 0.154576 2.854952 0.0046

LGASCONS(−3) −0.241410 0.152195 −1.586188 0.1138

LGASCONS(−4) 0.151343 0.117435 1.288735 0.1985

LCO2(−1) 1.392773 0.428296 3.251897 0.0013

LCO2(−2) −0.683089 0.544978 −1.253424 0.2111

LCO2(−3) −0.103760 0.541230 −0.191712 0.8481

LCO2(−4) −0.781536 0.468219 −1.669167 0.0962

Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.994187 Mean dependent var 9.487451

Adjusted R-squared 0.993208 S.D. dependent var 1.613832

S.E. of regression 0.132999 Akaike info criterion −1.062260

Sum squared resid 5.147394 Schwarz criterion −0.500400

Log likelihood 231.1153 Hannan-Quinn criter −0.838406

F-statistic 1015.718 Durbin-Watson stat 1.835187

The intercept calculation for each country within EU geopolitical block is presented in Table 9.
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for France (Iwata et al., 2010) and UAE (AlFarra and Abu-Hijleh,

2012). Also, a study (Dong et al., 2018) performed using China

dataset revealed that an increase in nuclear and renewable energy

production capacity will positively contribute to the reduction of

CO2 emissions in both short and long time periods. The role of

GDP is emphasized by previous authors (Wang et al., 2018)

which analyse a dataset which includes parameters from random

chosen G7, BRICS, South America, EU, Europe, Asian and

Australian development countries and concluded that GDP

per capita is a significantly positive contributor to renewable

energy consumption. Another analytical framework (Kahia et al.,

2019) based on MENA countries dataset revealed that renewable

energy production implemented at a large scale within all

economic sectors can reduce CO2 emissions. Considering the

European region, some authors (Bekun et al., 2019) elaborated

models considering some countries with increased economic

capabilities and revealed that increasing renewable energy

production capacity generated the reduction of CO2

emissions, while an economic development based on non-

renewable energy decreased the environmental sustainability.

These findings are also confirmed by large-scale studies (Ben

Jebli et al., 2020) which analysed data provided by over

100 countries. Also, studies performed on G7 countries

confirmed the possitive impact of increasing the income and,

therefore, the GDP, on ecological footprint.

According to some authors (Latake et al., 2015), the

process of promoting sustainable development implies

massive use of renewable energy for activities such as

power generation and carbon dioxide sequestration,

establishing, therefore, a direct relation between renewables

production and clean development mechanism efficiency.

However, other authors (Bhuiyan et al., 2022) indicate that

factors as renewable energy input-output costs, higher

constant production and maintenance costs, labor know-

how, as well as public acceptance and education oriented to

sustainable development necessity could be determinant

TABLE 9 Intercept calculation for each member of EU geopolitical block.

Member Dummy variables coefficient Calculation of intercept Intercept

Italy β0 = 1.609 β0 1.609694

Austria β1 = −0.453696 β0 + β1 1.155998

Belgium β2 = −0.401214 β0 + β2 1.20848

Czech Republic β3 = −0.607602 β0 + β3 1.002092

Denmark β4 = −0.726933 β0 + β4 0.882761

Estonia β5 = −1.232804 β0 + β5 0.37689

Finland β6 = −0.521467 β0 + β6 1.088227

Greece β7 = −0.425779 β0 + β7 1.183915

Hungary β8 = −0.775173 β0 + β8 0.834521

Ireland β9 = −0.832123 β0 + β9 0.777571

Luxembourg β10 = −1.79175 β0 + β10 −0.18206

Kingdom of the Netherland β11 = −0.411265 β0 + β11 1.198429

Poland β12 = −0.144288 β0 + β12 1.465406

Portugal β13 = −0.426211 β0 + β13 1.183483

Romania β14 = −0.309156 β0 + β14 1.300538

Slovakia β15 = −0.919158 β0 + β15 0.690536

Slovenija β16 = −0.990483 β0 + β16 0.619211

Spain β17 = 0.118557 β0 + β17 1.728251

Sweden β18 = −0.096159 β0 + β18 1.513535

Switzerland β19 = −0.535599 β0 + β19 1.074095

France β20 = 0.016545 β0 + β20 1.626239

Germany β21 = 0.257658 β0 + β21 1.867352
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factors in predicting the dynamics of the renewable energy

production. Also, the same study (Bhuiyan et al., 2022)

recommends that G7 group should focus on green growth

strategy in order to achieve global sustainable development

goals.

The findings of the present study were also confirmed by

other authors (Bhuiyan et al., 2022) that indicate that fossil fuels

use to boost economic growth may be beneficial only in the early

stages of production, whereas using clean energy may not be

beneficial in the early stages of production in expanding

production activities. Recent findings (Kilinc-Ata and

Dolmatov, 2022) emphasized that it is vital to design a

national policy on economic growth, research and

development, and renewable energy policies that are effective

in renewable energy investments, recommending, therefore, that

main geopolitical blocks should focus more on the policies. This

emphasizes the need for various decision support tools for

assisting the decision-makers on developing proper policies in

various global scenarios.

Also, commercialization and wide accessibility of renewable

energies could be considered in future studies, since production is

powered by demand and demand must be created through

education and political decisions. However, according to some

authors (Ahmad et al., 2021), the behaviors of individuals are

reshaped during extraordinary events such as the pandemic times

(COVID-19), situation which makes the renewable energy

demand dynamics more unpredicted. However, although it is

clear that renewable energy use must be promoted through

political channels, other authors point out that inconsistent

policies could affect renewable energy consumption in the

long run.

As expected, the results of the present study confirm a

hypothesis revealed by other authors (Borozan, 2022)

according to which the increase in GDP per capita has a

favorable and significant impact on renewable energy in the

long run. However, the nexus between renewable energy—GDP

was reported to differ among countries from geopolitical blocks,

as emphasized in a previous study.

The current research manages to formally depict a

multidimensional perspective of the existing relationship

between renewable energy capacities, the general economic

conditions, oil and gas consumptions, respectively GHG and

CO2 emissions. Thus, the presented analysis acts as a tool which

helps in understanding the main differences and similarities

between the three analysed geo-political groups and can serve

also, as a decision support service (DSS) that will help the

adoption of optimal strategies in relation to environmental

pollution, for BRICS, G7 and EU countries. Also, the model-

driven decision support methodology developed within this

study can be transferred at the national level, for countries

which were not included in this analysis, in order to develop a

common strategic goal towards a global environmentally

sustainable policy. Also, the model-driven DSS can act as a

tool that can assist decision-makers in the context of special or

extraordinary global events marked by global conflicts.

However, DSS must be used as a synergy tool within the

collaborative projects between all three geopolitical blocks,

targeting to develop energy-efficient and efficient

frameworks, as well as to support environmental and

sustainable activities, fact confirmed also in previous studies

(Kilinc-Ata and Dolmatov, 2022). Future model-driven DSS

may also consider indicators associated to research and

development sector since it had been proven, by other

authors (Borozan, 2022; Kilinc-Ata and Dolmatov, 2022)

that can have a positive effect on sustainable growth, and

stimulate current technology while simultaneously reducing

CO2 emissions. The importance of DSS for policy-makers is

vital since, according to previous study (EL-Karimi and El-

houjjaji, 2022) better understanding of clean energy—economic

growth nexus is important since it meets both dual objective of

unlocking higher economic growth rates and preserve cleaner

and sustainable production without damaging the

environment.

6 Conclusion

The models elaborated in the current study present a good

prediction capacity and reveal specific peculiarities for each

analyzed geopolitical block. The study concludes that oil

consumption has the highest future importance in predicting

renewable energy production capacity among EU countries,

while GHG emission and gas consumption are the most

important predictors in BRICS and G7 countries, respectively.

Additionally, the generalized additive models emphasize

evolution scenarios with different peculiarities, specific for

each analyzed geopolitical block. So, it is revealed that EU

economic growth is based on fossil energy sources during the

first development stage, followed by a shift to renewable energy

sources once it reaches a kick point, during the second

development stage. Regarding G7, the opposite evolution of

the predicted renewable energy production capacity and oil

consumption dynamics emphasizes the trend is orientated

toward fossil fuels. The GAM dynamics in the case of BRICS

indicate that gas consumption appears because of increasing

industrial capacity, followed by an increase in economic

sustainability.

The renewable energy production capacity and both

environmental dimension predictors (GHG and CO2

emissions) are highly correlated, while the economic

indicators (GDP per capita and GDP from industry) act as

separate components of the analytical framework. However, to

facilitate the renewable energy production extension, it is

recommended that all the analyzed groups should work as a

core team, optimizing, therefore, their internal strategies and

policies to a common goal.
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Therefore, from the managerial perspective, we emphasize the

possibility of using a tridimensional tool, based on the energy-

economy-environment nexus, this way adopting decisions which

will maximize the optimize the strategies oriented to developing the

renewable energy sector. Thus, the European governments and the

G7 need to retain the use of oil fuel energy consumption as it is

negatively associated with the development of the renewable energy

production sector. It is emphasized that gas energy consumption has

a limited influence on renewable energy production in EU, while in

G7 the increase in gas consumption is associated with an increase in

renewable energy production. However, BRICS shall limit its gas

consumption in order to assure both an increase in renewable

energy production and environmental degradation prevention,

targeting especially to reduce GHG emissions which will increase

in the scenario of encouraging renewable energy production without

discouraging gas consumption. It is recommended therefore to

adopt as a long-term target the partial replacement of fossil fuel

energy consumption with renewable energy consumption, by

supporting the sustainable energy production industry, at least in

a manner that assures the maintenance of GHG and CO2 emissions

within an optimal range. This can be achieved by elaborating more

encouraging subsidy policies for the adoption of renewable energy

production technologies, as well as increasing fossil fuels taxes,

especially for end consumers. Outside subsidies, environmentally

friendly economic activities and even households must be

encouraged by applying tax concessions. Providing motivating

financing schemes within the geopolitical block could be a

solution for encouraging the adoption of renewable energy

within the existing economy, without affecting the economic

development dynamics.

7 Limitations and future research
directions

Similar to most studies, the design of the current study is

subject to limitations. Thus, the analytical framework can be

considered limited by the number of parameters considered

as independent variables or predictors. However, a limited

number of parameters can increase the applicability of the

resulting models, making them more accessible for

policymakers. Also, another limitation can be related to

the time period covered by the dataset. However, a large

amount of historical data can decrease the

accuracy and actuality of the models since the energy-

environment-economical nexus is characterized by

dynamics and long-term prediction models are not

recommended to be used.

Future research direction should focus on identifying

certain renewable energy categories, specific for each

analyzed country, in order to better optimize the

regional strategies and potentiate the specific assets of each

region.
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