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The development of solutions to manage or mitigate climate change impacts is

very challenging, given the complexity and dynamicity of the socio-

environmental and socio-ecological systems that have to be modeled and

analyzed, and the need to include qualitative variables that are not easily

quantifiable. The existence of qualitative, interoperable and well-interlinked

data is considered a requirement rather than a desire in order to support this

objective, since scientists from different disciplines will have no option but to

collaborate and co-design solutions, overcoming barriers related to the

semantic misalignment of the plethora of available data, the existence of

multiple data silos that cannot be easily and jointly processed, and the lack

of data quality in many of the produced datasets. In the current work, we

present the SustainGraph, as a Knowledge Graph that is developed to track

information related to the progress towards the achievement of targets defined

in the United Nations Sustainable Development Goals (SDGs) at national and

regional levels. The SustainGraph aims to act as a unified source of knowledge

around information related to the SDGs, by taking advantage of the power

provided by the development of graph databases and the exploitation of

Machine Learning (ML) techniques for data population, knowledge

production and analysis. The main concepts represented in the SustainGraph

are detailed, while indicative usage scenarios are provided. A set of

opportunities to take advantage of the SustainGraph and open research

areas are identified and presented.
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Introduction

The development of effective climate change mitigation and

adaptation solutions is one of the most crucial challenges that we

face towards the transition to a sustainable and carbon-neutral

economy. To address this challenge and adopt sustainable

development paths, various policies and associated targets

have been specified at international and national levels (e.g.,

Paris Agreement (Horowitz, 2016), 2030 Agenda for Sustainable

Development (Lee et al., 2016) detailing 17 Sustainable

Development Goals (SDGs) and their associated 169 targets).

Following the specification of a wide set of policies, relevant

monitoring frameworks have been designed and become

operational to keep track of their implementation and

assessment. A wealth of data is made available (e.g., UN SDG

repository (UN Statistics, 2022), EU SDG and Green Deal targets

tracking (Koundouri et al., 2021), Nationally Determined

Contributions monitoring (United Nations Climate Action,

2022)), centered mainly around the need to monitor and track

the values of indicators to assess the progress made towards the

achievement of the SDG targets at national and regional levels.

Given that these data are collected by various organizations

worldwide, semantic consistency and data interoperability

among them cannot be considered as granted. Furthermore,

such data are made available in many cases as data silos,

while specialized software or Application Programming

Interfaces (APIs) may be required for getting access to them.

Lack of data quality is also a barrier, since data processing (e.g.,

removal of outliers, tackling of diverse assumptions during data

production, use of different semantics for data description) is

required in most cases to manage the transformation of data to

formats and structure that can be considered homogeneous.

Thus, the proper management of the wealth of collected

information is not straightforward. There is a need for

information models and information management techniques

able to capture the volatility of the data, manage semantic

misalignment of the denoted concepts, and facilitate the

identification of hidden patterns and relationships among

them. In this way, a solid, open and interoperable data

infrastructure can be made available, enabling the

development of innovative solutions to produce systemic

changes and make economies socially, economically and

environmentally sustainable.

Under this perspective, we present the SustainGraph as a

Knowledge Graph (KG) that has been conceptualized and

developed to track the progress towards the SDG targets, the

evolution of the defined indicators across time and their inter-

connectedness with policies and targets defined at European

Union (EU) and at national levels. KGs are based on the

principle of applying a graph-based abstraction to data. The

usage of graphs to represent data is accompanied with some way

to explicitly represent knowledge, based on the usage of

semantics. Data are coming from diverse sources and

domains, where alignment and semantic consistency of terms

and concepts may be required across scientific disciplines

(Hogan et al., 2021). KGs can operate without a strict

definition of a schema, allowing the data–and its scope–to

evolve in a more flexible manner than typically possible in a

relational setting. This characteristic makes KGs suitable for

managing information that is provided within a complex

socio-environmental system. Tracking of relationships among

the detailed concepts can take place, considering their temporal

evolution (e.g., dynamicity in the relationships across time in a

complex system) (Hogan et al., 2021).

A systemic nexus approach has been considered for

supporting the data population processes of the KG, while

taking advantage of participatory system mapping processes

(Matti et al., 2020; Midgley and Lindhult, 2021). By the term

systemic nexus, we refer to the interconnection of resource

management concepts, considering resources such as energy,

water, food, land and climate. In the context of the SDGs, a nexus

approach can facilitate the advancement of multiple SDGs

simultaneously, while reducing the risk that contributions to

one SDG undermine progress on another (van Zanten and van

Tulder, 2021). To take advantage of the wealth of available data,

openness and interoperability of the SustainGraph with existing

databases and Application Programming Interfaces (APIs) is

promoted to automate -as much as possible-the supported

data population processes. Over the SustainGraph, socio-

environmental and socio-ecological systems participatory

modeling and analysis processes can take place, aligned with

the main mechanics of a Systems Innovation Approach (Matti

et al., 2020; Midgley and Lindhult, 2021). Specifically, the

effective fusion of the collected data and their transformation

to systematized nexus-coherent knowledge, can lead to novel

insights (Laspidou et al., 2020), significant improvement of the

participatory processes (Matti et al., 2020) and the development

of collective environmental intelligence (Zafeiropoulos et al.,

2021) among the engaged stakeholders and communities.

In short, it can be claimed that the main contribution of this

work is twofold. On one hand, we provide the conceptualization

and semantic description of the SustainGraph that, as far as we

know, is the first KG that considers in a holistic way the tracking

of the progress towards the SDG targets and the evolution of

indicators at national and regional levels, along with their

relationship with specified policies and the implementation of

case studies across Europe. This conceptualization is considered

as the basis for the systemic representation of knowledge related

to the SDGs, enabling the collection and homogeneous

representation of data along with their semantics and

overcoming the aforementioned data management barriers.

On the second hand, by considering the mechanisms specified

in a Systems Innovation Approach (Matti et al., 2020; Midgley

and Lindhult, 2021), we detail the implementation of the

SustainGraph and the set of data population mechanisms

from a plethora of open data sources and data providers. Data

Frontiers in Environmental Science frontiersin.org02

Fotopoulou et al. 10.3389/fenvs.2022.1003599

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1003599


population to the KG and data analysis over the KG are assisted

through the exploitation of Machine Learning (ML) techniques.

In this way, participatory modeling and analysis processes can be

designed and implemented, taking advantage of the semantic

alignment of the represented terms and the knowledge produced

through the analysis of the information that is made available in

the SustainGraph.

Background information

Climate change related policies

In this section we provide a short overview of the existing

policies for addressing and mitigating the climate change

impacts. We focus on highlighting the existence of multiple

policy frameworks and initiatives worldwide and the need to

keep track of their relationships with the targets and indicators

defined in the SDGs. To properly represent these policies within

a knowledge repository, we are considering the specifications

provided by each framework, the applied temporal resolution

and their applicability area (worldwide, national, regional

level).

As shortly stated in Climate change related policies, the Paris

Agreement regards an international treaty on climate change that

has been adopted by 196 parties and put into force since 2016

(Horowitz, 2016). To implement the Paris Agreement,

participating countries are preparing their plans to reduce

greenhouse gas emissions, as reported in climate action

documents, called as nationally determined contributions

(NDCs). In each NDC, a set of targets is posed for mitigating

GHG emissions and adapting to climate change (United Nations

Climate Action, 2022; den Elzen et al., 2019). In parallel, within

the 2030 Agenda for Sustainable Development, the United

Nations have specified the 17 Sustainable Development Goals

(SDGs) that have to be achieved (Lee et al., 2016). The 17 SDGs

are monitored based on the specification of 169 targets along with

indicators to measure progress toward each target. Each goal has

8 to 12 targets, while each target can be assessed based on one to

four indicators. The SDGs integrate the three dimensions of

sustainable development (economic, environmental and social)

and are highly related with the tracking of indicators related to

the impact of climate change (Morton et al., 2019).

At European Union (EU) level, various policies are specified

that are related to the achievement of the SDG targets, in

accordance with the 2030 Agenda for Sustainable

Development (European Commission, 2016; Sachs et al.,

2021). For instance, the policy areas defined in the European

Green Deal and documented in terms of goals in the European

Climate Law -for the implementation of actions in accordance to

the Paris Agreement aiming at a carbon-neutral Europe by 2050-

are also related to specific SDG indicators. The relationship

between the European Union’s policies established since

2020 in support of the implementation of the European Green

Deal and the SDGs is also tracked in (Koundouri et al., 2021;

Koundouri et al., 2022). EU looks at the aspects of the SDGs that

are relevant from an EU perspective and therefore does not aim

at exhaustively assessing the progress towards the 169 targets of

the 2030 Agenda (Eurostat, 2022). To track the progress of the

SDG indicators in EU countries, Eurostat is tracking

101 indicators (31 of which are multipurpose, i.e., are used to

monitor more than one SDG). EU policy targets are considered

for assessing indicator trends (Eurostat, 2022). It should be noted

that the EU SDG indicator set is open to annual reviews, aiming

at the alignment of the proposed targets with the priorities set by

the European Commission and the consideration of indicators

coming from new or updated data sources (Malagó et al., 2021).

Country-specific directives for promoting sustainable

development are also provided at the Country Specific

Recommendations (CSRs) for EU countries. Such

recommendations come into play in the specification of

targets that have to be achieved per country and the

formulation or adaptation of national-level sustainable

development policies (Rainone, 2020). The EU taxonomy has

also been developed as a classification system for

environmentally sustainable economic activities (Dusík and

Bond, 2022). The objective is to promote sustainable

investments across Europe with substantial contribution to

climate change mitigation and the implementation of the

European Green Deal. It has defined six environmental

objectives, namely climate change mitigation; climate change

adaptation; protection of water and marine resources; transition

to a circular economy; pollution control; and protection of

ecosystems.

To promote a joint understanding of the classification of the

set of deep transformations required in each country to achieve

the SDGs, six SDG transformations are introduced as modular

building-blocks of the SDG achievement (Sachs et al., 2019;

Sachs et al., 2021). These regard Education, Gender, and

Inequality; Health, Well-being, and Demography; Energy

Decolonization and Sustainable Industry; Sustainable Food,

Land, Water, and Oceans; Sustainable Cities and

Communities; and Digital Revolution for Sustainable

Development (Sachs et al., 2019). Each transformation is

associated with specific SDGs, while targeted to suggested

interventions with planned outputs.

Finally, it should be noted that various initiatives are also

active on the specification of Key Performance Indicators (KPIs)

for smart sustainable cities, such as the study realized by the

United for Smart Sustainable Cities (U4SSC) initiative. The

objective is to provide consistent and standardized

methodology for cities to measure performance and progress

towards the achievement of the SDGs taking advance of digital

technologies (U4SSC, 2021). An overview of the relationships

between the aforementioned policies and initiatives is provided

in Figure 1.
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Knowledge management based on a
systems innovation approach

Systems innovation refers to the development of novel

participatory technological solutions and breakthroughs that

can lead to major transformation in national and regional

economies (De Vicente Lopez and Matti, 2016). The

formulation of a system is a basic concept in the systems

innovation approach, where a system is formed by several

elements and their relationships that can be dynamic across

time. The variability of a system can be attributed to changes in

internal or external parameters and the influence posed to the

individual elements (Matti et al., 2020). Knowledge management

is a fundamental part of the systems innovation approach, since a

collective understanding of the system is crucial to develop

transformative solutions.

The adoption of a systems innovation approach can be

considered as an enabler for the participatory formulation and

development of a KG. On the other hand, the usage of a KG can

be considered as an enabler for supporting knowledge

management processes within a team working based on a

systems innovation approach. The overall information flow in

a systems innovation approach is covering the various parts of

the DIKW (Data, Information, Knowledge, Wisdom) pyramid

(Rowley, 2007) (see Figure 2). The first part of the flow (Data and

Information parts in the pyramid) is associated with the

population of the data in the KG. Through participatory

processes, data collection and/or generation is taking place,

considering data coming from various stakeholders. Such data

can be introduced -upon processing-to the KG and populate it,

creating a unique point of information management. By

considering the interlinking between the denoted concepts

based on the provided information, knowledge is produced.

The second part of the flow (Knowledge andWisdom parts in

the pyramid) regards the extraction of data from the KG to

support participatory modeling processes. By getting access to

semantically aligned and interlinked data, a participatory

modeling process can be facilitated. Interdisciplinary scientists

can collaborate more easily and co-create their models, given the

alignment of terms coming from different scientific domains.

Such modeling processes can be based on the adoption of

modeling tools, such as System Dynamics Modeling, to better

understand complex systems and lead to the creation of new

knowledge by revealing feedback loops as well as interlinkages

and cascading effects that propagate through the system

(Laspidou et al., 2020). Resource nexus systems have such

FIGURE 1
High level view of climate change related policies and initiatives.
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complexity and systemic approaches that incorporate

biophysical, socio-economic and policy layers, which can

promote knowledge elicitation and production (Laspidou

et al., 2019; Papadopoulou et al., 2022; Ramos et al., 2022).

Resilience can be assessed successfully only through such

systemic analyses (Ioannou and Laspidou, 2022). Along these

lines, a KG can support the provision of input data to such

models and supplement the produced intelligence through the

identification of hidden relationships and/or patterns. Through

the exchange and adaptation of existing information, practice-

based knowledge can be co-created and applied in new contexts

(Matti et al., 2020).

It should be noted that, nowadays, there are limited methods

for modeling systemic changes, where there is also lack of

knowledge for the processes that lead to systemic shifts in

social systems (Elsawah et al., 2020). By capturing systemic

changes of socio-environmental systems in the KG, such a

challenge can be tackled. By getting access to visualization and

analysis results, data interpretation becomes simpler while

opportunities for innovation can be identified. For instance,

social network analysis and network maps can be used to

analyze the system dynamics and the role of each stakeholder

within a case study.

Knowledge graphs for information
management

Knowledge Graphs (KGs) are emerging, since they are

considered suitable to manage challenges that have arisen in

modern data practices. The main challenge has to do with the

existence of silos of data or dedicated software and Application

Programming Interfaces (APIs) for managing such data

(Sequeda and Lassila, 2021). Industry-specific data

representation schemas are defined and adopted that -in

many cases-may differ, even for the management of the same

types of data. In parallel, dedicated software and APIs are being

developed for data management in specific sectors, where the

data semantics are hidden from the end users and are tackled by

the internal software components. This make the software usable

only for the purpose that has been initially designed and hinders

its adoption, re-usability and interoperability with other data

management tools (Sequeda and Lassila, 2021).

KGs are considered suitable for bridging data silos, by

interlinking the concepts represented in the graphs with well-

defined semantics (see Figure 3). In this way, the interconnected

datasets in the KG can be enriched with meaning, misalignment

of terminologies of the same concepts under different data

schemas can be tackled, while relationships among concepts

can be made explicit. Thus, the main motivation for the

development of a KG is the usage of graphs to represent data

-that can be interconnected and enriched with meaning-to

explicitly represent knowledge (Noy et al., 2019; Hogan et al.,

2021). Data volatility is managed, since relationships among

nodes in a KG can be dynamic, making them suitable for

representation of complex and dynamic systems (e.g., socio-

environmental systems (Zafeiropoulos et al., 2021)). Keeping a

high standard of data quality in a KG is challenging and is related

mostly with the data quality of the input data. Quality

management processes have to be applied to identify data

quality issues (e.g., data inconsistency, data redundancy,

missing values) and proceed to improvements (e.g., outliers

removal) (Xue and Zou, 2022). By developing and

maintaining a KG, data re-usability, extensibility and

FIGURE 2
Knowledge Graph Development Phases aligned with a Systems Innovation Approach.
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interoperability can be considered as granted, relaxing a lot the

constraints posed to data scientists in existing data management

practices.

Moving one step further, KGs facilitate reasoning over the

available data and support analysis and complex decision-

making (see Figure 3). Reasoning over KGs is required to

obtain new knowledge, extract insights and conclusions from

existing data (Chen X. et al., 2020). Through reasoning, KG

completion and evolution can be supported via the identification

and prediction of new relationships among entities (Chen Z.

et al., 2020; Issa et al., 2021). As already mentioned, KGs can also

act as an enabler for participatory analysis of dynamic and

complex systems by interdisciplinary scientists. A data

scientist is able to take advantage of the interlinked data in

the KG to identify transformative patterns and extract new

knowledge and insights. The existence of semantically aware

and up-to-date data within a graph database enables the co-

design of data management and analysis processes that can be

integrated within dynamic modeling systems.

The role of Artificial Intelligence (AI) is highlighted since

Machine Learning (ML) pipelines can be developed for

supporting both data population and data analysis in the KG.

The existence of a KG can act as a catalyst for the incorporation

of a set of ML processes over a unified knowledge repository. The

exploitation of ML techniques has to be carefully considered,

taking into account a study that details the implications that AI

may have on the delivery of all 17 SDG goals and the associated

169 targets (Vinuesa et al., 2020). It is stated that AI can act as an

enabler for 134 targets, while it may also introduce negative

impact on 59 targets (Vinuesa et al., 2020). With regards to the

negative impact of AI, this is mostly related with the existence of

biases in the data, the need for examination of the long-term

impact of the applied algorithms in terms of equity and fairness

due to bias introduced in the training data (e.g., non proper

representation of groups based on culture, gender, ethnicity) and

the unequal distribution of educational and computing resources

throughout the world. To -at least partially-tackle these aspects,

emerging technologies applied over KGs can be considered. For

instance, the areas of explainable and responsible AI are

emerging that can take advantage of semantic layers of

knowledge provided through a KG to suggest explainable and

ethically-aligned actions (Hitzler et al., 2020). Explainable AI

solutions can increase the transparency and explainability of the

recommendations provided by AI algorithms and make them

more easily understandable and adoptable by humans. The

adoption of open-source and open-access policies can also

reduce the barriers for the usage of the produced software by

a wide community.

Methods

SustainGraph conceptualization and
walkthrough

The SustainGraph is specified and developed in the form of

a labeled property graph (LPG) model. In this model, a graph

consists of a set of nodes (discrete objects) and relationships.

Relationships are directional while both nodes and

relationships can have properties to describe their

characteristics. The main advantage of the LPG model is that

it can achieve high performance in data management

functionalities (storage, fast graph traversal, fast querying).

Furthermore, the adoption of an LPG model helps to

uniquely identify instances of relationships, allowing the

representation of repeatable events and of entities that have

dynamic properties (Purohit et al., 2021). The latter is very

helpful towards the modeling of real environments in dynamic

and complex systems.

However, the LPGmodel does not support a formal language

representation that can be used for automated knowledge

reasoning. To achieve this, the semantics of the data have to

FIGURE 3
Information Management from data silos to a Knowledge Graph.
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be introduced and managed, as it happens in the case of

development of an ontology. To properly detail the semantic

information associated with each node and relationship, a

SustainGraph ontology has been made available (Mandilara

et al., 2022). The ontological description of the main concepts

introduced in the SustainGraph can be considered as

accompanying information of the structure introduced in the

LPG model. By having access to the ontological description,

better semantic alignment of terms with emerging ontological

specifications can be achieved, while integration of the semantics

in the LPG model can be supported in the future (Purohit et al.,

2021). Following, we focus on the description of the labeled

property graph (LPG) model of the SustainGraph. A high-level

view of the SustainGraph structure is provided in Figure 4.

The main set of entities in the SustainGraph has to do with

the description of the structure of the UN Sustainable

Development Goals (SDGs), building upon an existing formal

knowledge organization system for this purpose (Joshi et al.,

2021). According to this system, within the SustainGraph, a

Sustainable Development Goal has a set of Targets, where each

Target is associated with one ormore Indicators (UN SDG, 2022).

Each Indicator is measured based on Series of data (time series

data). Each data Series is accompanied by SeriesMetadata where

details for the metric that is measured is provided, while it

includes a set of Observations. To support geolocation

characteristics, each Observation refers to a specific

geographical Area (GeoArea).

The aforementioned UN SDG indicators regard a subset of

the indicators that can be represented in the SustainGraph.

Further indicators along with the data series that are

associated with them can be introduced. Specifically, the

aforementioned structure for the representation of the UN

SDGs has been generalized to support the measurement of

similar indicators in the EU level, as well as indicators

provided from third party sources. At the EU level, the EU

SDG indicators are provided by Eurostat and can be associated

with the UN SDG indicators (EU SDG, 2022). Multi-purpose

indicators are defined, where one EU SDG indicator may

contribute to more than one goal. Data coming from third

party sources are also represented. Such data regard indicators

that do not belong to defined UN SDG or EU SDG indicators, but

can be required for realizing a socio-environmental analysis (e.g.,

indicators like the development status in a country, the

corruption perception index, environmental metrics,

demographics). The objective is to help interdisciplinary

scientists to realize analysis over a combined set of data,

considering both SDG and third-party indicators. This is

mainly applicable in the envisaged analysis within case

studies, especially in cases where, in addition to the SDG

indicators, further indicators are required to properly feed the

developed models for the considered socio-environmental or

socio-ecological systems. The Source of the Indicator (e.g.,

coming from UN SDG, EU SDG or a third-party source) is

specified in the homonymous entity.

FIGURE 4
High level view of the SustainGraph.
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The SustainGraph emphasizes the capability to declare

relationships among Indicators. For instance, this is applicable

in the case of EU SDG indicators, where an EU SDG indicator

may be similar to, part of or identical to an UN SDG indicator.

Similar relationships can be declared among UN or EU SDG

indicators and indicators coming from third-party sources. In

this way, the relationships among indicators tracked by different

monitoring frameworks are represented, enabling data

interlinking and interoperability. Furthermore, a relationship

is added where each EU SDG Indicator can contribute to a

specific Policy Target defined at the EU level. A view of this part

of the specification within SustainGraph is depicted in Figure 5.

By having conceptualized the way that time series data from

various indicators can be represented in the SustainGraph, we

moved on with the representation of concepts coming from

policy frameworks and directives to adapt policy frameworks. As

detailed in Section 2.1, various policies are emerging at global,

national and regional levels. Keeping track of the targets posed on

policy documents and their status of achievement (or not) across

time is important. With the current version of the SustainGraph,

focus is given on the representation of concepts coming from the

European Green Deal (EGD), the Nationally Determined

Contributions (NDCs), the Country Specific Recommendations

(CSRs) and the six SDG Transformations proposed as modular

building-blocks of the SDG achievement (Sachs et al., 2019; Sachs

et al., 2021). For the EGD, the supported entities regard the

defined Ambitions of the EGD and their implementation through

specific Policy Areas, where each Policy Area can be associated

with one or more SDGs. Various EGD Policy Documents are

produced to implement the EGD, where each EGD Policy

Document can contribute towards the six SDG

Transformations detailed at (Sachs et al., 2019).

In the case of the CSRs, the Recommendations issued per

country can be associated with one or more SDGs. These

Recommendations are usually provided annually, thus it is

important to keep track of the focus given on the various

SDGs by each CSR across time. Regarding the NDCs, they

provide action plans to cut emissions and adapt to climate

impacts. An action plan is associated with specific SDG

Targets and Indicators and specifies a set of targets that have

to be achieved at national level by a specific point of time along

with their current status, the main application sectors (e.g.,

health, water, agriculture, energy efficiency) and the type of

the considered climate response (e.g., mitigation, adaptation).

With regards to the six SDG Transformations, per

Transformation, in the SustainGraph we consider the

suggested Interventions that may take place through the

associated ministries, as well as the expected Intermediate

FIGURE 5
Sustainable development goals, targets and indicators in the SustainGraph.
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Output from each transformation. A view of this part of the

specification within the SustainGraph is depicted in Figure 6.

Another important set of entities represented in the

SustainGraph is related to the implementation of Case Studies

across Europe to develop climate-resilient regions through the

adoption of systemic solutions and innovations. These entities

regard the Case Studies, the Climate-related Hazards that aim to

tackle and the Innovations that can be adopted and applied within

each case study. For each Case Study we consider information

related to a short description of the main challenges, actions and

envisaged impact, the set of Stakeholders involved in the Case

Study and the application geographical area (GeoArea). Each Case

Study is associated with the SDG Goals, Targets and Indicators,

while it also includes information for Indicators defined by third-

party data sources. Such information may be provided by

monitoring infrastructure provided within the case study (e.g.,

Internet of Things (IoT) nodes, satellite images, data coming from

citizen science platforms) or made available from other initiatives

or monitoring frameworks (e.g., happiness index, corruption

perception index). For the Climate-related Hazards, we have

adopted the classification of hazards provided by the European

Environmental Agency for tracking the Europe’s changing climate

hazards (Crespi et al., 2020). 32 climate hazard Indicators are made

available, organized according to 16 hazard categories, grouped

into sixmain types (heat and cold, wet and dry, wind, snow and ice,

coastal, open ocean) (Crespi et al., 2020). The Innovation entity is

introduced to represent innovative solutions that are developed to

support adaptation and mitigation measures for climate change,

based on the description of such innovations in the Climate

Innovation Window developed by the BRIGAID project (van

Loon-Steensma, 2018). Each Innovation is associated with

specific Climate-related Hazards and is applicable to specific

application domains. Information related to the owner of the

Innovation and its Technology Readiness Level (TRL)

(Olechowski et al., 2020) is made available. TRLs are a method

for estimating the maturity of technologies. Their values range

from 1 to 9, where the first level stands for a system where basic

principles are observed, while the ninth level stands for an actual

system proven in operational environment. A view of this part of

the specification within the SustainGraph is depicted in Figure 7.

Finally, attention is given to the proper representation of

spatial information in the SustainGraph under the entity

GeoArea that refers to a specific geographical area (e.g.,

continent, country, city, region). Spatial information is

applicable to almost all the entities that are conceptualized in

the SustainGraph, given the importance to support high spatial

FIGURE 6
Sustainable development policy frameworks in the SustainGraph.
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resolution of the collected data. To achieve this, we follow a

hierarchical way of declaring information related to the location

of the various entities. Following the division provided in the

M49 standard by the Statistics Division of the United Nations

Secretariat, geographic regions are based on continental regions

that are further subdivided into sub-regions. Each sub-region can

refer to one or more geoAreas, where each geoArea refers to a

specific country. Country codes are supported based on both the

International Standard ISO 3166–1 for the representation of

names of countries and their subdivisions, as well as the

M49 standard country or area codes for statistical use by the

Statistics Division of the United Nations Secretariat.

Furthermore, for EU countries, the Nomenclature of territorial

units for statistics (NUTS) classification provided by Eurostat is

introduced. Based on the NUTS classification, a geoArea can be

divided in smaller areas in NUTS 1, two and three levels. NUTS

one level refers to major socio-economic regions, NUTS two level

to basic regions for the application of regional policies, and

NUTS three level to small regions for specific diagnoses.

SustainGraph data population

Based on the conceptualization of the SustainGraph, a set of

data population mechanisms are implemented to support

knowledge acquisition processes. Through the data population

mechanisms, existing data provided by various sources and

different formats can be transformed to knowledge within the

SustainGraph. The data population process is a dynamic process,

where fresh data is continuously fed into the KG, enriching the

available information and enabling further knowledge

production and management, as detailed in SustainGraph

data population. The main challenge faced here has to do

with the development of custom scripts for automating or

semi-automating the data ingestion to the KG. By making

available such scripts, new releases of the considered datasets

can be easily incorporated in the KG, reducing significantly the

overhead posed to data scientists for continuously processing the

available data to bring them into a homogeneous and

interoperable format.

A wide set of data sources is considered. This set includes

open data provided by international organizations, statistics

authorities and public bodies in the form of tabular datasets

(e.g., files in csv format) or through open Application

Programming Interfaces (APIs), data coming from the

monitoring infrastructure that is implemented within case

studies in various regions, and data coming from the

processing of policy documents and reports. For the latter,

machine learning (ML) techniques are applied to support the

knowledge acquisition process. The main considered ML

technique is related to Natural Language Processing (NLP)

mechanisms that helps understanding the content of the

documents and extract information and insights from them.

NLP can be used for detecting key words and phrases relevant to

FIGURE 7
Case Studies, Climate related Hazards and Innovations in the SustainGraph.
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the SDGs, quantify overlaps and relationships between texts

(Smith et al., 2021). Various NLP methods can be used,

including latent semantic analysis for analyzing relationships

between a set of documents and the terms they contain (Smith

et al., 2021) and multi-label classification of texts using

Bidirectional Encoder Representations from Transformers

(BERT) (Matsui et al., 2022).

Data quality assurance for the data that is introduced in the

SustainGraph is challenging. Each dataset that is coming from an

external source is prepared based on a set of assumptions and

different processes in terms of data quality management. Even

data from the same data provider may be made available

following a different structure in different time periods, while

the existence of outliers and null values is often noticed. Bias may

be also introduced in the provided data, based on the applied data

collection and management processes and the representative

inclusion (or not) of the associated groups. To improve data

quality, a set of data quality assurance mechanisms are under

development. Data cleaning mechanisms are applied for

improving data quality, while considering bias detection in

terms of fairness. Data cleaning may regard -among others-

removal of outliers, removal or completion of entries with

missing values, and deletion of content that is not considered

for inclusion in the KG. Bias detection in the data may regard the

non-proper representation of sub-groups within the datasets or

the presence of systematic differences between groups, while

fairness can be assessed based on the alignment of the data with

the FAIR (data that can be easily findable, accessible,

interoperable and reusable) principles (Wilkinson et al., 2016).

It should be noted that in the SustainGraph version that is

presented in this manuscript, data is introduced by well-

known and reliable data providers and, thus, simple data

cleaning mechanisms are applied (outliers’ removal, missing

values management). Data provenance is supported, since the

origin of the data is always made available in the properties of the

associated Series entity instance in the SustainGraph.

A list of the main data sources used for populating with data

the SustainGraph is provided in Table 1. As already mentioned,

this list should be considered as indicative, since the list of data

sources is continuously evolving given the availability of further

data and the emergence of new concepts within the

SustainGraph.

SustainGraph knowledge production,
exploration and evolution

By having access to a data-populated version of the

SustainGraph, a set of services can be offered upon it. These

services include data exploration and visualization, data analysis,

participatory modeling and analysis, knowledge production and

KG completion. Following, we provide a short description of

these services, while usage examples are provided in

SustainGraph knowledge production, exploration and evolution.

As already stated, the SustainGraph can be considered as a

knowledge repository related to the evolution of the SDG

indicators at national and regional levels. Data exploration can

take place through the submission of queries by end users. Each

TABLE 1 Indicative Data sources for the SustainGraph data population.

Data Provider Description Data Type

United Nations SDG API UN SDG Indicators (SDG data reported by the United Nations Statistics Division)
UN Statistics. (2022)

Tabular (data retrieved through an API)

Eurostat Sustainable
Development Indicators

EU SDG Indicators (SDG data reported by Eurostat) EU SDG. (2022) Tabular (CSV data processing)

National Determined
Contributions

NDC data based on the Paris Agreement (time series data for specific indicators, as
well as data related to the linkage between NDCs and SDGs) Climate Watch. (2022)

Tabular and Classification (linkage) data (data
retrieved through an API)

World Happiness Report World Happiness Index (survey data reporting how people evaluate their own lives)
SDSN - World Happiness Report. (2022)

Tabular (CSV data processing)

Transparency International Corruption Perceptions Index (time series data for the perception of corruption
levels worldwide) Transparency International. (2022)

Tabular (CSV data processing)

European Environmental Agency Climate Hazards Classification (data for the classification of climate hazards and the
associated indicators) Crespi et al. (2020)

Tabular and Text (data import based on a script)

Climate Innovation Window Innovations (References portal for innovations on climate change adaptation)
BRIGAID project. (2022)

Tabular (data retrieved through a Really Simple
Syndication (RSS) feed)

European Union European Green Deal Documents (policy documents) Text (processing based on NLP)

National Data Country Specific Recommendations (documents with recommendations per
country)

Text (manual data processing and NLP)

Research and Innovation Projects Case Study Data (e.g., data provided in the ARSINOE project ARSINOE project.
(2022))

Tabular and Text (csv data processing, text
processing based on NLP)

6Transformation Data from 6Transformations Report (mapping between transformations and SDGs)
Sachs et al. (2019); Sachs et al. (2021)

Tabular (csv file produced from the report)
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query is related with an open question, while the query result may

provide an answer. Data exploration can be provided also

through web-based navigation in the entities and relationships

of the SustainGraph. Various visualizations can be produced for

depicting trends in the available data, comparing metrics based

on their temporal and/or spatial resolution, and highlighting the

weight of the existing relationships in the graph. In this way, end

users are able to explore the existing knowledge in the KG,

achieve common understanding, get answers to specific

questions and easily grasp trends and insights through

visualizations.

Moving one step further, through the submission of queries to

the SustainGraph, the retrieved data can be fed as input to analysis

pipelines. Such analysis pipelines may regard algorithms applied

over tabular data or graph algorithms applied over the

SustainGraph or a part of the SustainGraph. In the case of

tabular data, algorithms such as correlation analysis, regression,

descriptive statistics and classification may be applied. Tabular data

can be also fed as input to developed participatory socio-

environmental systems’ models (e.g., based on agent-based

modeling, system dynamics modeling) (Zafeiropoulos et al.,

2021). Graph algorithms can be applied to support pattern

identification within the KG and to evaluate the structure of the

KG (e.g., examine the graph density, identify clusters, community

detection). Graph ML techniques can be adopted to support link

prediction and to evolve the KG with the introduction of new

relationships, similarity analysis based on node embeddings, and

classification analysis based on the application of node classification

models. The outcomes produced by analysis pipelines can be used

for the development of recommendation engines, providing insights

for the design of efficient solutions (e.g., to improve the climate

resilience of the considered areas within a case study).

It should be noted that the analysis results may be also fed

back as information to the KG. In this way, further knowledge

may be produced and made available, while results produced by

different models can be compared.

Results

Use cases and analysis results

To demonstrate the applicability of the SustainGraph to guide

the co-design of innovative solutions for managing the impact of

climate change, we detail a set of short and simple use cases.

Knowledge exploration for these use cases takes place in the form

of providing answers to questions, or through navigation in the

information visually depicted in the SustainGraph. Given the

conceptualization of the SustainGraph in Use cases and analysis

results, the objective is to provide some highlights on its potential

usage. The provided examples can be considered as the basis for

the development of advanced analysis processes in the future,

coupled with the development and validation of socio-

environmental or socio-ecological models. Following, we briefly

describe these use cases, where we consider simple usage examples

for the examination of the relationship among various socio-

economic and environmental SDG indicators and the

importance given to them in policy documents.

Use case #1: For a specific UN SDG indicator, compare its

evolution per country in the last 20 years for countries in the

Mediterranean.

In this use case, we examine the evolution of the UN SDG

indicator 1.1.1 in a number of the Mediterranean countries. The

indicator depicts the proportion of the population living below the

international poverty line and is used for evaluation of the progress

towards achieving Target 1.1 (by 2030, eradicate extreme poverty

for all people everywhere, currently measured as people living on

less than $1.25 a day) of the SDG #1. A query is submitted to the

SustainGraph to get time series data for this indicator for a set of

countries. The produced output is visualized in Figure 8.

Use case #2: For a specific EU SDG indicator, compare the

current status of the indicator across countries in Europe,

considering also the EU policy target to be achieved by 2030.

In this use case, we examine the current status of a specific EU

SDG indicator, namely sdg_04_70 that tracks the “Share of

individuals having at least basic digital skills” across countries

in Europe for the year 2021. The status of the indicator is

compared to the posed target at the EU level for 2030 that is

80%. Upon getting the relevant data through a query in the

SustainGraph, the visualization depicted in Figure 9 is produced.

A digital gap is noticed among countries in Europe, since the

indicator values range from 24% (e.g., countries in Southeastern

Europe) to 81% (e.g., Scandinavian countries).

Use case #3: Which SDG targets are mostly considered in the

plans for the Nationally Determined Contributions (NDCs)?

In this use case, we consider the G8 countries and we

examine the importance posed in their Nationally Determined

Contributions (NDCs) towards the achievement of the SDGs.

The objective is to get a high level view of the priorities set by

these countries, as well as identifying any differences. Through a

query in the SustainGraph, the produced visualization is depicted

in Figure 10. For the EU countries (Italy, Germany and France)

the produced distribution is identical, since the NDCs of these

countries are based on the overall direction provided by the EU.

The most considered SDGs are SDGs # 7, 12 and 15. SDGs #

7 and 15 seem to be considered in the NDCs of all G8 countries

with rates varying from 8–50% for SDG #7 and 13–50% for SDG

#15. In the case of Russia, only these two SDGs are considered

with rate of 50% each. The most prioritized SDG is SDG #12

(with rate 23%) for Japan, SDG #7 (with rate 31%) for Canada,

SDG #12 (with rate 17%) for United Kingdom, and SDGs #2 and

7 (with rate 19% each) for United States of America.

Use case #4: What is the relationship between the Outputs

expected from a specific Transformation with the SDG goals?

In this use case, we examine the association between a specific

Transformation and the SDG goals, given that the Transformations
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are considered asmodular building blocks for the SDGs achievement.

We have selected the “Health, Wellbeing, and Demography”

Transformation (Sachs et al., 2019). By navigating in the

SustainGraph (see Figure 11), it is noticed that this

Transformation is mainly implemented by the Ministries of

Health, while it comprises of two Interventions (development of

healthy behaviors and social determinants of healing, support of

universal health coverage). These interventions contribute to the

Intermediate Output of providing Public Health Services that is

associated with a set of SDGs (SDGs # 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 16).

Use case #5: For a specific case study, what are the associated

climate hazards that are tackled within the considered

geographical areas? Are there any innovations that can be

adopted to tackle these hazards?

FIGURE 8
Monitoring of an UN SDG indicator across countries in the Mediterranean.

FIGURE 9
Monitoring of an EU SDG indicator across countries in Europe for 2021.
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FIGURE 10
Association between the NDCs and the SDGs for the G8 countries.

FIGURE 11
Association between a specific Transformation and the SDGs.
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In this use case, we focus on a specific case study developed

within the ARSINOE H2020 project (ARSINOE project, 2022).

The case study focuses on greening the Athens metropolitan area

and tackling the impact of heat waves in the area of Attica in

Greece. Specifically, ARSINOE aims at providing Athens with the

foundation of a public consensus towards climate resilience,

targeting the key community systems of the environment,

biodiversity, clean energy, primarily, and transportation

secondarily. As an initial examination of the case study, we

want to identify what are the main climate hazards considered

in the case study and if there are available existing technological

solutions to help to mitigate their impact. By navigating through

the SustainGraph, we can see that “Heat and cold” is the main

hazard category considered, while the associated hazard types

regard the “Extreme heat” and the “Mean temperature” increase

(see Figure 12). For tackling these hazard types, four innovations

are made available through the “Climate Innovation Window”

platform with Technology Readiness Level (TRL) levels ranging

from four to 7. These innovations refer to heatwave management

through a blockchain-based system in urban areas, modeling

solutions for assessing vulnerability indexes for heatwaves, and

nature-based solutions for development of vertical garden and

efficient water management systems.

Use case #6: Examine the relationship between the

corruption levels in a country with the economic development

status and the classification regarding the freedom of press.

Well-established links exist between corruption levels,

human rights abuses and decline in the quality of democracy

within a country. Such links are considered within the SDGs and

especially SDG #16 that focuses on peace, justice and inclusion.

By navigating in the SDG targets of SDG #16 in the

SustainGraph, four ambitious anti-corruption targets are

defined, namely targets 16.4 (reduce illicit financial and arms

flows and combat all forms of organized crime), 16.5 (reduce

corruption and bribery in all its forms), 16.6 (develop effective,

accountable and transparent institutions) and 16.10 (ensure

public access to information and protect fundamental

freedoms). By examining the indicators per target, it can be

seen that qualitative data exist for a part of these indicators,

including indicator 16.5.1 (proportion of persons engaged in

bribery actions) and indicator 16.5.2 (proportion of businesses

engaged in bribery actions). It should be noted that these

indicators are provided by the UN SDG monitoring

framework, however, are not directly traceable by the EU

SDG monitoring framework. Both indicators are associated

with the EU SDG indicator sdg_16_50 that regards the

tracking of the Corruption Perception Index (CPI), as it is

provided by Transparency International.

In this use case, we examine the relationship among

corruption, freedom of press and economic development

indicators in EU countries. To achieve this, there is a need to

analyze data coming from third-party sources, data coming from

the UN SDG and the EU SDG monitoring frameworks and data

provided through the NDCs per country. The NDCs are included

in the analysis to check the level of importance given per country

towards the tackling of challenges related to SDG #16, including

the fight against corruption. Following, a correlation matrix is

produced based on correlation analysis over data for the

indicators Gross Domestic Product (GDP) per capita,

corruption and freedom of press for the time period from

2013 to 2021. It should be noted that, in case of corruption,

the provided values are given on a scale of 0 (highly corrupt) to

FIGURE 12
Climate hazards and innovation for a specific case study.
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100 (very clean). To properly depict this rating, we are using the

term anti-corruption in our analysis. The produced correlation

matrix is depicted in Figure 13, where all the presented values are

statistically significant (p-value less than 0.001). High correlation

values are noticed between the anti-corruption levels and the

quality of the freedom of press (0.81), as well as the anti-

corruption levels and the GDP per capita (0.77). A smaller

correlation value is noticed between the quality of the

freedom of press and the GDP per capita (0.6). Such results

are reasonable and indicate the positive impact of the fight

against corruption to the freedom of press, the improvement

of the economic development status of countries and, thus, the

rule of law and the quality of life of people.

Following, we examine the relationship between the

Corruption Perception Index (CPI) and the UN SDG

indicators 16.5.1 and 16.5.2. The objective is to check the

intensiveness of the associations between these indicators,

considering their similarity. Moving one step further, we

examine the relationship between the CPI and the happiness

index, focusing on the part of the happiness that is explained by

corruption. Indeed, a strong correlation is identified between the

CPI and indicator 16.5.1 (-0.8) and a medium correlation

between the CPI and indicator 16.5.2 (-0.62). The stronger

correlation in the case of the CPI and 16.5.1 indicators can be

attributed to the kind of reporting for these indicators, where in

both cases is based on the perception and the experiences of the

individuals. The correlation between the CPI and the happiness

score explained by the CPI is also high (0.88). The latter

contributes to the overall happiness score calculated per country.

As a final step of the analysis in this use case, we examine the

importance given on SDG #16 by countries across Europe in their

NDCs. The objective was to check whether countries that are far

from achieving the defined targets for the SDG #16 are

considering the achievement of such targets in their policy

agenda. However, by checking the NDCs of all countries

across Europe, it is noticed that the only country that includes

some references to SDG #16 is the United Kingdom. Such a result

is not encouraging for achieving the SDG #16 targets across

countries in Europe and should be considered by policy makers

to adjust their policy recommendations in the future.

Use case #7: Examine the relationship between the SDG

indicators defined by the UN and EU for a specific Goal for a case

study that is implemented in the area of Athens in Greece.

The EU has fully committed itself to delivering on the

2030 Agenda and its implementation. To achieve this

objective, regular monitoring of the progress towards the

SDGs within the EU is taking place. As detailed in Use cases

and analysis results, EU is not exhaustively assessing the progress

towards the 169 targets of the 2030 Agenda, but considers a set of

101 indicators as an EU SDG indicator set. In this use case, we

examine the relationship between the UN and SDG indicators

that are considered in the implementation of the aforementioned

case study for greening the Athens metropolitan area, within the

framework of the ARSINOE project (ARSINOE project, 2022).

To examine the association of the work in the case study with

the progress towards the achievement of specific SDGs at

regional level, we have detailed the set of related UN SDG

targets and indicators that are considered for monitoring.

Data for these indicators can be provided through global,

national and regional data providers. Given that part of such

data is provided by Eurostat, we would like to have a view of the

relationship between the selected UN SDG indicators with

FIGURE 13
Correlation matrix.
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indicators coming from the EU SDG indicator set. This

information can be easily retrieved through the SustainGraph,

since the mapping of the association among indicators is already

tracked. The outcome of this association for SDG #15 (Life on

Land) is depicted in Figure 14, where the list of indicators is

provided without any significance order. In the left part of the

figure, the UN SDG #15 indicators are noted, while, in the right

part, information is provided for the associated EU SDG

indicators.

Implementation details

The SustainGraph is developed based on the Neo4j graph

data platform. It is conceptualized in the form of a labeled

property graph (LPG) model (Fotopoulou et al., 2022), as well

as in the form of an ontology (Mandilara et al., 2022). The data

populationmechanisms are implemented through Python scripts

by using the Py2neo client library and toolkit that is supported by

Neo4j. For the data analysis pipelines, the Neo4j Graph Data

Science data analytics and machine learning platform is used.

Visualizations are produced based on the usage of the NeoDash

dashboard builder for the Neo4j graph database, the Neo4j

Bloom visualization tool and SemSpect as a scalable graphical

exploration interface for knowledge graphs. The SustainGraph is

released as an open-source KG that can be adopted and used by

the scientific community. It is made openly available in a GitLab

repository (Fotopoulou et al., 2022) under an Eclipse Public

License 2.0.

A continuous development and integration approach is

followed for the maintenance and update of the SustainGraph.

This includes both the extension of the represented entities and

relationships, and the development of data population

mechanisms for integrating data from further data sources

and providers. A periodical update (e.g., in a bimonthly basis)

of the documentation part (available in English) in the GitLab

repository (Fotopoulou et al., 2022) is planned to facilitate the

ease adoption, usage and extension of the SustainGraph.

Discussion

In the current work, we have presented the SustainGraph, as

the first -up to our knowledge- Knowledge Graph that tries to

holistically represent information associated with the set of goals,

targets and indicators specified by the United Nations in the

2030 Agenda for Sustainable Development. the SustainGraph is

conceptualized by having in mind the need to track the progress

towards the SDGs targets based on the assessment of indicators

provided by different data providers, considering the need to

represent their association based on their exact definition (e.g.,

the UN SDG and the EU SDG indicators are not identical). The

information collected in the SustainGraph includes data related

to the association between the emerging policies and the SDGs,

the implementation of case studies and the release of innovative

solutions for climate change impact mitigation and adaptation.

The conceptualization and development of the SustainGraph is

the first and basic step to serve a wide set of end users, including

FIGURE 14
Interlinking of the UN and the EU SDG indicators for a specific Goal in a case study in Athens.
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the scientific community, policy makers and educational

organizations. Following, we refer to a set of limitations that

exist in the release of the SustainGraph, as it is detailed in this

manuscript, along with suggested ways to overcome such

limitations in the future.

The existing user interface for submitting queries to the

SustainGraph is mostly targeted to data scientists and

application developers that have some experience on

preparing questions in the form of descriptive queries (e.g., by

using the Cypher language supported by Neo4j). Upon

submission of a query, access to the results is provided in a

visual way as well as in formats that can be easily used as input for

further analysis (e.g., tabular data). There is a need to develop

user-friendly interfaces to make the SustainGraph easily

adoptable by end users without expertise in computer science.

To achieve this, a set of visualization tools are considered that

simplify the interaction with the SustainGraph, while work is in

progress towards the development of user-friendly querying

interfaces for submission of questions by end users.

Another crucial need has to do with the development of

mature solutions to easily populate the SustainGraph with data.

As already mentioned, data quality issues along with the need for

harmonization of the provided datasets by different data

providers hinder the ease adoption and usage of such data. A

set of data population mechanisms are already into place to

support the population of the SustainGraph with qualitative data,

however, further mechanisms have to be developed in the future,

considering the volatility of the structure of the produced data

and the inclusion of further data sources (e.g., data coming from

initiatives related to the development of sustainable cities, data

associated with the classification of activities according to the EU

Taxonomy). Periodical review of the applicable data protection

regulation has to be considered to ensure data management in

accordance with the legislative framework. Changes in the

definition of indicators per SDG have to be considered, as it

may happen in the case of the EU SDG indicator set that is under

an annual review process. The flexibility provided in the

SustainGraph to appropriately extend the data representation

schema can help us to incorporate such changes.

Semantic alignment of the introduced data is also crucial to

support interoperability with existing semantically aware data as

well as enable reasoning functionalities over the populated KG.

To achieve this, the integration of semantics into the existing

LPG model of the SustainGraph has to take place, taking

advantage of the specification of the SustainGraph ontology

for validating the proper description of entities in the LPG

model. Representation of geometry types is also under

consideration within the SustainGraph to support the

realization of spatial analysis.

Furthermore, special attention has to be given on the

applicability of the SustainGraph for the development of

solutions for climate change impact mitigation and adaptation

at global level. As detailed in the manuscript, a significant part of

the SustainGraph is dedicated to EU countries. This includes

both the consideration of EU SDG indicators and a set of policies

targeted to EU countries under the umbrella of the European

Green Deal. However, this specialization should not be

considered restrictive for the tracking of the status of the SDG

indicators and targets and the support of socio-environmental

analyses for other countries or regions across the globe. Data

series for the UN SDG and third-party indicators are collected for

all the countries, while part of the considered policy frameworks

have also a global range (e.g., Nationally Determined

Contributions based on the Paris Agreement, six SDG

Transformations). Furthermore, openness and extensibility are

two of the core principles considered by design for the

SustainGraph. Further policy frameworks that are applicable

in different areas can be introduced and interlinked with the

existing concepts in the SustainGraph.

Importance has also to be given on the effortless support of

participatory modeling approaches throughout the

SustainGraph, taking advantage of the harmonization of the

represented concepts and the provision of access to data that

are accompanied by their meaning and can be understood by end

users. Interoperability of the SustainGraph with tools that

support the execution of analysis pipelines and modeling

environments (e.g., multi-agent programmable modeling

environments) has to be supported, since it is going to further

boost its usability by scientists. Furthermore, ways for ingesting

the analysis results to the KG have to be considered (e.g., the

forecasting of the evolution of specific indicators can be available

in the KG).

Special mention has to be given to the exploitation potential

provided by the emergence of ML techniques and toolkits.

Further ML techniques can be applied in the SustainGraph

for supporting both data population and data analysis

mechanisms. Natural Language Processing (NLP) techniques

are very helpful to analyze policy documents and extract

information that can be embedded in the KG. In a similar

way, computer vision techniques can be applied to images

(e.g., from satellite infrastructure or citizen science platforms)

to populate the KG with data. In the analysis part of the KG,

various ML pipelines can be developed to support KG evolution

and completion processes, considering graph ML algorithms.

Focus has also to be given to the development of explainable

Artificial Intelligence (AI) solutions over the SustainGraph,

providing accurate and easily interpretable recommendations

to assist decision making, and facilitating the adoption of such

solutions by scientists (Tiddi and Schlobach, 2022).

Conclusion

The first release of the SustainGraph constitutes a basic step

to support scientists from interdisciplinary domains to

collaborate and develop innovative solutions to tackle climate
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change impacts. The existence of a well-founded representation

of entities and relationships around the SDGs and the capability

to store data that are aligned with this representation relaxes

significantly the burden for data collection, semantic alignment

and analysis and provides new ways for the development of

participatory modeling and analysis processes. The application of

a Systems Innovation Approach guarantees the proper

observation of complex systems and the better understanding

of interrelations among the represented concepts by taking into

account the feedback provided by various stakeholders and their

involvement in a co-design process.

Even by having performed a basic conceptualization step, a great

deal of work is still ahead tomake the SustainGraph easily adoptable

and exploitable by end users coming from various disciplines and

perspectives (e.g., socio-environmental scientists, policy makers,

data scientists, citizen observatories). A set of extensions have to

be developed by considering the aforementioned limitations and

opportunities for exploitation of novel technologies. To be able to

support further developments, openness and interoperability are

considered by design in the conceptualization and development of

the SustainGraph. An open-source release of the SustainGraph is

available (Fotopoulou et al., 2022), while consumption of open APIs

is considered -where applicable-in the development of data

population mechanisms.
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