
Northern dimming and southern
brightening in eastern China
during the first decade of the 21st
century

Jingxin Li1, Wenzhe Ma1, Su Yang2*, Ge Liu1*, Siyu Chen3 and
Minghu Ding1†

1State Key Laboratory of Severe Weather, Institute of Tibetan Plateau Meteorology, Chinese Academy
of Meteorological Sciences, Beijing, China, 2National Meteorological Information Centre, China
Meteorological Administration, Beijing, China, 3Key Laboratory for Semi-Arid Climate Change of the
Ministry of Education, Lanzhou University, Lanzhou, Gansu, China

Global solar radiation (GSR) reaching the Earth’s surface can directly alter the

energy balance of the climate system. The potential influence of inhomogeneity

issues on Chinese GSR records on dimming and brightening in China has been

argued for years. In this study, we explored the temporal evolution and spatial

distribution of the long-term trend of GSR in eastern China (EC) during

1961–2018 using a homogenized GSR dataset, which removed the artificial

signals. Results demonstrate that EC experienced a significant dimming period

from 1961 to 1999, a brightening period from 2010 until 2018 and a leveling-off

period between them (2000–2010), which resulted from opposite trends of

GSR in the northern (dimming) and southern (brightening) regions of EC. The

reduction of cloud coverage after the dimming period (2000) induced an early

coming brightening in the southern region of China between 2000 and 2010,

while the increase in aerosols and the rapidly extending cloud fraction resulted

in the continuing dimming in northern China.
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Highlights

• The long-term (1961-2018) changes in global solar radiation in eastern China were

presented by using the recently published homogenized data.

• GSR displayed an increasing trend at a rate of 9.8 Wm−2 decade−1 from 2010 to

2018, and reverted back to 1970s radiation levels.

• There are opposite trends of GSR in the northern (dimming) and southern

(brightening) regions of eastern China during 2000–2010.
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1 Introduction

Global solar radiation (GSR) reaching the Earth’s surface has

a direct impact on the energy balance in the climate system and is

thus considered as one of the drivers of climate change (Wild

et al., 2008; Liang et al., 2010; Stephens et al., 2012; Wild, 2012;

Wild et al., 2013). Solar radiation heats land and sea surfaces,

which modulates the local flow in the planetary boundary layer

directly through sensible heat flux (Stull 1988; Li et al., 2017; Guo

et al., 2019; Xu et al., 2021) as well as large-scale atmospheric

circulation indirectly through atmospheric teleconnections (e.g.,

Liu et al., 2015a; Liu et al., 2015b; Liu et al., 2016; Wild, 2016; Liu

et al., 2017; Wang et al., 2017; Zhang et al., 2019). The net

radiation effects deeply depend on solar radiation anomalies and

surface conditions that demonstrate remarkable regional

differences (e.g., Liu et al., 2012; Liu et al., 2014a; Han et al.,

2014; Xin et al., 2014). In addition, understanding the variability

of regional solar radiation is conducive to the effective and

reasonable use of solar energy.

The global trends of GSR have been extensively investigated

as early as the 2000s (Liepert, 2002). For instance, numerous

studies have reported significant trends and decadal changes at

worldwide distributed terrestrial sites (e.g., Dutton et al., 2006;

Gilgen et al., 2009; Ohmura, 2009 and references therein). In

these researches, the long-term declining and increasing trends in

solar radiation, which are also termed as solar “dimming” and

“brightening” (Stanhill and Cohen, 2001), respectively, have been

extensively concerned. Through analyzing long term records of

GSR measurements, these studies generally suggested a

widespread decreasing trend between the 1950s and 1980s,

with an increasing trend at many locations in the early of the

20th century (Wild et al., 2005; Wild, 2009; Wild et al., 2009;

Schwarz et al., 2020). Compared with the dimming, the

subsequent brightening is non-uniform in space-time

distribution on the global scale. There have also been

numerous studies on the variability of regional solar radiation

in addition to that of global or continental solar radiation (Norris

and Wild, 2007; Ruckstuhl et al., 2008; Stjern et al., 2009; Zerefos

et al., 2009; Chiacchio and Wild, 2010; Sanchez-Lorenzo et al.,

2013; Perdigão et al., 2016).

China experienced a dimming before the 1990s (e.g., Liang

and Xia, 2005; Xia et al., 2006; Qian et al., 2007; Shi et al., 2008;

Wang et al., 2011). Some sites show an increase in GSR between

1990 and 2000 (Wild et al., 2005; Qian et al., 2007; Hayasaka,

2016; Wang and Wild, 2016; Yang et al., 2018), whereas renewed

dimming appears between 2000 and 2005 (Wild et al., 2009; He

et al., 2018). Some results have indicated the brightening in recent

years in China (Yang et al., 2019). In terms of the studies of GSR

trend analysis in China, many preceding researches have

presented the long-term changes in GSR at different

temporal-spatial scales (e.g., Che et al., 2005; Tang et al., 2011;

Zhou et al., 2019). Some researchers have further compared

regional differences in the variabilities of GSR between different

areas in China. Hayasaka (2016) indicated the increasing

(declining) trend of GSR in southern (northern) China from

1993 to 2005. For the period 1979–2008, a dipole pattern of GSR

was observed (Qian, 2016). There are some moderately

increasing (declining) trends in most stations to the south

(north) of the Yangtze River (Qian, 2016). Recently, Li et al.

(2018) also discovered that GSR in the East of China has

increased during 2005–2015, with the largest increase in the

northeast and southeast regions of China after 2010. The annual

trend increases in clear-sky GSR in most parts of arid and semi-

arid areas in China during the period 2001–2015 (Yu et al., 2019).

As a result, there has been a trend difference in large-scale GSR in

almost all parts of China or East China. These studies identified

regional differences between northern and southern China. Thus

the study of regional trend changes in GSR is required except on a

global or continental scale (Zhang et al., 2004; Xu et al., 2011; You

et al., 2013; Deng et al., 2015).

In addition, it is noteworthy that the inhomogeneity issues in

Chinese GSR records caused by instrument replacements occurring

at all sites in the early 1990s (Wang, 2014) probably mislead the

results of in surface solar radiation to some extent and give rise to

arguments in climatic changes (Tang et al., 2010). The National

Meteorological Information Center (NMIC) released a

homogenized GSR dataset available from 1961 to 2018 in 2018

(Yang et al., 2018). It eliminated the significant inhomogeneous

issues in the GSR records. The observed stations dataset was used to

verify two satellite derived products (SARAH-E and CERES-

SYN1deg) and three reanalysis data sets (ERA5, ERA-Interim

and MERRA-2) (Fei and Wang, 2019; Zhang et al., 2020; Cao

et al., 2022). These reanalysis products overestimate the GSR in

China due to an underestimation of cloud coverage and

underestimate the GSR in southern China due to an

overestimation of atmospheric aerosol loading and aerosol–cloud

interaction (Fei and Wang, 2019; Zhang et al., 2020). The Clouds

and the Earth’s Radiant Energy System (CERES) data are more

consistent with observed stations dataset than the reanalysis data

(Zhang et al., 2016). Other updated radiation products have good

performance as CERES (Liang et al., 2021; Letu et al., 2022). But the

available satellite products are quite short. Thus, this is a good

opportunity to use the homogeneous observed dataset to further

assess when the GSR in China shows consistent variability, when it

shows regional differences, and what are the underlying reasons for

inducing regional GSR differences in China.

Extraterrestrial influences, such as the solar output (i.e., sunspot

cycle) (Willson and Mordvinov, 2003) and earth orbital parameters

(Fröhlich and Lean, 1998), and influences of climate system, such as

water vapor (Wild, 1997; Wild et al., 2007), atmospheric

concentrations (Kvalevag and Myhre, 2007) of NO2, H2O, CH4,

CO2 and stratospheric ozone possibly modulate the variability of

GSR. However, these factors of influence on GSR are at least an

order of magnitude smaller than the GSR changes detected from

surface observations on a large spatial scale. Thus their minor effects

can be neglected to interpret the observed GSR trends (Wild, 2009).
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The changes in the aerosol and cloud cover are commonly

considered as the two most probable causes for global dimming

and brightening (Liepert and Tegen, 2002; Wild, 2009; Chiacchio

et al., 2011; Ye and Xia, 2016). For example, the long-term trend of

GSR was closely linked to the changes of AOD and cloud fraction

(Fei and Wang, 2019). The direct radiative effects of aerosol are

revealed to be the determining factor of the clear-sky solar radiation

trends over the arid and semi-arid (ASA) areas in China by using

satellite remote sensing aerosol and reanalysis data (Yu et al., 2019).

Cloud fraction is the internal variability of the climate system. The

long-term trend of cloud fraction is recognized to be significantly

influenced by aerosol particles derived from anthropogenic

activities, due to the well-known aerosol-cloud interaction effect

(Boucher et al., 2013; Yang et al., 2021). Therefore, we will further

investigate the potential contribution of aerosols and clouds to solar

dimming and brightening phenomena.

The contents of this paper are as follows: the data and

methods used in this research are described in section 2.

Section 3 presents the characteristics of the temporal and

spatial distribution of radiation and explores possible causes

for the trends in radiation in the entire sky. Section 4

concludes the key findings obtained here and discusses the

meaning of our findings.

2 Data and methods

2.1 Datasets

Previous studies have identified marked uncertainties in

radiation data onto China (e.g. Wang, 2014; Wang F. et al.,

2015). The reorganization of the GSR networks and replacement

of instruments during 1990–1993, resulted in the abrupt increases in

the published composite GSR time series (e.g., Wang K. et al., 2015).

A homogenized radiation dataset (Yang et al., 2018) released by

National Meteorological Information Center (NMIC) (https://data.

cma.cn/) was used in this study. It had identified and eliminated the

significant inhomogeneity issues in GSR data, which may mislead

the long-term change analysis.

The data of Aerosol Optional Depth (AOD) covering

1980–2018 was from the Modern-Era Retrospective analysis

for Research and Applications (MERRA) (Gelaro et al., 2017).

An alternative set of data of AOD during 2002–2018 was from

the Moderate-resolution Imaging Spectroradiometer (MODIS)

(Justice et al., 2002). A series of data was used to verify the

variations of Cloud Fraction (CF) including the CF from the

International Satellite Cloud Climatology Project (ISCCP)

(Rossow and Schiffer, 1991), MODIS and MERRA, during

1981–2018. A long cloud fractions measurement data series

(from NMIC) during 1961–2018 was used, which was based

on observer estimates in 1/10 of sky coverage. These data were

used to estimate potential influential factors. The cloud fractions

indicate the accumulation of the cloud.

2.2 Trend analysis methods

Two statistical methods were used to compute the trends of

the time series. One is the linear least squares fit to compute the

linear regression (Taylor, 1997). The regression coefficient

calculated represents the linear trend. The least squares were

the method of fitting a straight line to sample points by selecting

the median of the slopes of all straight lines of pairs of points.

This estimator has high calculation efficiency. It is commonly

used to determine long-term trends in meteorology and

climatology. The results were tested for Theil-Sen estimator

method (Theil, 1950; Sen, 1968; Hirsch et al., 1982). The

results computed by the two methods are consistent.

The other method is the Mann-Kendall (MK) test (Mann,

1945; Kendall, 1975), which is used to identify the monotonic

trends exist on a time series, is more suitable for the normally

distributed data. The Mann-Kendall nonparametric statistical

method was used in trend detection under the influence of

climate change. The two methods were used together in the

present study to improve the reliability of trend estimation. A

trend is considered significantly if the confidence levels are above

95% for both the least squares and MK test.

Lowess-filtered is computed using weighted linear least

squares and a degree-1 polynomial model for local regression.

2.3 Study area

This research focuses on the regional GSR trends in eastern

China (EC, 17°N–42°N and 100°E–122°E). The instrument

replacement occurred at all sites in EC (Yang et al., 2018).

The EC with a high population density has a high density of

observation sites. Thirty-six stations in the region with long-term

records were used to analyze the GSR trends and their

relationships with other climatological factors. The time series

of the area-mean GSR anomaly was obtained from the area-

weighted average of the anomalies at all stations. The method of

area-weighted average, namely the climate anomaly method

(CAM) can more objectively reflect regional averages (Jones,

1994). In this study, EC was divided into northern (NR) and

southern regions (SR). The dividing line is around 33°N. It is

approximately along the Qinling-Huaihe climate line, which has

been extensively used as the boundary of the climate transition

zone of China (e.g. Huang, 1958; Yuan et al., 2017).

Geographically, the increase in temperatures to the north of

30°N is noticeably higher than that to the south of 30°N. The

drying trends are statistically significant in both NR and SR,

bounded by 30°N (Yang and Xing, 2022). The Middle-lower

Yangtze Plain and Hilly Areas of the Southern Yangtze River are

below 33°N. Loess Plateau and North China Plain are above 33°N.

Hence, there are the great differences in the characteristics of the

topography and climate between the two regions. Fourteen

(twenty two) stations are uniformly distributed in NR (SR).
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3 Results and discussion

3.1 Temporal evolution and spatial
distribution of GSR in EC

3.1.1 Long-term trend in GSR in EC from 1961 to
2018

Figure 1 shows the linear running window linear trends of the

area-weighted average GSR in EC. The x-axis denotes the starting

year of the running window, while the y-axis denotes the ending

year of the running window. The GSR decline trends start in any

years before 2000 and end in 2000. The GSR increasing trends

start in 2010 and end in any years after 2010. Therefore, the linear

trends of the GSR anomalies of the time series in EC are shown in

Figure 2 with the dividing points 2000 and 2010.

Figure 2 shows the GSR anomalies of the time series in EC

and its linear trends for the period 1961-1999, 2000-2009 and

2010-2018. Yang et al. (2019) implied a strong declining trend

before the early 2000s. Our results support a significant dimming

from 1961 to 1999. The magnitude of GSR decreased by

about −5.1 Wm−2 decade−1, which is generally in agreement

with the trend slopes estimated in previous studies that were

found ranging from −4.1 to −7.4 W m−2 decade−1 (Che et al.,

2005; Liang and Xia, 2005; Shi et al., 2008; Yang et al., 2019).

After such a significant decrease, the GSR anomaly experienced a

stable period from 2000 until 2010, indicating no significant

linear trend (the trend slope of only −0.43 Wm−2 decade−1). This

is generally consistent with the result from the previous studies

that showed GSR should have remained stable rather than

significantly brightening in China before 2008 (Tang et al.,

2011; Qian, 2016; Yang et al., 2019). The minimum value

5.48 Wm−2 is in 2010. Since 2010, a significant linear increase

in the GSR anomaly (i.e., brightening) has occurred, with a linear

slope of 9.8 Wm−2 decade−1 during 2010–2018. The GSR

anomaly reached 6.37 Wm−2 in 2018, which is close to the

value in 1979.

3.1.2 Spatial distribution of GSR in the EC from
1961 to 2018

Figure 3 depicts the spatial distribution of the GSR decadal

trends for the dimming period 1961–1999 (A), the leveling-off

period 1999–2009 (B) and the brightening period 2010–2018

(C) in 36 radiation stations in the EC. As shown in Figure 3A,

34 stations consistently show decreasing trends, indicating a

phenomenon of large-scale solar dimming in almost the entire

FIGURE 1
The running window linear trends of the area-weighted
average GSR in eastern China. The x-axis denotes the starting year
of the runningwindow, while the y-axis denotes the ending year of
the running window. Asterisk indicates that the trends are
statistically significant at the 95% confidence level.

FIGURE 2
Time series of the area-weighted average of yearly GSR anomalies based on 36 stations in eastern China during 1961–2018. “R” is the correlation
coefficient.
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EC. At these sites, GSRs ranged from −15 to −0.4 Wm−2

decade−1. The exceptions occurred at only two stations

(Nanjing and Kunming with the upward trends of 1.1 Wm−2

decade−1 and 1 Wm−2 decade−1, respectively). The above results

support the previous findings that disclosed large-range

dimming in the EC until the 1990s (Liang and Xia, 2005;

Ohmura, 2006; Xia, 2010).

In contrast, GSR trends distinctly manifested a regional

difference during the leveling-off period (1999–2009), with

increasing trends appearing in the most southern stations and

declining trends occurring in the most northern stations,

displaying a north-south dipole pattern (Figure 3B).

Interestingly, the north-south comparison in the GSR trend is

divided by the Qinling-Huaihe climate line. This implies that the

difference in climate changes between northern and southern

China may be to some extent responsible for the north-south

dipole in GSR trends during the leveling-off period. We will

discuss it further in the following section.

As for the rising period (2010–2018) (Figure 3C), most

stations have upward trends and several stations showing

downward trends appear to randomly distribute in EC. In

general, EC experienced a consistent brightening during this

period.

In short, there was no significant spatial difference in the

trends of GSR anomalies in EC during the periods of dimming

and brightening, but a remarkable north-south regional

difference (i.e., solar dimming in northern China and

brightening in southern China) during the leveling-off period.

Therefore, the offsetting effect of north dimming and south

brightening may be a reason for this leveling-off phenomenon

in the EC during this period.

3.2 The differences between northern and
southern regions in EC during the
leveling-off period

Figure 4 presents the mean annual variations in GSR

anomalies in northern region (NR) (including 14 stations)

and southern region (SR) (including 22 stations) during

FIGURE 3
Geographical distribution of the decadal trends in GSR for the period 1961–1999 (A), 1999–2009 (B) and 2010–2018 (C) in 36 radiation stations
in eastern China. (Unit: W m−2 decade−1). Green circle indicate that trends are statistically significant at the 95% confidence level.

FIGURE 4
Time series of the area-weighted average of yearly GSR
anomalies from 14 stations in northern China (blue) and from
22 stations in southern China (red) during 1961–2018. Original data
(dot and line) are smoothed by the lowess filter (Local
regression using weighted linear least squares and a 1st degree
polynomial model) (Thick line).
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1961–2018. The temporal evolution of GSR anomalies in NR

implies a brightening since 2007 (the lowest value in the lowess-

filtered GSR anomalies) after the dimming from 1961 to 2007

(see the thick blue line in Figure 4). The value of the GSR

anomaly reached 4.33 Wm−2 in 2018, which is close to the value

of 5.12 Wm−2 in 1982. In SR, an earlier brightening has appeared

since 1999 (see the thick red line in Figure 4). The GRS anomaly

was 7.66 Wm−2 in 2018, which is close to the value of 7.96 Wm−2

in 1978. Both the minimum value of −5.33 Wm−2 in SR and the

low value of -5.71 Wm−2 in NR appeared in 2010, which causes

the smallest average value of GSR over EC in 2010. As a result,

there is a temporary brightening in the SR before 2010 and a large

brightening in both NR and SR after 2010.

We further compare the variations in GSR anomalies in NR

and SR for four seasons, namely, winter (December, January

and February), spring (March, April and May), summer (June,

July and August), and autumn (September, October and

November). As shown in Figure 5, there is a generally

consistent downward trend for both NR and SR over the

four seasons up to 1999. Likewise, significant decreases

appeared at most stations in the four seasons before 1999

(not shown). Nevertheless, the GSR anomalies show clear

seasonal differences after 1999. Specifically, GSR anomalies

in both spring (10 Wm−2 decade−1) and summer (5.1 Wm−2

decade−1) display significant upward trends in SR (see Figures

5B,C), and tend to be leveling-off in winter (-1.2 Wm−2

decade−1) (see Figure 5A) and autumn (2.2 Wm−2 decade−1)

(see Figure 5D) between 1999 and 2009. For NR, the GSR

anomalies in summer (−12 Wm−2 decade−1) seem to contribute

to the dimming from 1999 to 2009 (see the blue curve in

Figure 5C), the linear trends are relatively weaker in the

other three seasons (−3.9 Wm−2 decade−1, −0.92 Wm−2

decade−1, 0.43 Wm−2 decade−1) (Figures 5A,C,D). After 2010,

the increasing trends in the GSR anomalies have occurred in

both NR and SR in four seasons. Due to the above contributions

of GSR anomalies to the trends in the NR and SR in different

seasons, NR and SR experienced opposite trends of GSR in

summer and summer half-year (spring and summer)

respectively, from 1999 to 2009. We are mainly concerned

about the summer (summer half-year) hereinafter.

3.3 Potential causes of north-south GSR
differences

To explain the north-south differences in GSR anomalies,

the temporal evolution of Aerosol Optional Depth (AOD) in

NR in summer and that in SR in summer half-year during the

FIGURE 5
Time series of the area-weighted average GSR anomalies based on 14 stations in northern China (blue) and 22 stations in southern China (red)
during (A)winter (DJF), (B) spring (MAM), (C) summer (JJA), and (D) autumn (SON) for the period 1961–2018. Original data (thin line) are smoothed by
the lowess filter (local regression using weighted linear least squares and a 1st-degree polynomial model) (thick line).
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period 1980–2018 are presented in Figure 6. During

1980–2010, there were significantly increasing trends in

AOD in NR (0.082 decade−1) (Figure 6A) and SR

(0.069 decade−1) (Figure 6B). After 2010, the AOD in both

NR and SR showed decreasing trends. It is worth noting that

the AOD dropped back near the value in 2000 during the

transition period. Qian et al. (2007) demonstrated that

between the 1960s and 1980s the increasing aerosol loading

with the emission of pollutants was responsible for the

observed diminished GSR. Resulting from changes in the

mix of fuel and consumption technologies in China, the

aerosol single scattering albedo has significantly increased

from 1983 (Qian et al., 2007). As a result, high aerosol-

loads generally means small GSR (Liang and Xia, 2005).

Therefore, the increasing trend of AOD from the 1980s to

the 2010s appears to have partially contributed to the

FIGURE 6
Time series of AOD from the MERRA in northern China [34°N-42°N,100°E-123°E] in summer (A) and southern China [19°N-33°N, 100°E-123°E] in
summer half-year (B) during the period 1980–2018. “R” is the correlation coefficient.

FIGURE 7
Time series of the annual cloud fraction in NR for four datasets (ISCCP, MERRA, MODIS, and station data).
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decreasing trend of GSR anomalies in NR in the summer. The

decreasing trends of AOD after 2010 seem to partly contribute

to the increasing trends of GSR anomalies in NR and SR. In the

brightening phase when the emission regulations become

effective, urbanization effects on GSR become insignificant

(Wang and Wild, 2016). This may be a reason why AOD

decreased in both NR and SR after 2010.

In Figure 6, the AOD in the NR and SR exhibited similar

trends signifies that AOD can not be the primary cause for the

difference in the trend of GSR between the NR and SR. In

particular, there is a clear increase of the GSR in SR in

summer half-year during 1999–2010 (red curve in Figure 5C),

but there was an increasing trend in AOD during the same

period. Therefore, other factors may offset the decrease in GSR

caused by the rising AOD.

The changes in cloudiness play a more significant role in

interannual variability of GSR (Long et al., 2009). Cloud fraction

(CF) is even deemed as the largest effect on the GSR’s interannual

variation in China and Japan (Hayasaka, 2016). Therefore, we

investigate the temporal variability of the cloud. Cloud data from

MODIS, ISCCP andMERRAwere used to verify the reliability of CF

data from observed stations (Figure 7). They all show similar

interannual change, interdecadal change and trend. Figure 8

compares the trend of CF during the summer NR with that of

SR during the summer half-year. The CF trend in NR shows the

significantly increased after 2000 (Figure 8A). However, there is no

significant change in the trend in SR over the same period, Figure 8B

and no significant linear trend in NR and SR before 2000.

Figure 9 shows the CF anomaly in the SR introduced by the

interdecadal variations in the summer half-year. There were

positive anomalies in the 1970s and 1980s. The negative

anomaly appears in the 1960s, 1990s, 2000s and 2010s,

matching the increase in GSR after 2000. Thus, the increase

FIGURE 8
Time series of annual Cloud Fraction from the observations in NR in summer [34°N-42°N,100°E-123°E] (A) and in SR in summer half-year [19°N-
33°N, 100°E-123°E] (B) during the period 1960–2018.

FIGURE 9
Interdecadal anomalies of Cloud Fraction in southern China
in summer half-year.
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in the summer semi-annual GSR in the SR during the period

2000–2010 may be attributed to the decrease in cloud cover.

Overall, the constant and slow reduction of clouds coverage

after dimming period (2000) induced an early coming

brightening in SR during 2000–2010, while the later coming

increase in AOD and the rapidly extending cloud coverage

resulted in the continuing dimming in NR in the same period.

4 Discusion and conclusion

In this study, we use new homogenized monthly and daily

data to investigate long-term trends in the annual, seasonal

variability and spatial distribution of the GSR in the EC for

the period 1961–2018.

Results show that in the EC, there was a significant dimming

from 1961 to 1999 and a significant linear increase trend with a

linear slope of 9.8 Wm−2 decade−1 during the period 2010–2018.

The GSR anomaly reached 6.37 Wm−2 in 2018, which is close to

the value in 1979. The recovery of radiation is distinctly profitable

to the generation of solar electricity (Sweerts et al., 2019).

Noticeably, the nationwide averaged GSR anomalies (averaged

over 119 stations in China) experienced a stable period from

2000 until 2010. This is largely in agreement with the result from

Yang et al. (2019) and Zhou et al. (2019). The result shows that

the GSR anomalies experienced the opposite trends in NR and SR

during the leveling-off period (2000–2010), mainly for the

summer. The decline trend in NR can be clearly observed

until 2010. However, the GSR anomaly shows a brightening in

SR around 2000. As such, the GSR average in EC seems to be

“leveling-off”. This new finding implies this “leveling-off” is not

true for the entire EC, but is a result of the opposite trends of GSR

in the NR (dimming) and SR (brightening).

The trends of aerosol and GSR in the summer NR are reversed.

NR experienced a significant dimming period from 1961 to 2007 as

the AOD increased, and a brightening period from 2008 to 2018 as

the AOD decreased. Nevertheless, the trend in the GSR anomaly in

the SR cannot be explained by the variability in the AOD. SR

experienced a period of significant dimming from 1961 to 1999 as

the AOD increased. However, there has been an earlier brightening

since 1999, but the AOD did not decrease until 2010. Cloud fraction

variations can partially explain this phenomenon. Specifically, the

increase in the GSR in SR during the summer half-year is consistent

with the decrease in the cloud fraction after 2000.

In particular, for local areas and short timescales, changes in

cloud cover appear to play a more important role in modulating the

trends of the GSR relative to aerosols. The dimming or brightening

cannot simply be attributed to the increase in anthropogenic aerosols

or the reduction in air pollution (Wang et al., 2010). Further

investigations are needed to explain why the summer half-year

cloud fraction decreases in SR after 2000. On the other hand, due

to an increase in cloud condensation nuclei, the direct radiative effect

of aerosols and indirect radiative effects change into cloud cover in the

polluted area (Wild, 2012). Aerosols and clouds may not be

completely independent of each other, and their interactions are

complex and diverse, whichmerits further investigation in the future.

It is highly confident that clouds and aerosols can interact and

account for a significant fraction of the global mean forcing from

well-mixed greenhouse gases. The radiative force of the overall aerosol

effect on the atmosphere contains a negative forcing from most

aerosols and a positive forcing from black carbon absorption of solar

radiation (Hartmann et al., 2013). They contribute the most to the

uncertainty in the estimate of the total radiation force. The radiative

effect of absorbing aerosols leads to cooling at the surface and heating

in the atmosphere, thereby decreasing latent heat fluxes and

stabilizing the atmosphere (Hayasaka, 2016). Accordingly, clouds,

convection, and electrical activity are likely to be inhibited (Koren

et al., 2004). Additionally, the present study shows that the GSR

anomaly in the EC has generally recovered to the mean value of

radiation in the 1970s. Such radiation recovery is profitable for solar

power generation, especially for SR during the summer months.
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