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Abstract: Assessing ecosystem service (ES) balance and exploring critical drivers

are crucial for landscapemanagement. However, a lack of understanding of the

determinants of the ecosystem service supply–demand budget, their spillover

effects, and spatial variabilities offsets the efficacy of landscape planning and

ecosystem conservation. This novel study attempted to close this gap by

quantifying ecosystem service budget using an expert knowledge-based

supply–demand matrix and explored its dependencies through spatial

econometrics and geographically weighted regression approaches instead of

using ordinary model simulation and conventional statistical analysis. The

overall patterns of ecosystem service balance in the southeastern coast

were found to have remained stable in 1980, 2000, and 2017, although

remarkable ecosystem service deficits were identified in hotspots of rapid

urbanization. The ecosystem service balance was negatively associated with

the proportions of built-up land and cropland (p < 0.0001) and exhibited

positive associations with the proportions of woodland and grassland (p <
0.0001). Landscape structure and population density were identified as the

primary determinants of ecosystem service balance and exhibited spatial

variability and spillover effects (i.e., determining ecosystem service balance in

both individual and adjacent units). These findings demonstrate the significance

of spatial disparities and external effects of determinants of the supply–demand

budget in integrative landscape governance. Consequently, localized and

targeted strategies for landscape planning are increasingly needed to

optimize landscape configuration and alleviate ecosystem service imbalance

according to individual socioeconomic conditions and landscape structures. In

addition, the spillover effects demonstrate that the maintenance of regional

ecosystem service balance and ecosystem sustainability depends not only on

individual areas but also on cross-regional collaborations with neighboring
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regions. These findings have critical implications on strategy formulation for

coastal landscape management and ecosystem sustainability.

KEYWORDS

ecosystem service, supply-demand balance, spatial determinant, spillover effect,
coastal area

1 Introduction

Ecosystem services (ESs) link social systems and natural

ecosystems and play extremely important roles in sustaining

human survival and well-being and achieving sustainable

development goals through optimized environmental

management (Costanza et al., 2017; Mandle et al., 2020). An

integrated ES assessment involves the supply and demand of ESs,

which reflect the supply capacity of natural ecosystems and the

actual demands required or desired by human society,

respectively (Burkhard et al., 2012, 2014). Existing studies

have mostly focused on quantifying and mapping the supply

potential of natural ecosystems through multiple indicators,

frameworks, biophysical models, and economic valuation

approaches (e.g., Chaplin-Kramer et al., 2019; Ouyang et al.,

2020; Zhang et al., 2021) and identifying the climatic,

topographical, vegetation, socioeconomic, and landscape

variables that determine the ES supply capacity (e.g., Turpie

et al., 2017; Wilkerson et al., 2018). However, in comparison with

the supply side, ES demand has not received sufficient attention,

and the quantification framework is not well established

(Costanza et al., 2017; Tao et al., 2018; Mandle et al., 2020).

An integrated ES assessment that incorporates the demand

aspect into assessment can effectively identify the mismatch

between supply and demand, support policy formulation and

decisions regarding ES management, and balance the spatial

and temporal disparities in the supply–demand budget

(Castillo-Eguskitza et al., 2018; Chaplin-Kramer et al., 2019). In

the past decade, a series of studies have attempted to integrate the

demand aspect into ES assessment by quantifying and comparing

specific indicators, including carbon sequestration, soil erosion

control, hydrological regulation, food provision, and cultural

services, in a particular ecosystem category (e.g., Campagne

et al., 2018; Ma et al., 2019; Liu et al., 2020). Multiple

approaches, including expert knowledge (Sun et al., 2020; Jiang

et al., 2021a), questionnaire surveys (Castillo-Eguskitza et al.,

2018), monetary value (Liu et al., 2021; Wang et al., 2021), and

model simulation (Larondelle and Lauf, 2016; Yu et al., 2021;

Zhang et al., 2021), have been adopted to quantify both sides of

ESs. In particular, the level of demand for ESs by communities and

residents in Spain was quantified through a questionnaire survey

(Castillo-Eguskitza et al., 2018). Peng et al. (2020) investigated the

spatial disparities in supply–demand balance based on the land use

and land cover (LULC) category and expert knowledge in rapidly

expanding city clusters in southern China. Chaplin-Kramer et al.

(2019) projected the future supply and demand of ESs on a global

scale based on model simulation and scenario analysis. The

applicability of these methods varies in different cases according

to data requirements and parameter settings. The model

simulation approach largely relies on input parameters and

spatially explicit data; thus, it is normally limited by data

accessibility (Blanco et al., 2017). Although theoretically feasible

for community- and county-scale studies, a questionnaire survey is

not practically suitable for regional or continental assessments

(Burkhard et al., 2014). The monetary value approach normally

reflects the total value of ESs without a good spatially explicit

representation that can reveal the spatial mismatches of supply and

demand sides (Liu et al., 2021; Wang et al., 2021).

Additionally, ES supply generally reflects the beneficial

function supplied by natural ecosystems through a combination

of biophysical indicators, whereas ES demand is normally

indicated by preferences, perceptions, market values, and actual

consumption; thus, different measurement units constrain the

direct comparison of both sides (Burkhard et al., 2014; Peng

et al., 2020). The empirical knowledge method assumes that

landscape patterns (i.e., LULC categories) determine ecological

functions and ESs and then alter the supply–demand

relationship. A proposed supply–demand matrix model takes

the LULC category as a proxy and utilizes (semi-)empirical

expert knowledge to quantify the supply–demand balance

(Burkhard et al., 2014). Although this approach does not

establish complete quantification methodologies, it can quickly

obtain relatively reliable results without relying on complexmodels

and input parameters, particularly for the assessment of cultural

services (Sun et al., 2020).

For the optimization of landscape configuration and

maintenance and enhancement of ecosystem sustainability,

revealing the driving factors and influencing mechanisms of

the ES supply–demand budget is as crucial as that of ES

budget quantification (Sun et al., 2020; Jiang et al., 2021a).

The formation, delivery, and circulation of matter and energy

within a certain space (e.g., coenobium, ecosystem, watershed,

and administrative unit) exhibit spillover effects on neighboring

regions because the landscape compositions and biophysical/

biogeochemical processes are interconnected (Li et al., 2019a; Li

et al., 2019b; Zhang et al., 2022). Thereby, spatial attributes and

spillover effects are supposed to be sufficiently revealed and

integrated into landscape conservation and environmental

governance (Wang et al., 2021; Zhang et al., 2021). However,

previous literature lack sufficient understanding of geographic

variations in the determinants of ES budgets and their spatial

dependences and spillover effects (Chi and Ho, 2018). These
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findings have largely focused on individual units or local scales

and neglected the spatial variability of important determinative

factors from a regional perspective (Wang et al., 2021; Zhang

et al., 2021). Moreover, the spillover effects of determinants have

not been examined by commonly adopted statistical approaches,

such as the least squares approach (Li et al., 2019a; Li et al.,

2019b), random forest model (Liu et al., 2021), structural

equation simulation (Jiang et al., 2021b), linear regression

analysis (Wang et al., 2021), and other conventional

econometric models (LeSage et al., 2009), because the spatial

information is not taken into account in these models (Chi and

Ho, 2018). Consequently, the external effects of determinants on

strategy formulation in terms of landscape management have

rarely been revealed (Jiang et al., 2021a; Zhang et al., 2022).

The southeastern coastal area of China has been characterized

by rapid economic development, urban sprawl, and population

expansion over the past 4 decades, which has led to

inappropriate agricultural reclamation, deforestation, and other

development and construction practices (Jia et al., 2018). This

region suffers from the degradation of ecological function and

resource scarcity as well as a severe mismatch and imbalance

between the supply and demand of ESs (Zhang et al., 2021). We

selected coastal areas as a case study to reveal the spatiotemporal

evolution of the ES budget and identify the determinants and their

spillover effects. Considering the limitations and knowledge gaps in

existing literature, themain objectives of the current study were 1) to

identify the spatial disparities of ES budgets for three important time

nodes (1980, 2000, and 2018) based on the supply–demand matrix

proposed according to expert knowledge, and discuss their

responses to human disturbance and policy intervention-induced

changes in landscape compositions; 2) to determine the critical

dependences of the ES budget and their spatial disparities and

spillover effects using spatial econometrics and geographically

weighted regression (GWR) approaches; 3) to probe the

implications of spatial dependencies of ES balance on the

optimization of landscape configuration. The novelty of this

study is in revealing the spatial associations of determinants of

ES balance, in particular, in terms of their spillover effect and spatial

variability, which distinguishes this study from previous studies that

use ordinary model simulation and conventional statistical

analysis. The research findings are expected to reconcile the

mismatch between supply and demand sides of ESs, further

improve the efficacy of landscape management, thereby

supporting ecosystem conservation and contributing to

coastal sustainable development.

2 Materials and methods

2.1 Study site

The study site (Figure 1A) is situated in the southeastern

coastal region of China (19° 52ʹ–28° 41ʹ N, 105° 38ʹ–120° 39ʹ E),

with a rough area of 578,000 km2 encompassing three provinces

(Fujian, Guangdong, and Hainan) and one autonomous region

(Guangxi) from Guangxi in the west to Fujian in the east. Most

areas within the study region belong to the southern subtropics,

and a small part of Fujian province belongs to the middle

subtropics. The subtropical monsoon climate, characterized by

a warm climate and sufficient rainfall, breeds a large number of

valuable animal and plant resources, and the forest coverage rate

in the region is the highest in China (Jia et al., 2018; Chen J et al.,

2020; Li et al., 2020). The dominant LULC categories are

woodland, cropland, wetland/waterbody, and built-up areas,

which are distributed according to topography and landform

conditions (Figure 1B). The woodlands and croplands are

concentrated around mountainous areas and flatlands,

respectively, whereas large urban agglomerations are primarily

distributed along the coastal area (Liu et al., 2021; Wang et al.,

2021). As one of the dominant ecosystem categories, coastal

wetland encompasses two second-level categories including

swampland and bottom land, which are comprised of

mangrove, coral reef, beach, and intertidal zone, and exhibit

important ecological benefits (Liu et al., 2014; Jia et al., 2018). The

geographic location of the study region is adjacent to Hong Kong,

Macao, and Taiwan; thus, it is the gateway to China’s policy of

reform and opening up, and its economic development occupies

a leading position in the country (Lin et al., 2019; Zhang et al.,

2021).

In this important agricultural production and economic

development region, intensive or even excessive anthropogenic

pressure (e.g., agricultural reclamation, urbanization, and

deforestation), along with extreme rainfall and

heterogeneous landscapes has led to severe soil erosion,

which is the primary cause of land degradation (Chen Y

et al., 2020; Li et al., 2020). In the past 4 decades from

1978 to 2017, the southeastern coastal area has experienced

rapid economic and population growth, urban expansion, and

ecosystem conservation and restoration. Furthermore, land-use

transformation has been accelerated by intensive human

disturbances and policy interventions, such as wetland

reclamation, deforestation, revegetation projects, ecosystem

restoration efforts, soil and water conservation measures,

and urban landscape projects (Mao et al., 2018a; Mao et al.,

2018b; Li et al., 2020; Yu et al., 2021). Land-use transitions,

particularly among cropland, woodland, and built-up areas,

directly alter ecosystem patterns, ES provision capacity, and

potential demand (Peng et al., 2020; Wang et al., 2021; Zhang

et al., 2021). In particular, urban expansions around

southeastern Guangdong and Fujian provinces have

degraded cropland and wetland resources, thereby

threatening food and ecological security (Zhang et al., 2018;

Chen et al., 2019b). Moreover, regional disparities in economic

development and population growth have led to significant

differentiation and spatial mismatches between the supply and

demand of ESs (Peng et al., 2020; Yu et al., 2021).
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2.2 Study framework and workflow

Landscape structure is closely associated with ecological

processes and functions (Jean et al., 2021), and landscape

composition and configuration directly alter ecological

processes encompassing material and energy circulation,

species migration, hydrological processes, carbon stock, and

biodiversity maintenance, eventually resulting in changes in

the provision capacity of ESs (Chen et al., 2019a; Chen W

et al., 2020; Jean et al., 2021). In addition, human

disturbances and policy interventions profoundly alter

landscape composition and result in an ES imbalance

(Figure 2A). For instance, population migration leads to

urban expansion and increases in food and energy demands,

thereby further accelerating land-use transformation among

woodland, cropland, and urban areas through agricultural

reclamation and deforestation practices and ultimately

exacerbating the imbalance of ESs and resource scarcity. In

contrast, positive policy interventions, such as ecosystem

restoration projects, revegetation practices, urban landscape,

FIGURE 1
(A)Geographic situation of southeastern coastal areas in China and (B) LULC compositions in 2017. The five hotspots experiencing rapid urban
expansion are identified in (B): (I) Fujian province coastal city cluster (i.e., Xiamen, Zhangzhou, and Quanzhou cities), (II) the Pearl River Delta city
cluster (i.e., Guangzhou, Shenzhen, Dongguan, and Foshan cities), (III) Chao-Shan city cluster (i.e., Chaozhou, Shantou, and Jieyang cities), (IV)
Nanning city in Guangxi province, and (V) Haikou city in Hainan province.
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and catchment management projects cause vegetation

restoration and considerable changes in ecosystems, which

maintain the supply capacity and enhance landscape

sustainability (Yuan et al., 2019; Jiang et al., 2021a). Different

landscape structures (Supplementary Figure S1) have been

demonstrated to profoundly influence the material

transportation, formation, and delivery of ESs (Lee et al.,

2015). Specifically, the structures that are centralized, uniform,

monotonous, closed, and lacking in connectivity and diversity

have adverse effects on the formation and accessibility of ESs,

whereas complex and diverse shapes are beneficial for

biodiversity maintenance (Jean et al., 2021).

Landscape metrics encompassing patch density (PD),

landscape shape index (LSI), aggregation index, and

Shannon’s diversity index (SHDI), are effective and critical

indicators that reflect landscape composition, structure, shape,

and fragmentation, and diversity, respectively, and have been

applied worldwide in landscape planning and related fields

(Mitchell et al., 2015; Ayinuer et al., 2018). For definitions

and calculation formulas of landscape metrics, refer to

McGarigal et al. (2012). In addition, socioeconomic variables,

including population density (POPD) and gross domestic

product, which indicate the intensity of human activities in

the social system, also directly and indirectly respond to ESs

and represent the promotion or restriction impacts of ecosystems

on socioeconomic development (Wang et al., 2021; Yu et al.,

2021). Thereby, we selected a group of landscape and

socioeconomic variables as explanatory variables to explain

the evolution of the ES balance and explore the spillover

effects of spatial determinants, as presented in Figure 2B.

2.3 Datasets and methodologies

2.3.1 Data preparation
LULC datasets with a resolution of 30 × 30 m for three

periods (1980, 2000, and 2017), interpreted from moderate-

resolution satellite images, were derived from the Resource

and Environment Data Cloud Platform (Liu et al., 2014).

These datasets were produced by combining visual

interpretation and machine learning techniques based on

relatively high-quality images obtained from Landsat

Multispectral Scanner, Thematic Mapper, Enhanced Thematic

Mapper Plus, and Operational Land Imager sensors. Cross-

validation through pixel checking and field validation showed

that the overall accuracy for interpretation reached 92%, which is

capable of capturing landscape pattern changes for regional-scale

studies and has been widely applied for ecosystem assessment

and ES quantification as well as in other research fields (Liu et al.,

2014; Jiang et al., 2021a; Wang et al., 2021). In southeastern

coastal areas as shown in Figure 1B, the first-level LULC

categories encompass cropland, woodland, grassland, wetland/

waterbodies, artificial surface/built-up areas, and unused land/

bare land, and the second-level categories include more than

20 sub-categories; for more details on the definitions of each

category and technical details for interpretation, refer to Liu et al.

(2014). In addition, spatial datasets on demographic and

economic attributes, with a resolution of 1 × 1 km, were

derived and applied to reflect POPD and economic

development changes from 1980 to 2017 (i.e., 1980, 2000, and

2017). These datasets were generated based on the significant

spatial regression relationship between statistical records and

FIGURE 2
(A) Diagram of linkages between the ES balance and landscape composition and (B) study workflow. Woodlands, croplands, and built-up areas
in the left column were the three dominant landscape categories, accounting for more than 90% of the total area, and were closely associated with
ES supply, demand, and balance. The evolution of landscape composition and the associated ES balance are illustrated in (A) and Supplementary
Figure S1.
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nighttime stable light data derived by the Defense Meteorological

Satellite Program Operational Line-scan System sensor for the

years 1980–2015 (Liu et al., 2005). To avoid inconsistencies and

uncertainties arising from different projection systems and

spatial resolutions of LULC maps and socioeconomic

indicator datasets, this study unified the coordinate and

projection systems and spatial resolution (i.e., 1 × 1 km) via

projection transformation and resampling tools, respectively, on

ArcMap Platform (Version 10.3).

2.3.2 Quantification of ecosystem service
supply–demand budget

This study applied the supply–demand budgetmatrix to derive

the ES supply, demand, and budget indexes (ESSI, ESDI, and ESBI,

respectively) of regulating, provisioning, and cultural ESs for the

three time nodes over the past 4 decades. Supply and demand

matrices for eighteen LULC categories and twenty-three ES

categories were created on the basis of the matrix proposed and

developed by Burkhard et al. (2012), Burkhard et al. (2014), with

the original matrix adjusted according to expert knowledge for a

specific research area (Supplementary Figure S2). The detailed

process was as follows: First, because of the different LULC

classification systems, we integrated the ESSI, ESDI, and ESBI

proposed by Burkhard et al. (2012) by consolidating similar LULC

categories. Second, more than thirty papers involving ES matrix, in

particular on southernChina, were collected and reviewed (e.g., Cai

et al., 2017; Ou et al., 2018; Tao et al., 2018; Chen J et al., 2020; Peng

et al., 2020; Jiang et al., 2021a), and the scores for entries were

assigned according to these studies. The score for each entry

indicates supply/demand level of individual ES, the greater is

the ESSI/ESDI, the higher is the supply/demand. Then, a group

of experts holding doctoral degrees, including more than

25 scholars from related fields, such as ecology, environment,

hydrology, biology, and botany, of different research

institutions, communities, and non-governmental organizations

were requested to score matrix entries individually based on their

understanding of the definitions involved in the matrix. Allowing

for the relatively extensive disciplinary background, we specifically

invited ten additional experts from different fields of ES research,

including carbon sequestration, soil and water conservation,

biodiversity conservation, climate regulation, water and soil

purification, and cultural services (e.g., cultural education and

recreation) for scoring. All these experts had good background

knowledge and research experience in ecological, geographical, and

environmental sciences in southeastern China, which guaranteed

an objective and fair evaluation of criteria (Peng et al., 2020).

Finally, we organized three rounds of panel discussions to reach an

agreement on the final scores for the matrices. Three ES balance

indexes were calculated according to the following equations:

ESSI � ∑o

v�1∑p

u�1(Au × Suv)/∑p

u�1Au
(1)

ESDI � ∑o

v�1∑p

u�1(Au × Duv)/∑p

u�1Au
(2)

ESBI � ∑o

v�1∑p

u�1(Au × Buv)/∑p

u�1Au
(3)

where Suv, Duv, and Buv are the supply, demand, and budget

matrices, respectively, of the vth ES category of the uth LULC

category; Au represents the area of the uth LULC type; and p and

o denote the number of LULC and ES categories, respectively.

2.3.3 Model for spatial spillover effects of the
determinants of ecosystem service balance

We applied spatial econometric models (SECMs) to

determine the associations, including spillover effects, between

ESBI and drivers. Conventional econometric models (such as

logistic regression and multiple regression approaches) are

completely dependent on the over-idealized assumptions that

suggest all involved variables are independent, stationary, and

structurally stable (LeSage et al., 2009). Moreover, conventional

econometric analyses rarely take the spatial correlations of

independent variables into account, which results in

inaccurate conclusions (Chaurasia et al., 2020). By contrast,

SECMs consider the spatial associations between individual

and other variables, under the premise that many

socioeconomic and biophysical variables (e.g., population,

trade, infrastructure, carbon emission, resource consumption,

ESs, and biomass) are spatially related and closely interconnected

(Cai et al., 2021). As presented in Fig. S3, the Moran’s I

scatterplots of the ESBI in four provinces/region and three

periods presented close correlations with the values of

Moran’s I larger than 0.55, featured by spatial aggregations of

ESBIs. A majority of the ESBIs concentrated in the first and third

quadrants, implying that the distributions of ES deficit/surplus

tend to be adjacent and spatially autocorrelated; thereby,

conventional econometric analyses cannot be applied in this

case. Consequently, multiple SECMs, encompassing the spatial

lag model (SLM), spatial error model (SEM), and spatial Durbin

model (SDM) (LeSage et al., 2009), were applied to identify the

spillover effects of determinants on the ESBI. The primary

formulas are expressed as follows:

LnESBIit � αβ LnESBIit + γiLnX + γ0 + σ it (4)
LnESBIit � γ0 + γiLnX + σ it, σ it � μβσ + ϵit (5)

LnESBIit � αβ LnESBIit + γ0 + γiLnX + θiβLnX + σ it (6)

where αmeans the significance of the autocorrelation of the ESBI

between individual and adjacent units; LnX represents the

socioeconomic and landscape variables that determine the

ESBI; β LnESBIit and β LnX denotes the spatial lag terms of

the observation and explanatory variables, respectively (i.e., the

external effect from adjacent units); μ, ϵit, and σ it are the

autocorrelation, random error, and disturbance terms,
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respectively; θi indicates the coefficient of β LnX that needs to be

derived; β represents the weight matrix.

Specifically, the partial differential approach (Elhorst, 2014)

was utilized to quantify the direct and indirect effects (i.e., spatial

spillover effects) of the associated variables on the ESBI. Thus, the

SDM is written as follows:

ESBIt � (In − αW)−1(Xtγ +WXtθ) + (In − αW)−1σpt (7)

where In indicates the Moran’s I index (Dall’erba, 2009) and σ*t is

the error term. The partial differential formula of the observation

variable to the kth explanatory variable in different spatial units

(Xjk for j = 1, . . . , M) at an individual time is written as below:

[zESBI
zX1k

/
zESBI

zXNk
]
t

� (I − αW)−1⎡⎢⎢⎢⎢⎢⎣ γk β12θk /
β21θk γk /
βN1θk βN2θk /

β1Nθk
β2Nθk
γk

⎤⎥⎥⎥⎥⎥⎦
(8)

The diagonal and the row or column of the non-diagonal

terms reflect the direct and indirect effects of the explanatory

variables on the ESBI, respectively. The former and latter

represent the effects of changes in an explanatory variable on

the ESBI in individual and adjacent units, respectively (Meng

et al., 2021).

2.3.4 Model comparison and validation
To examine the effects of spatiotemporal variation

(i.e., heterogeneity) of independent variables on dependent

variables, the geographically and temporally weighted

regression (GTWR) approach (Fotheringham et al., 1998; He

and Huang, 2018) was used to identify the spatiotemporal

associations between the ES supply–demand budget and

socioeconomic and landscape variables (Cai et al., 2021). The

fundamental formulas are as follows:

Yi � α0(ui, vi) +∑m

j�1αj(ui, vi)xij + δi (9)
αj(ui, vi) � (MTV(ui, vi)M)−1MTV(ui, vi)yi (10)

where Yidenotes the dependent variable (i.e., ESBI); α0 (ui, vi) and

αj denote the intercept and regression coefficient for variable j in

county i, respectively; (ui, vi) represents the coordinates of the

geographic center of gravity; m is the number of explanatory

variables; δi is a residual term; M and MT are the independent

variables and transposed matrixes, respectively; V (ui, vi) is the

spatial weight matrix. As shown in Supplementary Table S1, in

contrast to ordinary least squares and GWR, GTWR performs

better in capturing the effects of spatiotemporal heterogeneity in

independent variables, because the overall assessment results,

indicated by R2, of GTWR for three periods are larger than those

of the other two models.

To minimize the effect of the multicollinearity of

independent variables (i.e., landscape metrics and

socioeconomic variables) on spatial econometric analyses,

this study tested the multicollinearity before linear

regression through the variance inflation factor (VIF;

Zheng, 1995), which denotes the possibility of collinearity

between explanatory variables. The calculation formula for

VIF is expressed as follows:

VIF � 1
1 − r2i

(11)

where ri represents the coefficient of correlation between the

independent variable i and the other explanatory variables. When

the VIF is less than 10, multicollinearity does not significantly

influence the performance of the regression model. As shown in

Table 1, the VIF values were less than 10, indicating that

multicollinearity did not exist between the explanatory variables.

3 Results

3.1 Landscape dynamics and evolution of
the ecosystem service supply–demand
budget

In the three time nodes of 1980, 2000, and 2017, the overall

patterns of landscape composition in the four provinces/region

remained stable, except for some hotspots of rapid urban

expansion (Figure 3). The narrow coastal zone of Fujian

province experienced rapid land-use transformation from

croplands, including agricultural ponds and wetlands, to

urban areas (Figure 3A). In Guangdong province, the two

large urban agglomerations around the northeast and

southeast along the coastal area (Chao-Shan and the Pearl

River Delta city clusters in Figure 1B) also expanded rapidly,

which accelerated the loss of wetlands and agricultural ponds,

particularly of mangrove, coral reef, beach, and intertidal zone in

the Pearl River Delta city cluster (Figure 3B). In contrast to those

in Fujian and Guangdong, the urbanizing trends of Zones III and

IV were not as significant as those of Zones I and II, and Nanning

city and Haikou city were situated in the inland and coastal

regions, respectively (Figures 3C,D). Similarly, the landscape

metrics remained stable for the overall patterns of the three

periods (Fig. S4), and substantial landscape changes were

identified in coastal hotspots of urbanization.

The ES balance patterns, including the ESSI, ESDI, and ESBI,

presented similar patterns as that of landscape composition

(Figure 4): the high ESSIs were mainly spatially concentrated

in woodlands and grasslands in inland areas, whereas the coastal

areas were characterized by strong ES demands (i.e., ESDIs),

particularly for rapidly expanding areas. Accordingly, the high

and low ESBI values (i.e., ES surplus and deficit, respectively)

were situated in the inland and coastal regions, respectively.

Specifically, this study focused on the four hotspots of rapid

expansion and investigated the temporal changes in the three ES

balance indexes (Figure 5). All the ESBIs in the four zones

declined substantially, and the different categories of ESs and
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total ESs presented increasingly strong demands and weak supply

capacity (i.e., high ESDIs and low ESSIs, respectively).

3.2 Spatial associations between the
ecosystem service supply–demand
budget and landscape structure

As shown in Figure 6, the ES balance indexes were

significantly correlated with landscape composition (p <
0.0001). The proportions of woodlands and grasslands were

positively correlated with ESSI and ESBI but negatively

correlated with ESDI. In contrast, both ESSIs and ESDIs in

cropland and urban areas presented downward and upward

trends, respectively, with increasing proportions, reflecting

that woodland and grassland had relatively high ES supply

capacities, whereas urban area and cropland presented strong

ES demands.

In addition to landscape composition, landscape metrics

were also significantly related to ES balance indexes (Figures

7, 8). The number of patches (NP), landscape shape index (LSI),

and patch cohesion index (COHESION) were positively

correlated with the ESSI, whereas the other metrics presented

negative correlations, all of which reached the p =

0.0001 significance level. The ESBI also showed a similar

correlation with landscape metrics, and positive correlations

were observed only in NP, LSI, and COHESION. Both ESSI

and ESBI were negatively correlated with POPD, which indicated

that population growth weakened ES supply and exacerbated ES

imbalance.

SECMs revealed that observation and explanatory variables

(i.e., ESBI and associated variables) were significantly correlated,

but the regression coefficients in the different models with spatial

and time-period fixed effects (STFEs) were different (Table 2).

For example, in the SLM and SEM with STFEs and SDM with

spatial fixed effects (SFEs), PD, ENN, and SHDI made positive

contributions to the ESBI, whereas SHAPE, IJI, and DIVISION

negatively contributed to the ESBI; almost all the regressions

reached a significance level of p = 0.01. In the SDM with time-

period fixed effects (TFEs), the regression coefficients of PD,

SHAPE, ENN, and SHDI were opposite to those in the other

models, including SLM, SEM, and SDMwith SFEs and SDMwith

STFEs. In addition, the GTWR revealed that the spatial

determinants of ESBI showed strong variability

(Supplementary Figure S5), which depended on the dominant

effects of the landscape metrics for specific regions.

The direct, indirect, and total effects of the explanatory

variables on ESBIs in local and adjacent locations are listed in

Table 3. Direct and indirect effects mean the impact of

explanatory variables from local and adjacent locations,

respectively. In the SDM, almost all explanatory variables

were statistically significant in the regression analyses. For

example, the direct and indirect effects (spillover effects) of

SHDI were 15.340 and 10.274, respectively, indicating that an

increase in SHDI in individual areas resulted in an increase in the

ESBI in local and adjacent locations.

4 Discussion

4.1 Spatial determinants of the ecosystem
service supply–demand budget

Significant spatial associations between ES balance and

explanatory variables embody the importance of landscape

metrics in describing spatial composition and configuration,

which are associated with ecological, hydrological, and other

biophysical and biogeochemical processes (Mitchell et al., 2015;

Jean et al., 2021). Specifically, landscape dynamics driven by

human disturbances and policy interventions, for instance,

urbanization, terrain reconstruction, revegetation projects, and

soil and water conservation measures, might prevent or disturb

TABLE 1 Summaries of the ESBI and explanatory variables for 1980, 2000, and 2017.

Dependent and explanatory
variables

Unit Mean value Standard deviation Minimum Maximum VIF Moran’s I

ESBI – 41.682 24.533 –60.618 79.000 0.672***

PD #/100 ha 0.669 0.260 0.208 1.586 9.978 0.572***

SHAPE – 1.830 0.153 0.788 2.253 3.563 0.459***

ENN m 470.509 145.521 186.325 2,175.438 1.541 0.201***

IJI % 57.568 12.579 21.480 89.978 3.061 0.468***

DIVISION % 0.741 0.178 0.242 0.968 3.953 0.308***

SPLIT % 6.687 5.407 1.320 39.190 2.661 0.195***

SHDI – 0.987 0.228 0.441 1.593 6.430 0.536***

‘POPD Persons km−2 875.764 1876.189 42.011 17,636.999 1.571 0.628***

Notes: ***p ≤ 0.01, **p ≤ 0.05, *p ≤ 0.1, the same below. PD: patch density, SHAPE: mean shape index, ENN: mean Euclidian nearest-neighbor distance, IJI: interspersion and juxtaposition

index, DIVISION: landscape division index, SPLIT: splitting index, and SHDI: Shannon’s diversity index.
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material circulation and energy transportation and further

influence the formation of ESs, such as soil erosion control,

hydrological and climatic regulations, and species migration

(Jean et al., 2021). For instance, PD reflects landscape

fragmentation and intensity of human interventions

(McGarigal et al., 2012; Ayinuer et al., 2018). Normally, the

areas that feature high human activities are located in urban

areas, which have strong demands and low provision capacity of

ESs (Peng et al., 2020; Zhang et al., 2021); thus, PD negatively

correlates with the ESSI and ESBI (Figures 7, 8). The LSI

represents the complexity of patches, and the positive

correlation between LSI and ESSI (ESBI) demonstrates that

the more irregular the patches are, the smaller the ESBI is.

Identifying the spatial relationship between landscape

structure and the ES supply–demand balance deepens our

understanding of the impact of landscape composition and

structure on this balance, which further supports landscape

planning and management by monitoring landscape dynamics

and optimizing the critical landscape composition and

configuration (Mitchell et al., 2015; Chen et al., 2019a; Chen

W et al., 2020).

In addition, spatial econometric analyses concluded that

neither landscape metrics nor socioeconomic variables are the

sole driving factors of ES balance; thus, these factors should be

concurrently considered as critical determinants in landscape

planning and ES management (Jiang et al., 2020; Yu et al.,

FIGURE 3
Spatial disparities of landscape composition for four provinces/region in the three periods of 1980, 2000, and 2017: (A) Fujian, (B) Guangdong,
(C) Guangxi, and (D) Hainan.
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2021). The significantly negative correlations (p < 0.0001)

between ESBI and POPD demonstrated that population

growth resulted in a rapid increase in the demand for food,

water, energy, and land resources, and ESs, which further

promoted land-use transitions, altered supply and demand

patterns, and challenged the ES balance (Wang et al., 2021).

Traditional econometric models assume that observation

and explanatory variables are spatially independent, whereas

geographic location-based variables are typically spatially

correlated, and that this spatial characteristic should be

carefully considered in regression analyses to reduce

inaccurate results (Meng et al., 2021). Spatial econometric

analyses consider spatial dependence and spillover effects,

which improves the interpretability of spatial autocorrelations

and demonstrates that SECMs can be adopted as useful tools

to identify the determinative variables of ES budgets (Chen W

et al., 2020; Cai et al., 2021; Meng et al., 2021). In addition,

GTWR analysis revealed that the primary determinants

presented strong spatial heterogeneity in influencing the

patterns of supply–demand balance (Supplementary Figure

S5), which has also been proved in existing literatures (e.g.,

Ayinuer et al., 2018; Funes et al., 2019). Landscape planning

should allow for spatial variations in critical landscape metrics

according to specific locations and formulation of localized

and flexible, but not monotonous, policy interventions to

optimize the regional landscape and ensure ES balance.

4.2 Implications of research findings for
landscape planning and ecosystem service
management

Incorporating ES supply and demand perspectives into ES

assessment provides a complete and clear understanding of

ecosystem evolution and ES dynamics and supports practical

benefits for landscape optimization, ES management, and

ecosystem conservation (Chen W et al., 2020). Revealing the

ES surplus and deficit enables us to understand the impacts of

human activity-driven landscape changes on ESs and identify

regions that suffer from ES scarcity, and therefore, are not

suitable for future exploitation. Furthermore, ES balance

indexes can be used as effective indicators or policy tools to

direct landscape planning and decisions (Yuan et al., 2019; Jiang

et al., 2021a; Zhang et al., 2021).

SECMs identified the primary determinants of ES

supply–demand balance and found that landscape

composition, fragmentation, shape, and complexity were

closely correlated with the ES balance. These determinants

FIGURE 4
Spatial evolution of the (A) ESSI, (B) ESDI, and (C) ESBI of the south-eastern coastal region of China for the three periods of 1980, 2000, and
2017.
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should be considered in landscape planning and land-use

allocation, particularly for green and blue infrastructure in

rapidly expanding urban agglomerations and coastal areas

experiencing intensive exploitation. For instance, as shown in

Figures 9A–D, the case of Guangzhou city (i.e., one of the city

clusters in Zone II of Figure 1B) demonstrated that local

environmental management and landscape planning already

considered green and blue spaces as important components of

urban ecosystems and reserved some spaces for rivers, lakes,

forests, grasslands, and wetlands (Mao et al., 2018a; Mao et al.,

2018b). These components generate crucial ESs such as air and

water purification, climatic regulation, and cultural services,

including education, tourism, and recreation (Zhang et al.,

2021). However, the spatial allocation of these landscape

patches is still not completely appropriate. For instance, one

of the most important functions of green and blue spaces in

urban agglomerations is to mitigate the heat island effect through

the cooling effect of woodlands, grasslands, and wetlands (Liu

et al., 2021). However, the parallel distribution of different

landscape categories shown in Supplementary Figure

S1A4–A5 is not beneficial for heat transportation and air

temperature regulation (Zhang et al., 2021). In addition, the

concentration and distribution of urban areas (Supplementray

Figure S1A1–A3) do not sufficiently allow for the connectivity

and diversity of landscape patches and constitute adverse

conditions for material transportation, species migration, and

delivery of other ESs (Mitchell et al., 2015). Therefore, the

diversity, connectivity, and appropriate combination of

different landscape categories should be maintained,

reallocated, and optimized from the perspective of ES balance

and landscape multifunctionality (Supplementray Figure S1A6);

Chen W et al., 2020; Sun et al., 2020). However, considering the

negative correlations between landscape fragmentation and the

ESBI (Figure 8), the patches should be maintained as relatively

complete because excessive fragmentation cannot facilitate the

maintenance of ES balance.

Specifically, considering the distinctive environmental,

socioeconomic, and industrial features of coastal cities,

landscape planning and regional development for these

areas should conserve and appropriately allocate important

landscape elements according to their ecological benefits to

maintain regional ES balance and enhance ecosystem

sustainability. For instance, coastal mangroves and coral

reefs typically have important ecological functions, such as

the mitigation of geological and meteorological disasters

caused by tsunamis and typhoons (Ren et al., 2019). In

addition, the wetland and mangrove ecosystems in

urban–rural transition zones primarily support material

FIGURE 5
Temporal changes in the ESBI and supply and demand of total ESs and different categories of ESs in five hotspots of rapid urbanization. Blue,
green, and red lines represent the budget index, supply, and demand of ESs, respectively. For geographic locations of rapidly urbanizing regions, refer
to Figure 1B.
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and energy cycles and exhibit important ESs, such as heat

island effect mitigation and aquatic purification (Jia et al.,

2018). However, commercial exploitation and other

inappropriate practices such as mangrove deforestation for

aquaculture ponds as well as agricultural pond and wetland

losses caused by urbanization and development of tourism

industry normally destroy ecosystems, which further weakens

ESs and might lead to irreversible damage (Mao et al., 2018a;

Mao et al., 2018b; Ren et al., 2019). Therefore, coastal

wetlands, mangroves, and coral reefs should be carefully

conserved from the perspective of ecosystem connectivity,

diversity, and functionality, and their excessive exploitation

for commercial purposes and economic benefits, such as by

tourism and real estate industries, should be avoided.

Results of the spatial regression analysis shown in Table 3

indicate that the ES balance in specific locations is associated with

the ES balance in adjacent regions because of the existence of spatial

spillover effects. The underlying explanation is that a specific

landscape category is more likely to be converted to another

category if it is adjacent to a location that has been converted

(Jiang et al., 2020; Cai et al., 2021). Similarly, population growth and

economic development in developed regions tend to provide

economic benefits and environmental pressures to neighboring

regions (Chi and Ho, 2018; Jiang et al., 2020). Urban sprawl and

population pressure result in increased energy, resource, and ES

demands, which in turn lead to the degradation of the ecosystem and

deterioration of the ES balance (Baró et al., 2016; Zhang et al., 2021).

To expand the production scale, increase economic profits, and

fulfill the requirements of resources and ESs, industries and

enterprises that have high resources and ES demands tend to

shift from local counties with considerable environmental

constraints to adjacent regions with sufficient ES supplies and

fewer resource constraints. Thus, the landscape and

socioeconomic variables in local areas not only determine the ES

balance in local areas but also influence the ES balance in their

surrounding regions (Chen et al., 2019a; Chen W et al., 2020).

Specifically, spillover effects are clearly presented in urban landscape

projects, including catchment governance and soil erosion control

FIGURE 6
Associations between (A) ESSI, (B) ESDI, and (C) ESBI and dominant landscape compositions.
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FIGURE 7
Associations between the ESSI and landscape and socioeconomic variables: (A) NP, (B) PD, (C) LSI, (D) COHESION, (E) IJI, (F) DIVISION, (G)
SHDI, and (H) POPD.
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FIGURE 8
Associations between the ESBI and landscape and socioeconomic variables: (A) NP, (B) PD, (C) LSI, (D) COHESION, (E) IJI, (F) DIVISION, (G)
SHDI, and (H) POPD.
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(Figures 9F–H). Although landscape projects in downstream

ecosystems have improved land surface vegetation cover

(Figure 9G), the soil loss-induced water pollution in upstream

regions has not been effectively mitigated; thus, river channel

sedimentation downstream is still severe (Figures 9F,H).

This study revealed the determinants of ES balance and their

spillover effects, implying that, in addition to effective efforts by

individual local communities to conserve ecosystems and maintain

ES balance, strengthening coordination and collaborative efforts are

also required from adjacent areas for them to move from being ES

supply sources to beneficiaries (Chen et al., 2019a; Jiang et al., 2021a;

Jean et al., 2021).

4.3 Uncertainties, limitations, and future
perspectives

Some uncertainties and limitations remain in the current

study. The current supply–demand matrix proposed by

Burkhard et al. (2012), Burkhard et al. (2014) and adapted

TABLE 2 Spatial associations between the ESBI and explanatory variables quantified using the SECMs.

Explanatory
variables

SLM (STFEs) SEM (STFEs) SDM (SFEs) SDM (TFEs) SDM (STFE)

PD 24.298*** 27.218*** 24.638*** –16.164*** 25.191***

SHAPE –10.973*** –20.209*** –8.346*** 20.479*** –6.835**

ENN 0.005*** 0.006*** 0.006*** –0.0108*** 0.006***

IJI –0.154*** –0.168*** –0.214*** –0.039 –0.196***

DIVISION –15.438*** –6.288 –12.227*** –3.427 –13.151***

SPLIT –0.071 0.043 0.010 0.218** 0.013

SHDI 15.331*** 18.437*** 13.973*** –19.797*** 14.629***

POPD –0.0002** 0.00004 0.0002 –0.0044384 0.0002*

W*PD –9.732* 1.103 –12.588**

W*SHAPE 41.416*** –14.309*** 41.248***

W*ENN –0.003 –0.015** –0.003

W*IJI 0.088 –0.005 0.179**

W*DIVISION –23.882*** 4.485 –27.256***

W*SPLIT –0.26817*** –0.401** –0.267***

W*SHDI –30.296*** 0.740 –24.809***

W*POPD –0.0026247*** 0.002*** –0.002***

W*ESBI 0.611*** 0.449*** 0.594*** 0.429***

W*μ 0.728***

R2 0.835 0.975 0.925 0.654 0.933

Adjusted R2 0.833 0.975 0.924 0.646 0.931

σ2 7.884 7.077 6.243 120.311 6.161

Log-likelihood –1705.727 –2,944.99 –1,608.933 –2,632.778 –1,602.870

TABLE 3 Direct and indirect effects of explanatory variables on the ESBI quantified using the SDM.

Explanatory variables Direct effects Indirect effects Total effects

PD 26.416*** 17.692*** 44.108***

SHAPE –7.168** –4.801** –11.968**

ENN 0.007*** 0.004*** 0.011***

IJI –0.206*** –0.138*** –0.343***

DIVISION –13.791*** –9.236*** –23.027***

SPLIT 0.013 0.009 0.022

SHDI 15.340*** 10.274*** 25.614***

POPD 0.0002* 0.0002* 0.0004*
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based on semi-quantitative local expert knowledge might not

completely reflect the actual conditions of the research areas, and

hence, it should be further refined and adapted according to

other natural environmental conditions and socioeconomic

features, including climate, terrain, vegetation species, and

industrial and economic levels (e.g., Lorencová et al., 2016;

Carli et al., 2018; Barbieri and Consoli, 2019; Raza et al.,

2019). Existing studies have adopted an expert knowledge

approach to quantify social demands for the assessment of

ES balance, particularly for the demand aspect (e.g.,

Campagne et al., 2018; Tao et al., 2018; Sun et al., 2020).

As the scoring method is based on subjective experience and it

largely does not rely on accurate input parameters and

complex data requirements, it can only reflect the relative

FIGURE 9
(A–D) Pictures of urban landscape compositions coordinating blue and green infrastructures (i.e., wetlands, rivers, lakes, woodlands, and
grasslands) and urban development, (E) coastal exploitation, and (F–H) inappropriate urban landscape and catchment management projects that
damage surface vegetation cover and exacerbate soil loss and water pollution. (A and B), (C and D), and (E) are from the Haizhu and Liwan districts of
Guangzhou city and Jieyang city of Guangdong province, respectively. (F and H) Are from the Nanshan District of Shenzhen city, Guangdong
province.
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levels of supply and demand (Burkhard et al., 2014). In

addition, the ES demands of each era are different, and

their values also differ over decades with the development

of socioeconomic conditions (Carli et al., 2018; Barbieri and

Consoli, 2019), and thus, it is not completely reasonable to

apply the present assessment standards (as shown in Fig. S2)

to assess the ES balance in previous decades. Therefore, in

future studies, more input data from various sources, such as

statistical records and spatially explicit data, should be

incorporated into the assessment to obtain more accurate

results and absolute values of ES demand (Schirpke et al.,

2019; Yuan et al., 2019; Wang et al., 2021). Allowing for the

low data accessibility of county-scale socioeconomic and

environmental variables (Blanco et al., 2017), this study

recommends exploring the possibilities of applying various

emerging spatial mobile data to assess sub-county, site, and

pixel-scale ES demands (Funes et al., 2019; Liu et al., 2020).

The GTWR and Moran’s I scatterplots showed that the

supply–demand balance and its determinants exhibited

significant spatial autocorrelations and heterogeneity and

might largely rely on research scales. Some studies also show

that interactions among ESs are complicated because of scale

effects (Kim and Arnhold, 2018; Wilkerson et al., 2018).

Therefore, the current county-scale analysis and its

conclusions might not be applicable to land-use management

at different levels of governments, and hence, further studies

should be conducted to reveal the impacts of landscape

structure on ES balance at different spatial scales and to

practically support strategy formulation and implementation

for combating ecosystem degradation. In terms of spillover

effects, this study only obtained the direct and indirect effects of

explanatory variables through SECMs (Table 3), and therefore,

the effects of LULC transformation and socioeconomic

indicator change in specific units on the ES balance at a

regional scale is still not clear. The mechanisms of influence

on the ES balance can be revealed by spatially explicit models,

such as Integrated Valuation of Ecosystem Services and Trade-

offs (Sharp et al., 2018) and Artificial Intelligence for Ecosystem

Services (Villa et al., 2009) that couple landscape composition

and structure with ESs in an integrated manner. The driving

mechanisms, delivery process, and spatial variation of ES

supply and demand must be investigated by including more

involved socioeconomic indicators (e.g., transport network and

road density) for the formulation of practical solutions toward

sustainable landscape management (Wilkerson et al., 2018;

Schirpke et al., 2019).

5 Conclusion

A coastal area in southeastern China was selected as a case study

to reveal the spatial patterns of ES supply–demand budget in 1980,

2000, and 2017 by applying the supply–demand matrix. We

identified the spatial determinants and heterogeneity of the ES

budget using SECMs and GWR approaches. The overall patterns

of ES balance in three time nodes were stable, whereas ES deficits

typically existed in rapidly urbanizing areas. ESSI and ESBI closely

correlated with landscape proportions because cropland and built-

up areas exhibited week ES supply and strong ES demand, while

woodland and grassland had strong ES supply andweek ES demand.

Landscape variables and POPD were identified as the primary

spatial determinants of the ES balance and they were closely

associated with the ESBI and exhibited remarkable spatial

variability and external effects.

The spatial heterogeneity of determinants implies that

regional landscape management strategies should account for

the spatial dependencies of independent variables and provide

an important reference for decision-making for regional

landscape planning and ecosystem conservation. In addition,

localized biophysical and socioeconomic variables, such as

landscape composition, environmental conditions, economic

levels, and localized management practices, which are designed

according to actual conditions, should be considered to

accurately assess and effectively reconcile ES imbalance

(i.e., ES deficits) through targeted policy regulations,

landscape optimizations, and other human interventions.

Considering the existence of spatial spillover effects of

determinants, the strategy formulation and solution

implementation for landscape planning and ES management

should not completely rely on individual governments or

organizations but rather require collaborative efforts from

different levels of communities in both local and adjacent

districts (i.e., cross-border regions), particularly for the

rapidly expanding coastal urban agglomerations.
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