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Massive fish farming for more than two decades, combined with external

sources of pollution, deteriorated the quality of water and sediment and

damaged the ecosystem in Honghu Lake. Although water quality has been

improving, great challenges remain in restoring the healthy function of

ecosystems for self-mitigation. With concerns about contaminants in the

sediment that might be the source of pollution, water and sediment samples

were collected systematically across the wetland. With the 16s rDNA gene

sequence and multiple statistical analyses, this study was able to identify

locations where sediments were mostly impacted by non-point source

pollution from the surrounding agricultural areas and fish farming inside the

lake. The clustering analysis identified two distinct clusters coincide with areas

with and without fish farming. The LEfSe algorithm successfully distinguished

the differentially abundant biomarkers between the two clusters. By combining

the GIS techniques withmicrobial analysis, hotspots with hazardous pathogenic

bacteria such as Rokubacteria, Elusimicrobia, and Fusobacteria in sediments

were located. This study showed that comprehensive biodiversity analysis

combined with spatial analysis could make the microbial information serve

well as biomarkers and indicators for environmental and ecosystem restoration.
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Introduction

The high-throughput sequencing technology can provide a vast amount of biological

information that would allow us to study the structural characteristics of the aquatic

environment microbial community from different perspectives. Cremona et al. (2014)

investigated the influence of functional groups for specific production and respiration

patterns on a lake’s metabolic balance and found that planktonic functional groups

contributed to most of the metabolism of the lake but minimal from the benthic

functional groups. Dang et al. (2011) conducted an experimental study on a pig-fish
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farm to assess the impact of medicated feed on antimicrobial

resistance. They found occurrences of Enterococcus faecium,

Enterococcus faecalis, and other Enterococcus spp. in the fish

farm sediment had a strong correlation with the pig manure.

Harnisz et al. (2015) study showed no significant differences in

the abundance of antibiotic-resistant bacteria and antibiotic

resistance genes but an increase in the diversity of tetracycline

resistance genes. Homklin et al (2009) conducted aerobic

biodegradation tests using sediment from the masculinization

pond. Their results suggested that the 17alpha-methyltestosterone

(MT) is biodegradable and degradation rates decrease with an

increase in the initial MT concentration. A study by Ivanova and

Dedysh (2012) showed that Planctomycetes were most abundant

in the oxic part of the wetland profiles and most peatland sites

showed a sharp decline of planctomycete abundance with depth.

Liu et al. (2020) study suggested that the microbial community in

sediment samples had a higher abundance and diversity than in

water samples. Their research also found bacteria related to

eutrophication in sample groups. Deltaproteobacteria was

found in sediments of the freshwater system as a result of the

anaerobic oxidation of methane (Schubert et al., 2011). Results

from a study by Xu et al. (2014) using a comprehensive functional

gene array (GeoChip 4.0) suggested that indigenous

microorganisms could be successfully stimulated for potential

in situ bioremediation of persistent organic pollutants (POPs) in

contaminated sediments. The application of antibiotic drugs for

fish farming had increased antibiotic resistance in water and

sediment (Stange et al., 2019).

Massive fish farming over two decades combined with

other sources of pollution in the Honghu Lake not only

deteriorated the quality of water and sediment but also

damaged the ecosystem. There have been a few published

papers about the water quality and microbial abundance in the

Honghu Wetland area (Wang et al., 2017; Zhang et al., 2017;

Han et al., 2019; Chen et al., 2021; Wu et al., 2021). Microbial

communities in water samples were largely affected by the TN,

TP, NO3(-)-N, and NO2(-)-N concentrations, and sediment

was affected by Sed-OM and Sed-TN. Tetracycline,

oxytetracycline, chlortetracycline, and sulfadiazine are the

four dominant antibiotics in the wetland, and they had a

major influence on microbial communities in both water and

sediment samples (Wang et al., 2017; Han et al., 2019; Goyal

et al., 2022; Malyan et al., 2022). Tetracyclines may have

contributed more than sulphonamides in the abundance of

sul1, sul2, and tetC gens in Honghu Lake (Yang et al., 2016).

Microbial community shift had the most direct contribution

to ARG variation (Wang et al., 2020). Honghu wetland has

been largely impacted by fish farming inside the wetland and

agriculture in its upper source areas, other than Cd that had

occasionally exceeded the contamination level, no

contamination was found from other heavy metals (Li

et al., 2017; Li et al., 2018; Zhang et al., 2018). Studies (Yao

et al., 2018) also showed a strong seasonal nitrogen cycle and

variation of microbial abundance, but the abundance of

functional microorganisms in sediments was not

significantly different among vegetation types.

As part of the ecosystem restoration effort, this research was

designed for a reconnaissance study to characterize the spatial

heterogeneity of microbial communities across the wetland and

identify biomarkers as indications of the environmental

conditions. It was hopeful that the results would help develop

effective practices to restore the ecosystem to its healthy

conditions using remediation involving biological processes

for water and sediment treatment.

Materials and methods

Study area

Honghu Lake is one of the largest wetlands in the middle

reach of the Yangtze River with a surface area of around

400 square kilometers and an average water depth of less than

5 m. It can be divided into the east and west divisions (Figure 1)

due to their weak hydraulic connection. This wetland is rich with

about 57 fish species and 472 vascular plants and provides service

for wildlife and support for social and economic development to

local communities. Since the beginning of the 1990’s, the lake was

open for unregulated and massive fish farming for over two

decades. Contamination of fish fertilizer and antibiotics and

other external sources of pollution had deteriorated not only

the quality of water and sediment but also damaged the

ecosystem. Its water quality had only reached the national

class II water quality standard twice in those years, with

BOD5, ammonia nitrogen, total nitrogen, total phosphorus,

and permanganate indices consistently exceeding the Chinese

national standards.

With the implementation of water protection measures since

2006, significant efforts, including banning all fish farming,

cleaning out fish farming structures, and stopping and

managing the pollution from its upstream source areas, have

beenmade to restore the ecological environment. Although water

quality has been seen to be improving, major challenges lay

greatly in the restoration of the healthy function of ecosystems to

mitigate on its own, particularly with concerns on contaminants

in the sediment that might be the secondary source of water

pollution in the wetland. Therefore, effective implementation

plans are being sought to improve the eco-environment using

remediation involving biological processes.

Sample collection

Twelve core sampling points, where both water and sediment

samples were collected, were designed to represent the profiles

from the inflow locations of the east and west portions of the
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wetland to its outlet to the Yangtze River. Thirty-nine additional

sediment samples were collected for spatial representation of the

Lake area. Sample locations are shown in Figure 1.

Microbial samples were collected using a battery-charged

pump on the boat to pump water 1–5 L of water to filter through

the 0.45 nm pore diameter filter paper. Water samples were

collected for laboratory analysis of other environmental

parameters such as cation, anion, nitrate, phosphorous, heavy

metal, and environmental isotopes analysis. pH, temperature,

dissolved oxygen, electric conductivity, hardness, and Oxidation

Reduction Potential (ORP) were measured during sampling.

Sediment samples were collected by using the bottom mud

sampler. Roughly 1 kg of mud was preserved in polythene

bags to analyze the physical and chemical characteristics in

the laboratory. About 5–10 g of mud were collected and

placed in a 50 ml centrifuge tube and stored with dry ice for

16S rRNA gene sequencing. Coordinates of sample locations

were recorded with a GPS device for mapping and spatial

analysis.

Sample processing and sequencing

Major processes for DNA samples include DNA extraction

from water samples, PCR amplification, fluorescence

quantification, construction of Miseq Library, and Miseq

sequencing. The genomic DNA was extracted by 1% agarose

gel electrophoresis.

Specific primers with barcodes were synthesized according to

the designated sequencing region. To ensure the accuracy and

reliability of the subsequent data analysis, the PCR amplification

used low cycle number amplification as much as possible and

ensure the same cycle number of each sample amplification.

Representative samples were randomly selected for the pre-test to

ensure that the majority of samples can be amplified with an

appropriate concentration in the minimum number of cycles.

According to the preliminary quantitative results of

electrophoresis, the PCR products were quantified by the

QuantiFluor™ -ST blue fluorescence quantitative system

(Promega company) and then mixed in corresponding

proportion according to the requirements of the sequencing

quantity of each sample. To construct the Miseq library, the

official connector sequence of Illumina was added to the outer

end of the target region by PCR, the gel recovery kit was then

used to recover PCR products, and then the Tris HCl buffer was

eluted and detected by 2% agarose electrophoresis, finally to use

sodium hydroxide to produce single-strand DNA fragments.

OTU clustering and annotation

Operational Taxonomic Units (OTUs) were clustered with a

97% similarity cutoff using UPARSE (version 7.1 http://drive5.

com/uparse/) with a novel ‘greedy’ algorithm that performs

chimera filtering and OTU clustering simultaneously (Edgar,

2013). The taxonomy of each 16S rRNA gene sequence was

FIGURE 1
Locations of Water and Sediment Samples from the Honghu Wetland.
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analysed by the RDP Classifier algorithm (http://rdp.cme.msu.

edu/) against the Silva (SSU123) 16S rRNA database using a

confidence threshold of 70%. Microbiome data tend to be very

noisy and the total number of counts per sample is highly

variable because of the experimental process and quality

control filtering. Normalization of reads was performed with

the minimum readout of all the samples. For each representative

sequence, the Silva database was used based on the RDP classifier

Bayesian algorithm to annotate taxonomic information on the

microbial communities at the domain, kingdom, phylum, class,

order, family, genus, and species levels.

Statistical analyses

Microbiome data tend to be very noisy, and the total number

of counts per sample is highly variable because of the

experimental process and quality control filtering.

Normalization of reads was performed with the minimum

readout of all the samples.

Since R. H. Whittaker (1960), Whittaker (1972) introduced

alpha diversity (α-diversity), beta diversity (β-diversity), and
gamma diversity (γ-diversity) to quantify the diversity of

mean species and habitats at a local scale, more indices have

been developed to quantify the richness and diversity of

biological communities. These include the sobs, chao, ace,

jack, and bootstrap indices for community richness, the

simpsoneven, shannoneven, heip, smithwilson indices for

community evenness, and the Shannon, Simpson, npshannon,

bergerparker, invsimpson, qstat indices for community diversity,

and the coverage for community coverage. This paper selected to

use the commonly used sobs, Shannon, Simpson, Chao, coverage,

Shannoneven, and Simpsoneven indices.

Several ordination methods, such as the principal component

analysis (PCA), the principal coordinates analysis (PCoA), and

the non-metric multidimensional scaling (NMDS), are

commonly used for beta diversity analysis. Gauch and Singer

(1982) thought the underlined linear assumption makes PCA

unsuitable for most ecological data sets. This study adopted the

principal coordinate analysis (PCoA), in which the distance

metric was calculated using the Bray-Curtis algorithm. The

microPITA (microbiomes: Picking Interesting Taxonomic

Abundance) was used to select samples with more diversity,

most dissimilarity, and the most representative from the spatially

distributed sample data.

Spearman’s rank correlation coefficient measures the rank

correlation to assess the relationship between two variables using

a monotonic function. The major difference from the Pearson

correlation is that Pearson’s correlation assesses linear

relationships. The Wilcoxon rank-sum test is a nonparametric

test that may be used to assess whether the distributions of

observations obtained between two separate groups on a

dependent variable are systematically different. It is

particularly advantageous when comparing the averages of

two independent groups of samples of which a Gaussian type

distribution cannot be assumed or unknown.

LEfSe (Linear discriminant analysis Effect Size) (Segata et al.,

2011) is an algorithm that can identify high-dimensional

biomarkers (genes, pathways, or taxa) and characterize the

differences between two or more biological conditions. LEfSe

was proven to be efficient in detecting bacterial organisms and

functional characteristics differentially abundant between two or

more microbial environments.

The typing analysis was based on the algorithms introduced

by Arumugam and Raes (2011) and R codes released by the

group. This method firstly clustered the samples based on relative

abundances of taxon using the Jenson-Shannon Distance (JSD)

metric and the Partitioning Around Medoids (PAM) clustering

algorithm. The Calinski-Harabasz (CH) Index (Calinski and

Harabasz, 1974) was used to assess the optimal number of

clusters.

Software packages used in this study include the Uparse

7.0.1090 for OTU classifications, Usearch 7.0 for OTU statistics,

Mothur 1.30.2 for Alpha diversity, Qiime 1.9.1 for Beta diversity

and sequence deduplication filtering, sequence classification

annotation, and IQ-TREE 1.6.8 for constructing the

phylogenetic tree.

Spatial analysis using ArcGIS IDW tool

Although statistical analysis is efficient in characterizing the

differences of microbial communities and identifying biomarkers

with ecological significance, it is not able or not straightforward

in displaying their spatial features. Contouring a selected

parameter based on measured data across the lake would help

better understand the spatial distribution of microbial

communities. This study adopted the Geostatistical Analyst in

ArcGIS 10. to develop the contours of the selected parameter.

IDW (inverse distance weighted), spline interpolation, and

kriging are commonly used tools in ArcGIS for spatial data

analysis. We found IDW (Watson and Philip, 1985), which

assumes that things in closer proximity are more alike, and

each measured point has a local influence that diminishes

with distance, was more appropriate for the open lake

condition in this study.

Results and discussions

Composition of microbial community

For consistent comparison of samples from different spatial

distributions, sample reads were normalized by the minimum

read of 24,553. Samples were classified into the water sample

group and sediment group, the sediment group, and the water
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group for respective sediment and water samples in the west and

east divisions of the lake, as shown in Figure 1.

Through the taxonomy analysis, 70 phyla, 1382 genera,

3203 species, and 14289 OTUs were identified from all water

and sediment samples (Supplementary Table S1). The

composition of the microbial communities in sediment samples

was distinctively different from water samples and more abundant

than in water samples (Supplementary Table S1). The common

phyla with an average relative abundance greater than 1% in water

and sediment samples (Figures 2B,C; Supplementary Table S2)

were Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes,

Verrucomicrobia, Planctomycetes, Chloroflexi, Firmicutes, and

Patescibacteria. Other phyla appeared to have a relative

abundance greater than 1% only in the sediment samples

including Acidobacteria, Spirochaetes, Nitrospirae,

Latescibacteria, Nitrospinae, and Gemmatimonadetes. Other

phyla uniquely found in the sediment samples were

Crenarchaeota, WS4, Dadabacteria, Atribacteria, CK-2C2-2,

Schekmanbacteria, and norank_d__Archaea. Proteobacteria was

the most abundant in both water and sediment samples.

FIGURE 2
Composition ofmicrobial communities in water and sediment samples: (A) phyla with relative abundance greater than 1% inwater and sediment
samples, (B) percentages of phyla with average relative abundance greater than 1% in all sediment samples, (C) percentages of phyla with average
relative abundance greater than 1% in all water samples, (D) the most dissimilar, maximum diversity andmost representative samples identified using
MicroPITA analysis, (E) distribution of identified samples from MicroPITA analysis.
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In contrast, sediment had more abundant Chloroflexi and

Acidobacteria than water samples. Water samples had more

Cyanobacteria and Actinobacteria than sediment samples.

For sediment samples, the average relative abundance of

major phyla was similar in the east and west divisions of

the wetland, but in the water samples, the average relative

abundances for Cyanobacteria and Actinobacteria were

higher in the eastern division than in the west, which

could be due to the shallower water depth and

contamination of inflows in the east division. A detailed

comparison of microbial abundance using the LEfSe

method will be discussed later in this paper.

FIGURE 3
Clustering of sediment samples: (A,B) hierarchical clustering trees for sediment samples in the east and west divisions of the wetland,
respectively, (C) distribution of samples in clusters showing overall samples along the edge of thewetland (Sed_E_C1 and Sed_W_C1) and around the
center of the wetland (Sed_E_C2 and Sed_W_C2) belong to separate clusters in both the east and west divisions of the wetland. (D) Circos diagram
for the sample and species relation for the five clusters in (A,B), the small semicircle (left semicircle) represents the species composition in the
sample, The color ribbons of outer semicircle represents the sample groups, the color of the inner ribbon represents the species, and the length
represents the relative abundance of the species in the corresponding sample; The outer semicircle on the right half indicates the distribution of the
average proportion in different sample groups at the taxonomic level. The outer color band represents species, the inner color band represents
different groups, and the length represents the distribution proportion of the sample in a certain species.
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The microPITA analysis (Tickle et al., 2013) allows us to

select samples with the most representativeness of microbial

communities, samples with the most extreme microbial

communities, and samples with the most diverse community.

Shown in Figure 2D were the samples selected for each category

through the MicroPITA analysis that was based on the Shannon

index with the Bray-Curtis distance metric. The location of

MicroPITA selected samples was displayed on the

geographical map (Figure 2E). Samples of maximum diversity

were located along the side of the lake and around the centers of

the east and west divisions of the lake, which could be due to

more intensive fish farming. Spatially, samples of most

dissimilarity were mostly located in the northwest part of the

west lake division and the north part of the east lake division,

which could imply that the inflows from agriculture and

industrial pollution might have had an impact on the

microbial communities in addition to fish farming.

Beta diversity from water and sediment
samples

Although microbial communities found in sediment samples

were more abundant than in water samples, on average, the

composition of microbial in sediment and water samples in the

east and west divisions of the lake were similar. It is important to

understand how the microbial communities would differ within

each lake division. The hierarchical clustering analysis was able to

show two distinctive clusters (Sed_E_C1 and Sed_E_C2) in the

east lake division (Figure 3A) and two distinct major clusters

(Sed_W_C1 and Sed_W_C2) and a cluster that consists of only

one sample (Sed_W_C3) in the west division (Figure 3B).

Overall, in both the east and west divisions, samples in cluster

one (Sed_E_C1 and Sed_W_C1) were predominantly located

along the southeast and east side of the lake, and cluster two

(Sed_E_C2 and Sed_W_C2) samples were mostly around the

FIGURE 4
PCoA and PLS-DA analyse, in which the Bray -Curtis distance matrix was used for both methods. (A) PCoA analysis to compare water and
sediment samples, (B) PCoA analysis to compare water samples from the east andwest divisions of the lake, and (C, D) PCoA and PLS-DA analyses for
the five clusters shown in Figure 3.
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center of the lake (Figure 3C). The Circos diagram in Figure 3D

had the advantage of showing the relative abundance of the

species in the five sample clusters and the distribution of the

average proportion in different sample groups at the phylum

level.

Several ordination methods such as the PCA with the Euclidian

distance, PCoA, and PLS-DA based on the Bray-Curtis distance

were performed to examine the beta diversity of water and sediment

data. From the PCoA analysis, Figure 4A showed a distinctive

difference between thewater and sediment groups, with the variance

explained on PCA1 as high as 55% and 16% on PCA2. For water

samples (Figure 4B), the variances explained on the PCA1 and

PCA2 were 61% and 16%, respectively, but there was no clear

separation between samples in the east and west divisions of the

wetland. Similar to water samples, although the variances

(Figure 4C) explained on the PCA1 and PCA2 were 42% and

16%, there was no clear distinction between samples from the east

and west divisions of the lake. However, the separation between the

two clusters (Sed_E_C1 and Sed_E_C2) in the east division and

between the two major clusters (Sed_W_C1 and Sed_W_C2) was

evident. It was also clear that the first clusters in the east and west

divisions (Sed_E_C1 and Sed_W_C1) were overlapped, and so were

the second clusters (Sed_E_C2 and Sed_W_C2). The single sample

in the third cluster from the west division was separated from other

clusters. The same distribution pattern of sediment samples in the

five clusters can be seen in Figure 4D.

FIGURE 5
LEfSe analysis for differences of microbial communities between sample groups. (A, B) are cladograms of taxonomic representation of
statistically and biologically consistent differences betweenwater and sediment sample groups and among the fourmajor clusters shown in Figure 3.
Differences are represented in the color of themost abundant classes as shown in the legend of each figure. Each circle’s diameter is proportional to
the taxon’s abundance. LEfSe scores can be interpreted as the degree of consistent difference in relative abundance between features in the
two classes of analyzed microbial communities. The histogram in (C) thus identifies which clades among all those detected as statistically and
biologically differential explain the greatest differences between communities.
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Results of typing analysis using the algorithms introduced by

Arumugam and Raes (2011) on the five cluster sample groups

(Supplementary Figure S1) showed that samples in the

Sed_E_C1 and Sed_W_C1 groups fell in one cluster

represented by Gammaproteobacteria class and samples in the

Sed_E_C2 and Sed_W_C2 groups fell into another cluster with

Anaerolinera be the dominant class. The typing analysis further

proved that the microbial communities in the lake sediments

affected by fish farming were distinctively different.

Abundance difference in sediment due to
fish farming

The major interest of this study was identifying locations of

lake sediments affected by the fish farming and other sources of

pollution from unique biomarkers. Through hierarchical

clustering, the sediment samples were classified into five

clusters (Figure 3), and with the PCoA and PLS-DA analyses,

it was clear the microbial communities between the two major

clusters in each of the eastern and western divisions were

different, but cluster one and cluster two across the east and

western divisions of the lake were similar. The Kruskal-Wallis H

test and the LEfSe analysis were conducted to find out which

clades were significantly different in a statistical sense. While the

Kruskal-Wallis H test was able to compare the difference of

average proportions for a selected number of major species at a

selected level and compute the statistically significant of the

difference, the LEfSe analysis was able to identify all clades

that are differentially abundant between the groups.

The Kruskal-Wallis H test was performed to classify the

differences of phyla among the four major clusters (Sed_E_C1,

Sed_E_C2, Sed_W_C1, and Sed_W_C2). Shown in

Supplementary Figure S2 are phyla with a statistically

significant difference (p-value ≤0.05) between the clusters. For

Proteobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, and

Elusimicrobia, the mean proportions of phyla in cluster

Sed_E_C1 and cluster Sed_W_C1 were very close and so were

cluster Sed_E_C2 and cluster Sed_W_C2. However, the

proportion difference across cluster one (Sed_E_C1 or

Sed_W_C1) and cluster two (Sed_E_C2 or Sed_W_C2) were

significantly different. For Gemmatimonadetes, Dependentiae,

and Lentisphaerae, the differences between cluster one

(Sed_E_C1 and Sed_W_C1) and cluster two (Sed_E_C2 and

Sed_W_C2) in the east and west divisions were distinct, and the

difference across cluster one and cluster two was significant.

Identification of differentially abundant
biomarkers

The LEfSe analysis with “All-against-all” computation for

all four clusters identified 45 differentially abundant clades of

bacteria (Figures 5B,C), which includes Actinobacteria,

Gemmatimonadetes, and Proteobacteria phylum in the

cluster Sed_E_C1, Bacteroidetes, Dependentiae, Elusimicrobia

and Lentisphaerae in the cluster Sed_E_C2, and Chloroflexi in

Sed_W_C1 and Acetothermia in Sed_W_C2. Comparing the

two major clusters in the west division (Supplementary Figure

S3) showed there were 17 and 27differentially abundant clades

in the cluster Sed_W_C1 and Sed_W_C2 in the western

division, respectively, including phyla of Chloroflexi,

Actinobacteria, Cyanobacteria and Firmicutes in

Sed_W_C1 and Proteobacteria, Bacteroidetes,

Gemmatimonadetes, Dependentiae, Acetothermia,

Hydrogenedentes and Elusimicrobia in Sed_W_C2. For the

east division of the lake (Supplementary Figure S3),

12 clades were differentially abundant in the

Sed_E_C1 including phyla of Chloroflexi, Acidobacteria,

Actinobacteria, and Synergistetes, and 30 clades in Sed_E_C2,

with phyla of Proteobacteria, Bacteroidetes, Spirochaetes,

Calditrichaeota, Omnitrophicaeota, Lentisphaerae, LCP_89,

Margulisbacteria, and Acetothermia.

For the water and sediment sample groups, the LEfSe analysis

(Figure 5A) with the strict “All-against-all” computation from

the phylum to class levels identified 147 differentially abundant

clades in sediment samples and 25 in the water samples, out of

which there were 44 phyla in sediment and 8 in water including

Cyanobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia,

Planctomycetes, Margulisbacteria, Deinococcus_Thermus, and

Fusobacteria. Between the sample groups for the east and

west divisions of the lake, the LEfSe analysis on sediment

samples only identified one clade in the western division and

5 in the eastern division to be differentially abundant than the

other. In contrast, for the water sample, nine clades in the west

and two clades in the east were differentially abundant than the

other, respectively, which could be due to the dynamic conditions

of the lake water.

Impacts of environmental factors on
microbial communities

A study by Ban et al. (2014) showed that the combined

water quality index (CWQII) for the lake increased from 2.0 to

4.0 from the years of 2001 to 2005, then decreased from

2006 and kept a balance between 2.0 and 3.0 from 2006 to

2011, indicating the water quality in the lake deteriorated from

2001 to 2005 but gradually improved since 2006 with the

implementation of water protection measure. Water quality

data (Ban et al., 2014) also showed monthly changes due to the

impact of both natural and human causes. Zhang and Sun

(2017) estimated, on the annual average, the upper stream

source areas contributed as much as 70% and 63% of the total

load into the lake from nitrogen and phosphorus, respectively.

The composite water quality indices computed from water
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quality data in this study indicated that the water quality in the

east and west wetland divisions was in the Category III of the

Chinese Government Standard. Besides, to stop the pollution

from its upstream source areas, a major challenge for the

restoration of water quality in this wetland lays heavily on the

restoration of the healthy function of ecosystems to mitigate

on its own. The chemical analysis showed that Ammonia,

Nitrate, Total Nitrogen, and Total Phosphorus in sediment

samples were 253.56, 33.78, 3.18, and 4.95 times higher than in

water samples, respectively, which implies sediment could be

another source of water pollution in the wetland when

disturbance or resuspension of sediment by fish movement

and wave dynamics and even birds.

To understand how the microbial community correlates with

the environmental variables of CEC, EC, Total_N,

Organic_matter, pH, and Total_P for sediment and of pH,

DO, Total_N, EC, Total_P, T, and ORP for water, the

redundancy analysis (RDA) of phyla in sediment samples with

environmental variables (Figure 6A) showed that Proteobacteria,

Acidobacteria, Nitrospirae, and Bacteroidetes had better

correlation with pH and total phosphorous, Chloroflexi, on

the other hand, correlate more with CEC, EC, Total_N and

Organic_matter. Statistically, Organic matter had a significant

correlation with microbial communities in sediment samples.

For water samples shown in Figure 6B, Proteobacteria and

Bacteroidetes correlated well with EC, Total_P, and Total_N,

FIGURE 6
Correlation analysis of environmental variables with microbial communities: (A) RDA analysis for sediment samples, (B) RDA analysis for water
samples, (C) Spearman correlation heatmap for sediment samples, (D) Spearman correlation heatmap for water samples.
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whereas Cyanobacteria, Actinobacteria, and Verrucomicrobia

had a better correlation with ORP, DO, T and pH. Out of the

seven environmental factors for water samples, pH, Do, EC, and

Total_P had a statistically significant correlation with microbial

communities (Supplementary Table S3).

Impacts of environmental variables on 50 phyla in water

and sediment samples were examined through the Spearman

correlation analysis. Environmental variables and phyla were

clustered, respectively, based on the average distance metric.

For sediment samples (Figure 6C), environmental variables

FIGURE 7
Contours of environmental variables for sediment samples: (A) total nitrogen, (B) organic matter, (C) EC (Electric conductivity), (D) CEC (Cation
exchange capacity), (E) pH, (F) total phosphorous.

Frontiers in Environmental Science frontiersin.org11

Lian et al. 10.3389/fenvs.2022.1000437

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1000437


FIGURE 8
Contours of top ten most abundant phyla and five other phyla, in which the absolute abundance was used for the contouring: (A)
Proteobacteria, (B) Acidobacteria, (C) Patescibacteria, (D) Bacteroidetes, (E) Nitrospirae, (F) Latescibacteria, (G) Verrucomicrobia, (H) Elusimicrobia,
(I) Epsilonbacteraeota, (J) Chloroflexi, (K) Rokubacteria, (L) Modulibacteria, (M) Chlamydiae, (N) Fusobacteria, (O) Margulisbacteria.
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were clustered into two major groups, and 55 phyla were

clustered into three major groups. The cluster consists of

Chloroflexi, Actinobacteria, Calditrichaeota, Fibrobacteres,

Modulibacteria, LCP-89, Spirochaetes, Zixibacteria,

Armatimonadetes, Chlamydiae, Omnitrophicaeota, FCPU426,

Cyanobacteria, Euryarchaeota, Edwardsbacteria,

Nanoarchaeaeota, Crenarchaeota, TA06, Aegiribacteria, and

Diapherotrites correlated with an environmental variable

cluster of pH and total phosphorus negatively but had

strong positive correlations with CEC, EC, total Nitrogen

and Organic material in the second environmental variable

cluster. The two clusters of environmental variables had

reversed impacts on the cluster of phyla, including

Gemmatimonadetes, Nitrospirae, Nitrospinae, and

Tenericutes, however. The correlation of environmental

variables with phyla in water samples (Figure 6D) was less

strong and limited to a small number of species. DO, pH, and

resistance had a strong positive correlation with Chloroflexi,

LCP-89, Verrucomicrobia, Planctomycetes, and Zixibacteria but

a negative correlation with Proteobacteria, Epsilonbacteraeota,

Firmicutes, Fibrobacteres, and Diapherotrites. However, EC and

total phosphorus had a strong negative correlation with

Chloroflexi, LCP-89, Verrucomicrobia, Planctomycetes, and

Zixibacteria but positively correlated with Proteobacteria and

Epsilonbacteraeota.

Microbial community spatial
heterogeneity and environmental
indication

For a lake with a surface area as large as 400 square kilometers

that was used for massive fish farming for over two decades and

was surrounded by agricultural land with crab farming, it would

be expected the environmental condition and microbial

communities would vary to a great deal. Contours of major

environmental variables and phyla were developed using the

Geographical Information Systems (GIS) to understand the

spatial distribution patterns of environmental variables and

microbial communities in the lake sediments. Overall, the

total nitrogen, organic matter, and EC had similar spatial

distribution patterns across the lake (Figures 7A–C), which

belong to one cluster in the heatmap (Figure 6C). For CEC

(Figure 7D), its high concentration area was also located in the

lower southwest corner; therefore, it was clustered with the total

nitrogen, organic matter, and EC. On the other hand, the small

concentration areas for pH and the total phosphorous (Figures

7E,F) were in the southwestern corner. The main high

concentration areas were in the northwestern part of the west

division; both were grouped into one cluster. The high

concentration of total nitrogen and organic matter in the

southwestern part of the western division was due to the

accumulation of nitrogen from wind-blown lake waves and

the stagnation of water without a flow outlet. In contrast, the

high concentration of the total phosphorous in the northwestern

part of the west division was due to the inflow from the

agricultural land.

The Spearman correlation analysis showed the absolute

abundance of some bacteria such as Nitrospinae,

Gemmatimonadetes, Calditrichaeota, and Tenericutes had a

significant negative correlation with cluster one variables (total

nitrogen, organic matter, EC, and CEC) but positive correlation

with cluster two variable (pH and total phosphorous), other

bacteria such as Chloroflexi, Spirochaetes, Calditrichaeota,

Modulibacteria, Aegiribacteria, Fibrobacteres, Euryarchaeota,

Edwardsbacteria, Nanoarchaeaeota, Crenarchaeota, and

Diapherotrites had a significant positive correlation with

cluster one variables but negative correlation with cluster two

variables (Figure 6C). There were other bacteria such as

Epsilonbacteraeota, Rokubacteria, Elusimicrobia, and

Fusobacteria, although they did not correlate well statistically

with environmental variables across the lake, were significantly

impacted by local sources. Overall, the hotspots with high

absolute abundances of bacteria were the centers of the east

and west divisions of the lake (Figures 8C–G,J,M,O), upstream

inflow areas of the east and west divisions (Figures

8A–C,F,H,J,K), the southwestern part of the western division

(Figures 8H,I,K), along the side of the lake (Figures 8E,I,J,L), and

at the outlet of the lake (Figures 8C–E,O). It was clear that

microbial information could not only serve as biomarkers to

show where the sources of contaminations could be such as in

Figures 8A,H,K and but also as indicators of environmental

conditions as shown in Figures 8E,H–K across the lake.

Conclusion

The taxonomy analysis showedmicrobial communities in the

lake sediment were more abundant with 15 more phyla,

417 genera, and 1,314 species than in the lake water, however,

there were no apparent differences in microbial compositions

between the west and east divisions of the lake for either sediment

or water on the average. MicroPITA analysis identified samples

with maximum diversity located along the side and around the

centers of the lake in both divisions, which could coincide with

the spatial pattern of fish farming. Samples with the most

dissimilarity were mostly located in the northwest part of the

west lake division and the north part of the east lake division,

which could be due to the impact of inflows from agriculture and

industrial pollution in addition to fish farming.

The hierarchical clustering analysis identified two distinctive

clusters in each division of the wetland, the PCoA and PLS-DA

analyses showed a clear separation of samples in these groupd,

and the Kruskal-Wallis H test also showed the mean proportions

of major phyla between these two clusters were significantly

different. The differentially abundant phyla identified by the
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LEfSe algorithm in sample groups along the southeast and east

side of lake were more related to photosysthesis, but in sample

groups around the centers of both lake divisions were more

anaerobic bacteria and even pathogenic bacteria. By combining

the redundancy analysis (RDA) and the Spearman correlation

analysis, and the spatial analysis using GIS technology, how

microbial communities in sediment and water correlate with

environmental variables were identified. The GIS-based spatial

contouring analysis of major environmental variables and

microbial showed the advantage in understanding the spatial

heterogeneity of microbial communities over the entire wetland

area and locating impacted areas of pollution. It is worth noting

that in cases where microbial communities were affected by

localized sources, microbial such as Epsilonbacteraeota,

Rokubacteria, Elusimicrobia, and Fusobacteria, although did

not correlate well statistically with environmental variables

across the lake could be a good indicator of pollution impact

by local sources.

This study showed the comprehensive biodiversity analysis,

together with the spatial analysis could serve not only as

biomarkers to show the footprints of contaminations but also

as indicators of environmental conditions across the lake. Further

study will collect more water and sediment sample for hotspots

located in this study for their temporal variation and adopt the

comprehensive functional gene array (GeoChip) technique to

identify functional genes for effective in-situ bioremediation of

the sediments.
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