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Urban heat island (UHI) effect decribes significant change due to rapid urbanization
development. This study focused on the long time series analysis of UHI during the
period 2000-2018, and analyzed the impact of land cover type and landscape metric
factors on surface temperature. The results revealed that the UHI had a continuously
decreasing trend in 2005–2010, and an increasing trend in 2000–2005 and 2010–2018.
Cropland, built-up land, patch density (PD), Shannon Diversity Index (SHDI), and
Landscape Shape Index (LSI) had a positive relationship with UHI, whereas forestland,
open water, and CONTAG had a negative correlation with the UHI effect. The Geodetector
analysis further revealed that PD, SHDI, and LSI had the greatest influences on LST as the
three factors had the largest q values (0.287, 0.286, and 0.278). Forestland, cropland, and
built-up land had greater impacts on the UHI than other land cover type factors. The
explanatory power reached a maximum value of 0.408 when built-up land and cropland
variables interacted. The findings of this study provide new understandings of the
relationship between urban landscape and UHI, as well as important insights for urban
planners to mitigate the UHI effect for the sustainable development of future urban
agglomeration.
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1 INTRODUCTION

Rapid urban social and economic development can lead to substantial urban ecological environment
issues including environmental pollution, Urban Heat Island (UHI), traffic congestion, and so on.
Among them, UHI is one of the most serious environmental problems related to urban landscape
changes (Howard, 1833). In the “Guidelines for the Medium- and Long-Term National Science and
Technology Development Program (2006–2020)”, the formation mechanism of the UHI effect and
artificial control technology was brought forward in China as the key contents of urban studies.

Land use/cover changes deeply depend on urbanization. A study on the quantitative relationships
between land use/cover type and the UHI effects is an important step for understanding the
mechanism of UHI (Hou and Wen, 2020). Traditional UHI studies using the observed temperature
data from fixed or mobile monitoring stations may lead to a potential bias that cannot represent the
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holistic urban thermal environment. Remote sensing, with the
advantages of low cost and large coverage, have been widely
applied to environmental monitoring that can be used to estimate
the UHI effect. It also can greatly improve the identification of
temporal-spatial patterns of temperature for studying
climatological processes on regional and global scales (Chen
et al., 2006; Flores R. et al., 2016). At the same time, remote
sensing techniques have been extensively used in recent years to
monitor changes in land use/cover patterns and map up-to-date
landscape structures (Xian and Crane, 2006; Wu et al., 2014). Few
studies have focused on the relationships between land use/cover
type and the UHI effect (Du et al., 2020; Elliot et al., 2020) in
depth. Analysis of the influenced mechanisms of the regional
urban landscape on the urban thermal environment is still
unclear (Nimish et al., 2020; Xie et al., 2020; Yao et al., 2020).
Meanwhile, although the correlation analysis and regression
equations used in previous studies can simply describe the
degree of closeness in a relationship between factors of urban
landscape and UHI, they are incapable of describing the
explanatory power of interactions among multiple factors for
the UHI effect (Estoque et al., 2017; Peng et al., 2018).
Fortunately, a newly-developed method, the Geodetector
method, can be introduced to analyze the influencing factors
of the UHI effect, since the novel method contributes to
developing interaction effects among multi-factors (Wang
et al., 2010; Zou et al., 2017). Q-statistic in Geodetector has
already been applied in many fields of natural and social sciences
that can be used to measure spatial stratified heterogeneity,
detect explanatory factors and analyze the interactive
relationship between variables. Duan and Tan used
Geodetector to identify the key factors that influence urban
forest spatial differences within China (Duan and Tan, 2020).
Many studies also widely applied the Geodetector method to
quantify the spatial heterogeneity influences of factors and
factor interactions on air pollution (Zou et al., 2017; Bai
et al., 2019). To date, few studies have used Geodetector to
analyze the interaction effects of factors of land cover and
landscape metrics to the UHI effect.

Previous studies have revealed that urban areas can influence
the local UHI circulation (Wang et al., 2020). Considering that
the conclusions from studies of a single city might be limited by
local conditions, few studies have attempted to investigate the
UHI effect in multiple cities. For instance, Zhou et al. focused on
the SUHI in 32 major Chinese cities and found the spatial pattern
of the UHI effect had high spatial heterogeneities (Zhou et al.,
2015). Even though spatial patterns of the UHI effect have been
discussed in detail, the long-term trends of the UHI effect and
associated factors are still unclear in current multi-city
investigations. Therefore, a long temporal trend of the UHI
effect in the urban agglomeration of the Xiangjiang river valley
covering multiple cities, needs to be undertaken, because the
currently reported UHI studies of Xiangjiang river valley mainly
concentrate on individual cities (e.g., Changsha (Ye et al., 2017),
Chang-Zhu-Tan urban agglomeration (Tang, 2018; Yuan et al.,
2018; Xiong et al., 2019)).

Hence, we attempted to fill the above-mentioned gaps in this
study. Overall, this study selects the urban agglomeration of the

Xiangjiang river valley as the study area and collected remote
sensing land surface temperature (LST) products from 2000 to
2018 to disclose the long time series characteristics of the UHI
effect. The study applies the correlation analysis method to
analyze the correlation coefficients between UHI and land
cover types and urban landscape metric factors and further
employs the Geodetector method to find the main
contributors to the UHI effect. The results from this study
could enhance understanding of UHI intensities with changing
land cover and urban landscape patterns. In addition, important
insights can be provided to urban planners and natural resource
managers on how to mitigate the impact of urbanization on UHI
through urban design and vegetationmanagement for sustainable
development.

2 DATA AND METHODS

2.1 Study Area and Data
This study examines an area of urban agglomeration in the
Xiangjiang river valley, including the core area as well as the
regions with the most prominent ecological and environmental
problems in Hunan province. The area has a dense population
and rapid economic development with a complex and diverse
urban landscape. According to the “overall plan for the scientific
development of Xiangjiang river basin” on the website of the
People’s Government of Hunan Province in 2016, the study area
covers nine cities (Changsha, Zhuzhou, Xiangtan, Yueyang,
Yongzhou, Shaoyang, Hengyang, Loudi, and Chenzhou),
which include 68 counties or districts (Figure 1). The
Xiangjiang river valley belongs to the Pacific monsoon humid
climate, with rich light and hot water resources. Generally, the
weather is wet and cold in winter, and humid, rainy, and hot in
summer. In the context of global warming, the annual average air
temperature in Xiangjiang river valley is between 16°C and 18°C.
The changing urban temperature will bring effects to the spatial
and temporal patterns of water resources in the Xiangjiang river
valley.

This study employs Moderate Resolution Imaging
Spectroradiometer (MODIS)/Terra LST and Emissivity 8-Day
L3 Global 1 km Grid SIN V006 (MOD11A2) from 2000 to 2018
for analyzing the trend of LST with a spatial resolution of 1 ×
1 km and temporal resolution of 8-days, the data were collected
from the website of NASA (https://ladsweb.modaps.eosdis.nasa.
gov). ArcGIS 10.3 was used to convert the geographic coordinate
system (Asia_Lambert_Conformal_Conic) to the appropriate
projection system and tiff format for further analysis. To
prepare the LST map of the study area, the mask tool in
ArcGIS was used to extract the study area from the collected
MOD11A2 LST data based on the vector boundary data. The
mean LST of the season in the study period was calculated by the
ratio of the sum of themean daily LST to days, which indicates the
number of season days. The mean LSTs of the spring season
(March-May), summer season (June-August), the autumn season
(September-November), and winter season (December-
February) in the selected years (2000, 2005, 2010, 2015, and
2018) and for 18 years (2000–2018) were further obtained. Then,
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the annual average LST can be calculated based on the mean LST
of the season.

2.2 Methods
To visually illustrate the process used in this study, a general
technical flowchart describing the preprocessing of the spatial
pattern of UHI classification, land cover/use type, landscape
metrics, and factor analysis influencing UHI is shown in
Figure 2.

2.2.1 Classification of UHI
The annual or seasonal mean LST, which was calculated using the
raster calculator in ArcGIS, was inaccurate because of the
existence of nodata value in the collected MOD11A2 LST
data. It was therefore calculated using Matlab software by
selecting the pixel with MOD11A2 LST value excluding the
pixel with nodata value in the study period (2000–2018).
MODIS LST data with 1 km spatial resolution was calibrated
to obtain the temperature in degrees Celsius (°C) based on (Eq.
(1)) (Li and Zeng, 2015).

Temperature (°C) � (Digital Numberp0.02) − 273.15 (1)

Most previous studies are focused on the spatial distribution or
temporal changes by calculating the temperature difference

between urban and rural areas or equally segmenting the
urban surface temperatures from thermal remote sensing
images. However, these methods are not suitable when
weather stations in rural areas or threshold values are selected
arbitrarily, and the results may not well represent the high-
temperature area (Hawkins et al., 2004). In this study, a
standard deviation segmenting method was thus proposed to
calculate the UHI effect from the LST image for seeking a more
suitable threshold value (Chen and Wang, 2009). The specific
implementation was as follows. Firstly, the mean surface
temperatures (μ) for the study area and their standard
deviation (std) were calculated. The mean surface temperature
±0.5 times standard deviation can be determined as the
background value for urban LST, and can thus be recognized
as the threshold value for extracting the UHI area (strongest UHI,
strong UHI, and medium UHI) and non-UHI area (strong urban
cool island (UCI) and strongest UCI). The threshold of
(μ+0.5*std) was used to extract the outlines of the hot island
and then determine the strong UHI area by calculating the total
number of pixels that the temperature is higher than (μ+0.5*std)
(Wong et al., 2016). The LST classification could reflect the spatial
extent and the seriousness of UHI and could be used to quantify
the UHI effect. The UHI and non-UHI classifications of the study
area are listed in Table 1.

FIGURE 1 | Study area: Urban agglomeration of Xiangjiang river valley.
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2.2.2 Landscape Metrics
The land cover data were used to observe the dominant causative
factors influencing the UHI in this study. The land cover/use data
in the years 2000, 2005, 2010. 2013 and 2017 were collected from
the Geographical Information Monitoring Cloud Platform
(http://www.dsac.cn/). Given the insignificant change of land
cover type during one or 2 years, the land cover data in 2013
and 2017 were used to develop factor analysis instead of the land
cover data in 2015 and 2018. The landscape metrics were
calculated based on classification maps including six land-
cover types: cropland, forestland, grassland, open water, built-
up land, and unused land. The accuracy of the classification result
was evaluated by the overall Kappa index as 0.85, which was
acceptable for the urban scale. The landscape metrics are
demonstrated in many studies to measure the composition
and configuration of land cover features (Wu et al., 2010; Xu,
2015). Landscape metrics (i.e. contagion index (CONTAG),
patch density (PD), Shannon Diversity Index (SHDI), and
landscape shape index (LSI)) were calculated at the landscape
level using Fragstats 4.0 (McGarigal et al., 2002) for describing
landscape size, shape, diversity, aggregation and fragmentation.

Considering the spatial units of LST data, all the statistical
variables were entered into the database of 1 km × 1 km grid cells
for further processing analysis of the factor interaction detector
(Figure 3A). For the spatial land cover data of 30 m × 30m grid
cells, the area percentage of each land cover type in each 1 km ×
1 km grid cell was calculated. In addition, the use of land cover data
for the latest year was more beneficial in providing guidance for
future planning. The results of land cover data and landscape
metric values in 2017 were therefore described with the
classification method of natural breaks (Figures 3F–K). The
landscape metric values for each grid were calculated in every
1 km × 1 km grid (Figures 3B–E). The spatial patterns of land
cover data and landscape metric values in 2000, 2005, 2010, 2013,
and 2017 were derived.

CONTAG describes the aggregation degree and extension
degree of different patch types. A smaller value indicates a
higher degree of plaque dispersion. PD is the degree of
fragmentation of the landscape, which reveals the complexity
between landscape spatial structures. SHDI depicts the diversity
of landscape types, and the higher value indicates the richer the
land use type. LSI represents the size of the landscape shape. As
the shape becomes more and more irregular, the LSI becomes
larger, indicating that the landscape is less disturbed.

2.2.3 Geodetector
The effects of spatial configuration on LST distribution were
examined by using landscape metrics. (Weng et al., 2008; Zhou
et al., 2011). Geodetector represents a new spatial statistics
method that is used to detect spatial heterogeneity and
identify driving factors based on risk, factors, ecology, and
interaction (Wang and Geodetector, 2017). The advantage of

FIGURE 2 | The flowchart of the study.

TABLE 1 | The classification of UHI and non-UHI effects.

UHI classification Class

Strongest UHI Temperature＞u + std
Strong UHI u+0.5std＜Temperature ≤ u + std
Medium UHI u-0.5std ≤ Temperature ≤ u+0.5std
Strong UCI u-std ≤ Temperature＜u-0.5std
Strongest UCI Temperature＜u-std
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the Geodetector method is that it can examine the interactions of
two driving factors affecting the dependent variable and it reveals
whether the interactions of two factors are linear or nonlinear.
The Geodetector method is therefore employed to find the main
contributors to the UHI effect. Land cover and urban landscape
factors were divided into different spatial types or subzones. A
significance test for the differences of mean values of land cover
and urban landscape factors was conducted to detect the relative
importance of land cover and urban landscape factors. The
calculation model of the explanatory power of each land cover
and urban landscape factor is as Eq. 2:

q � 1 − ∑m
i�1Ni σ2i
Nσ2

(2)

where q is the explanatory power of land cover and urban
landscape factors on LST, i = 1, . . . ,m are the stratification of
y or factor x, that is, classification or partition. Ni and m are the
number of units in i and the whole region, respectively. N and σ2

are the total number of samples and the variance of y value in the
whole region. σ2i is the variance of units i. The range of q value is
between 0 and 1. Note that one value means that one of the land
cover and urban landscape factors completely controls the spatial
distribution of LST, whereas 0 value implies a completely random
spatial occurrence of LST.

Interaction detection is used to identify the interaction
between land cover and urban landscape factors to evaluate
the accountability of the combined effect (enhancing or
weakening) and respective effect on the LST. The q values of
two factors with respect to LST were calculated as follows (the
symbol “∩” denotes the intersection between X1 and X2):

Enhance: q(X1∩X2)>q(X1) or q(X2)
Enhance, bilinear: q(X1∩X2)>q(X1) and q(X2)

Enhance, nonlinear: q(X1∩X2)>q(X1)+q(X2)
Weaken: q(X1∩X2)<q(X1)+q(X2)
Weaken, unique: q(X1∩X2)<q(X1) or q(X2)
Weaken, nonlinear: q(X1∩X2)<q(X1) and q(X2)
Independent: q(X1∩X2) = q(X1)+q(X2)

3 RESULTS

3.1 Spatial Pattern of UHI Intensity
3.1.1 Annual UHI Intensity
The spatial pattern of the annual mean UHI effect at the city level
were depicted in Figure 4. Most areas of the Xiangjiang river
valley are concentrated at the medium UHI level. The strong and
strongest UHI effect were located in the southern and
southwestern study areas. The strong and strongest UCI area
was concentrated in the western, northeastern, and southeastern
study areas. The spatial pattern and area ratio of the 18-years
mean UHI effect at the city level in Figure 4G shows that the
medium UHI level had a larger coverage than the other levels in
the six cities of Yueyang, Changsha, Xiangtan, Zhuzhou, Loudi,
and Shaoyang. Thus, the total area ratios of the strong and
strongest UHI effect in Yueyang, Changsha, Xiangtan, Loudi,
and Shaoyang were only 1.62, 15.76, 14.60, 10.47, and 13.85%
respectively, while that of the strongest UCI effect were
respectively up to 23.07, 10.67, 0.47, 19.19, and 32.42%. It
demonstrated that the UHI effect was insignificant in the five
cities, especially in Yueyang and Shaoyang. Changsha as the
provincial capital of Hunan, China has the largest
administrative area. The UHI effect in Changsha was weaker
than that in Hengyang, Chenzhou, Yongzhou, and Zhuzhou
because Changsha had a slow urbanization increase in the
earlier year. The total area ratio of the strong and strongest

FIGURE 3 | Spatial patterns of land cover types and landscape metrics in 2017. (A) LST, (B) SHDI, (C) PD, (D) LSI, (E) CONTAG, (F)Cropland, (G) Forestland, (H)
Grassland, (I) Open water, (J) Built-up land, (K) Unused land.
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FIGURE 4 | Spatial pattern of the UHI effect in (A) 2000, (B) 2005, (C) 2010, (D) 2015, (E) 2018, (F) 18-year (2000–2018), and (G) area ratio of the 18-year mean
UHI effect at the city level.
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UHI in Zhuzhou was 40.19%, which was identified as the
significant UHI effect in this city. The area ratios of the
strongest UHI level in Hengyang city, Chenzhou city, and
Yongzhou city were respectively 42.87, 35.20, and 34.48%,
which had a higher proportion than the area of the other
levels. Therefore, the three cities of Hengyang, Chenzhou,
and Yongzhou experienced a significant UHI effect during
the period 2000–2018. The UHI effect of Hengyang was
strongest in the Xiangjiang river valley.

3.1.2 Seasonal UHI Intensity
The seasonal mean UHI effect between 2000–2018 was calculated
to describe the spatial pattern of the seasonal mean UHI (seen in
Figure 5). In total, the areas of the central and southern study area
had strong and strongest UHI during all the seasons. In contrast,
the western areas were with UCI in different seasons. The
northern areas were with medium UHI in spring
(Figures 5A–F), summer (Figures 5G–L), and autumn
(Figures 5M–R), and were with strong and strong UHI in
winter (Figures 5S–X). The UHI the south western area was
significant in winter, but in the other three seasons, it showedUCI
or medium UHI in these regions. Strong UHI also happened in

the north-central areas in spring, and relieved to medium UHI in
summer and autumn, then changed to UCI in winter.

3.2 Long-Time Series Analysis of UHI
Intensity
3.2.1 Annual UHI Variations
The magnitude of 18-year UHI has significantly changed over
time. The statistical results of five classes representing UHI and
non-UHI effects in the study area based on Figure 4 are listed in
Table 2. The area ratio of the different levels of the UHI effect was
calculated by the ratio of the area of the different levels to the total
area of the Xiangjiang river valley. The area ratio of 39.80% of
medium UHI in 2000 was larger than the strong UHI (14.48%)
and the strongest UHI (16.34%). The total area ratio of the strong
and strongest UHI in 2005 was 33.19%, which was larger than
30.82% in 2000. There was a significant increasing trend from
2000 to 2005. The total area ratio (30.66%) of the strong and
strongest UHI in 2010 compared to 2005, which had a small
decrease, while the area ratio of the strongest UHI increased from
16.99 to 17.76%. The total area ratio of the strong and strongest
UHI had a significant decreasing trend since 2010, then

FIGURE 5 | Spatial distribution map of UHI effect for the (A–F) spring, (G–L) summer, (M–R) autumn, and (S–X) winter seasons during the period 2000–2018.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 9 | Article 8282307

Xiong et al. UHI Monitoring and Analysis

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


increasing until 2018, was respectively 32.44% in 2015 and
33.97% in 2018. The total area ratio of the non-UHI
experienced a decreasing trend from 29.38% in 2000 to
28.89% in 2005, then increased slowly from 29.36% in 2010 to
29.57% in 2018. The area ratio of the strongest UHI was more
than that of the strongest UCI, with a difference of 2.67% in
2000–2018. The total area ratio of the medium, strong, and
strongest UHI was 71.65%, which demonstrated the significant
UHI effect in the Xiangjiang river valley.

3.2.2 Seasonal UHI Variations
The area ratio of the UHI effect for the spring, summer,
autumn, and winter seasons during the period 2000–2018
are depicted in Figure 6 according to Figure 5. The area
ratio of medium UHI for the spring season is noticed in the
range of 36.32–40.19%. The area ratios of the strongest UHI
were 17.33, 17.97, 14.97, 15.68, and 16.80% for the year 2000,
2005, 2010, 2015, and 2018, respectively. The total area ratios of
the strong and strongest UHI were 31.24, 34.52, 30.74, 30.90,
and 34.23% for the years 2000, 2005, 2010, 2015, and 2018,

respectively. It can be concluded that the UHI effect
experienced an increasing trend during the period
2000–2005 and 2010–2018, whereas had a decreasing trend
during the period 2005–2010.

The area ratio of medium UHI for the summer season ranged
from 40.59 to 44.02%, which was the high proportion level. The
area ratios of the strongest UHI were noticed as 13.96, 15.61,
12.86, 16.29, and 16.96% for the years 2000, 2005, 2010, 2015, and
2018, respectively. The total area ratios of the strong and strongest
UHI were observed as 33.27, 34.34, 33.3, 30.28, and 30.83% for
the years 2000, 2005, 2010, 2015, and 2018, respectively. The same
changing tendency of the strongest UHI effect during the period
2000–2018 for the summer season compared to the spring season
was found. However, it can be observed according to the total area
ratio that there was an increasing trend during the period
2000–2005 and 2015–2018, and a decreasing trend during the
2005–2015 period.

The area ratio of medium UHI level of the high proportion for
the autumn season was in the range of 38.06–42.01%. The area
ratios of the strongest UHI were noticed as 14.93, 15.82, 14.18,

TABLE 2 | Area ratios of five levels of the UHI effect during the period 2000-2018 (unit: %).

Year Non-UHI — Non-UHI

Strongest UCI Strong UCI Total MediumUHI Strong UHI Strongest UHI Total

2000 15.51 13.87 29.38 39.80 14.48 16.34 30.82
2005 16.44 12.45 28.89 37.92 16.20 16.99 33.19
2010 15.51 13.85 29.36 39.98 12.90 17.76 30.66
2015 15.66 13.73 29.39 38.16 15.26 17.18 32.44
2018 17.05 12.52 29.57 36.47 18.43 15.54 33.97
2000-2018 15.74 12.61 28.35 38.47 14.77 18.41 71.65

FIGURE 6 | Area ratio of the UHI effect for the spring, summer, autumn, and winter seasons during the period 2000–2018.
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16.83, and 16.91% for the years 2000, 2005, 2010, 2015, and 2018,
respectively. The total area ratios of the strong and strongest UHI
were observed as 33.47, 33.46, 28.65, 33.05, and 33.65% for the
years 2000, 2005, 2010, 2015, and 2018, respectively. It can be
observed that the UHI effect experienced an increasing trend
during the period 2000–2005 and 2010–2018, whereas it had a
decreasing trend during the period 2005–2010. The changing
tendency of the UHI effect during the period 2000–2018 for the
autumn season was consistent with the summer season.

The area ratio of medium UHI level for the winter season was
in the range of 34.76–38.87%, which was larger than the area ratio
for the spring, summer, and autumn seasons. The area ratios of
the strongest UHI were noticed as 18.78, 14.35, 17.05, 15.27, and
13.08% for the years 2000, 2005, 2010, 2015, and 2018,
respectively. The total area ratios of the strong and strongest
UHI were observed as 30.76, 30.88, 29.92, 30.83, and 26.46% for
the years 2000, 2005, 2010, 2015, and 2018, respectively. The
strongest UHI effect experienced a decreasing trend during the
period 2000–2005 and 2010–2018, whereas it had an increasing
trend during the period 2005–2010. The change trend of the
strongest UHI effect for the winter season has the opposite result
with the trend for the spring, summer, and autumn seasons.
According to the total area ratio, there was an increasing trend
during the period 2000–2005 and 2010–2015, and a decreasing
trend during the period of 2005–2010 and 2015–2018.

The area ratio of medium UHI level of the high proportion of
the 18-years UHI effect was in the range of 37.31–39.28%. The
maximum total area ratio of the strong and strongest UHI was
observed as 33.33% in spring, the minimum was 29.52% in
winter. The total area ratio of the strong and strongest UCI

level of 32.19% for the winter season compared to the spring,
summer, and autumn seasons was at the highest proportion level,
while the minimum of the total area ratio was 27.66% occurring
in summer. Therefore, the UHI effect was the strongest for the
spring season and weakest for the winter by analyzing the
seasonal variation of the 18-years UHI effect.

The UHI in the Xiangjiang river valley was different and
clearly show the effect of ecological context on seasonal UHI
amplitudes during the period 2000–2018 (Figure 7). The high
LST in a year is distributed mainly in summer, and the maximum
was 40.73°C occurring in 2018 among all these years, while the
low LST in a year focused on the winter season and the minimum
was 1.22°C occurring similarly in 2018 among all these years. The
maximum seasonal mean temperature during the period
2000–2018 was 30.36°C occurring in summer 2010. The
maximum difference between the maximum and minimum
temperatures was 26.52°C in summer 2015, the minimum was
13.33°C in spring 2010. The standard deviation was used to
evaluate the temperature change in a season, the higher value
indicated the larger temperature difference. Figure 7 shows that
all standard deviations in spring, summer, autumn, and winter
2018 were greater than 2.0, which illustrated the significant
temperature difference in a season. The maximum standard
deviation was 2.49 in autumn 2015, while the minimum was
1.57 in winter 2010.

3.3 Factor Analysis Influencing UHI
3.3.1 Correlation Analysis
The correlation analysis between UHI and 10 influencing factors
is obtained and summarized in Table 3. The Pearson correlation

FIGURE 7 | Histogram of seasonal LST during the period 2000–2018 to evaluate the temperature change in each season.
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coefficients between UHI and cropland range from 0.365 to 0.498
during the 2000–2018 period, indicating increased correlated
levels from 2000 to 2018. A positive Pearson correlation
coefficient for an independent variable indicates that the
variable has a positive effect on UHI intensity, or that UHI
intensity increases with the increase of the value of that
variable; whereas a negative coefficient indicates UHI intensity
decreases with the increase of the value of that variable. In this
study, both coefficients of percent cover of cropland and built-up
land were positive, suggesting that an increase in the percent of
the cover of cropland and built-up land would increase UHI
intensity. In contrast, the negative coefficients of percent cover of
forestland, grassland, open water, and unused land indicated that
UHI intensity would decrease with the increase of relative
abundances of vegetation and water. The correlation analysis
also shows that several landscape metrics are significantly related
to the UHI effect, as shown in Table 3. LSI, PD, and SHDI have a
positive relationship with UHI, whereas CONTAG has a negative
correlation with the UHI effect. These indicate that the higher the
degree of plaque dispersion, the richer the land use type, and a
more irregular the size of the landscape shape will lead to higher
UHI intensity.

3.3.2 Geodetector Analysis
Although the correlation analysis can measure how close the
influencing factors are to the UHI intensity, it is unable to disclose

the spatial stratification heterogeneity of the UHI effect and
cannot determine the interactive influences of factors. To
overcome these shortcomings, this subsection presents the
analysis results of the Geodetector. In addition, the use of land
cover data for the latest year was more beneficial for providing
guidance for future planning.

The impact (q values) of the 10 influencing factors on the LST
are obtained by means of the factor detector, the results of which
are reported in Table 4. As shown in Table 4, of the 10
influencing factors, seven factors are statistically significant.
The q values of these seven factors are, in descending order:
Cropland (0.322) > PD (0.287) > LSI (0.286) > SHDI (0.278) >
Forestland (0.273) > CONTAG (0.208) > Built-up land (0.146).
Among the landscape metric factors, PD and LSI have the greatest
influence on the LST as the two factors have the largest q values.
Among the land cover factors, cropland, forestland, and built-up
land have greater impacts on the LST than other factors.
However, grassland, open water, and unused land layers
among all factors have no significant influences on the LST, a
possible reason being that these factors from land cover are not
good proxy indicators for accurately depicting the spatial
configuration of urban sprawl and growth because of the
development of urbanization.

Among the 10 factors, a total of 45 pairs of interaction effects
were obtained by means of the interaction factor, as summarized
in Table 4. According to Table 4, each pair of factors is shown to

TABLE 3 | Pearson correlation coefficients between UHI intensity and land cover features and landscape metrics.

Factor 2000 2005 2010 2015 2018

Land cover/use data Cropland 0.365** 0.394** 0.352** 0.440** 0.498**
Forestland −0.264** −0.277** −0.264** −0.365** −0.449**
Grassland −0.011** −0.088** −0.057** −0.082** −0.104**
Open water −0.195** −0.172** −0.161** −0.151** −0.125**
Built-up land 0.126** 0.150** 0.163** 0.233** 0.273**
Unused land −0.076** −0.069** −0.072** −0.067** −0.007**

Landscape metric CONTAG −0.130** −0.146** −0.104** −0.135** −0.164**
LSI 0.429** 0.437** 0.376** 0.441** 0.498**
PD 0.397** 0.425** 0.380** 0.450** 0.501**
SHDI 0.388** 0.406** 0.349** 0.433** 0.494**

**Presents the Pearson correlation coefficient is significant at the 0.01 level (p < 0.01).

TABLE 4 | Results of factor and interaction detector for LST.

Cropland Forestland Grassland Open
water

Built-up
land

Unused
land

CONTAG LSI PD SHDI

Cropland 0.322** — — — — — — — — —

Forestland 0.347 (EB) 0.273** — — — — — — — —

Grassland 0.337 (EB) 0.356 (EN) 0.016 — — — — — — —

Open water 0.344 (EB) 0.332 (EN) 0.052 (EN) 0.034 — — — — — —

Built-up land 0.408 (EB) 0.314 (EB) 0.159 (EB) 0.175 (EB) 0.146** — — — — —

Unused land 0.324 (IN) 0.277 (EN) 0.019 (EN) 0.039 (EN) 0.148 (IN) 0.002 — — — —

CONTAG 0.355 (EB) 0.319 (EB) 0.250 (EN) 0.227 (EB) 0.294 (EB) 0.210 (IN) 0.208** — — —

LSI 0.382 (EB) 0.359 (EB) 0.333 (EN) 0.298 (EB) 0.352 (EB) 0.288 (IN) 0.296 (EB) 0.286** — —

PD 0.396 (EB) 0.360 (EB) 0.320 (EN) 0.300 (EB) 0.338 (EB) 0.288 (EB) 0.306 (EB) 0.312 (EB) 0.287** —

SHDI 0.388 (EB) 0.341 (EB) 0.354 (EN) 0.302 (EB) 0.331 (EB) 0.280 (IN) 0.290 (EB) 0.303 (EB) 0.319 (EB) 0.278**

Abbreviations (EN) denotes the nonlinear enhancement of two variables (EB) denotes the binary enhancing of two variables (IN) denotes the variables are independent in leading to the LST,
change. **Donates that q value is significant at the 0.01 level (p < 0.01).
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be larger than the q values of each factor, and smaller than the
sum of the two factors’ q values. Hence, the interactions between
cropland and the other land cover types, excluding unused land
or landscape metrics, exhibited binary enhancement in this
analysis. If each pair of factors is shown to be equal to the
sum of the two factors’ q values, two factors leading to the
LST change are independent. Therefore, the relationships
between unused land and cropland, built-up land, CONTAG,
LSI, SHDI are independent in influencing the LST. Furthermore,
the interaction effects of a few factors on the LST represent
nonlinear enhancements (represented as EN), whereas most of
the factors have bivariate enhanced interaction effects. The
interactions between landscape metrics including CONTAG,
LSI, PD, and SHDI, and land cover types excluding the
unused land and grassland types revealed binary enhancement,
while the interaction with grassland type exhibited nonlinear
enhancement. More specifically, perspective values for forestland
and grassland were 0.273 and 0.016 but their interactive
q-statistic reached as high as 0.356, which is larger than the
sum of the two factors’ q values. Furthermore, calculations show
that when built-up land and cropland variables interacted,
explanatory power reached a maximum value of 0.408. Data
also show that landscape metrics can enhance the explanatory
power of the land cover types. For example, perspective values for
cropland and PD were 0.322 and 0.287 but their interactive
q-statistic reached as high as 0.396. The q-statistic values for
forestland and LSI were 0.273 and 0.286 but their interactive
q-statistic reached as high as 0.359, which was higher than the
q-statistic value of a single factor of the forest type. The interactive
q-statistic values for forestland and land cover types including
cropland, grassland, built-up land, and open water, as well as
landscape metrics including LSI, PD, and SHDI, were more than
0.300, which was higher than the q-statistic value of 0.273 of the
single factor. The study also tried to explore the temporal
variations of single and interactive contortions of different
factors. The results showed that the contribution of each
factor has little temporal heterogeneity. These indicate that the
interaction relationships of pair factors of cropland, forestland,
grassland, built-up land, and landscape metrics were significant in
influencing the LST. The conclusion may be drawn that the
interaction of two factors plays a more important role in
influencing the urban thermal environment than each factor
separately.

4 DISCUSSION

The ground surface in urbanized areas is a key factor influencing
the spatial structure and formation of UHI. This study investigated
the long term series variations of the surface temperature in nine
cities in the Xiangjiang river valley in Hunan province, China. The
UHI effect was the strongest for the spring season and weakest for
the winter by analyzing the seasonal variation of the 18-years UHI
effect. The increases in vegetation in spring exhibit a low
temperature, it was therefore observed that the UHI is more
intense during the spring season due to the significant thermal
changes between vegetation and built-up land. As the vegetation

decreased during the winter, resulting in less temperature
difference, the UHI of Xiangjiang river valley is lower in the
winter than in other seasons. In terms of spatial distribution,
the strong and strongest heat island areas are distributed mainly
in the southern and southwestern study area and expanded
gradually north, for the cities of Hengyang city, Chenzhou city,
Yongzhou city, and Zhuzhou. The weakest heat island areas
focused on the northeastern, western, and southeastern study
areas. The reason is that the study areas having a good
proportion of vegetation mostly on these parts of the study area
shows lower temperature as compared to the densely built-up areas
in the southern and southwestern parts of the study area.

This study also presents the results of an investigation of the
relationships between spatial variations of the surface
temperature and the land surface attributes. Our results
indicated that both the composition and configuration of
land cover features significantly affect the magnitude of LST.
By explicitly describing the quantitative relationships of LST
with the composition and configuration of land cover features,
this research expands our scientific understanding of the effects
of land cover pattern on LST in urban landscapes. Our results
showed that the increasing vegetation cover or surface water
could significantly decrease LST, and thus help to mitigate
excess heat in urban areas; whereas the increase of buildings
would significantly increase LST, exacerbating the UHI
phenomena. However, our results are inconsistent with
those from previous research that shows an increase in the
percent cover of cropland would increase UHI intensity. This is
because the LST of cropland is affected by the status and type of
crops, and changes with time to a certain extent. The vegetation
cover on this arable land may be attributed to the
intensification of agricultural activities (almost 30% of the
study areas are covered by cultivated plants), such as
artificial fertilizer use and irrigation (surface or
groundwater). If there are no cultivated plants or
agricultural activities on this arable land, the cropland is
equivalent to bare land, which may lead to increased UHI
intensity. In this study, the total areas of forestland and
cropland are more than 90%, the insignificant cooling effect
of cropland compared to forestland leads to the positive
correlation between the UHI intensity and the percent cover
of cropland. Cropland neighboring buildings can mitigate UHI
intensity. By developing correlation analysis to cropland
neighboring buildings and forestland in 2018, our study
found that the correlation coefficient between the cropland
neighboring building and the UHI intensity is -0.316, and the
cropland neighboring forestland and the UHI intensity is
0.530. Therefore, a large area of cropland in the suburban
area contributes to the mitigation of UHI intensity in this
study area.

These results have important theoretical and management
implications. Urban planners and natural resource managers
attempting to mitigate the impact of urban development on
UHI can gain insights on the importance of balancing the
relative amount of various types of land cover features and
optimizing their spatial distributions, especially forest
conservation and crop planting for food security.
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The analysis of the impact of land cover type and landscape
metrics factors and their interactions on surface temperature was
implemented by means of a novel spatial stratified heterogeneity
analysis method, the Geodetector method. This method has a few
advantages compared with classical linear regression and spatial
overlay analysis. Empirical results verified that the Geodetector
could not only identify the main contribution of land cover type
and landscape metric factors on LST, but they could also better
uncover the interaction of two factors on LST in the urban
agglomeration of Xiangjiang river valley. For example, the
q-statistic values were calculated using the geographic detector
method and reveal that the major variables influencing LST are
cropland, forestland, and built-up land. This result is similar to
previously reported findings (Kumari et al., 2019; Xiong et al.,
2019).

Data also show that grassland, open water, and unused
land exerted no significant influence on LST. If these
variables are integrated with the other variables, they act
to greatly enhance the explanatory power of other variables.
PD and LSI have the greatest influence on the LST among
landscape metric factors. In addition, the Pearson
correlation coefficient between UHI intensity and PD and
LSI indicates that a high degree of fragmentation in the
landscape could exert a significant influence on increased
UHI intensity.

The interaction q values of cropland with landscape metrics
had the greatest influence on LST in this study. The use of the
Geodetector method provides a new perspective for interactive
analysis of multi-factors influencing LST. The new findings
obtained from the novel method indicate that only using land
cover type to analyze the formation of the UHI is not
comprehensive. Landscape metrics need to be further
emphasized for quantitatively exploring the influence of the
spatial configuration of the urban landscape on the UHI.

This study has limitations. The research was conducted for
one region, using only the daytime thermal image to obtain
LST. Previous studies have shown that there are diurnal and
seasonal variations in the relationships between LST and land
cover features (Yuan and Bauer, 2007; Buyantuyev and Wu,
2010). For example, vegetation abundance, measured by
NDVI, had a strong relationship with daytime LST but was
only very weakly related to nighttime LST (Wang and
Geodetector, 2017). Therefore, the diurnal thermal image
needs to be used to study the phenomenon of UHI and the
impact factors of UHI. In addition, the difference of spatial
scales based on the urban size in different climate conditions
could be compared to its influence on the formation of UHI.
The application of the local climate scale has to be taken into
account for developing the factor analysis of the UHI effect.
The reasons for this are that the percent cover of cropland near
the building has a negative correlation with the UHI intensity,
while the percent cover of cropland near the forestland has a
positive correlation with the UHI intensity. This is also a
possible reason for the local UHI intensity of built-up area
at the small spatial scale surrounded by open water, cropland,
or forestland would be found to be decreased from the urban
landscape perspective, especially in a large study area. The

magnitude of local LST differences is driven by various
environmental or anthropogenic factors. It is important to
investigate the effect of human activities and other impact
factors on decreasing the contributions of UHI under the
context of global warming.

5 CONCLUSION

In this study, an analysis based on multi-temporal remote
sensing data was carried out to study not only the long term
variations of UHI over the period 2000–2018 but the impact
factors of UHI. Throughout the analyzed period, the UHI effect
experienced an increasing trend during the period 2000–2005
and 2010–2018, whereas it had a decreasing trend during the
period 2005–2010. The UHI effect was the strongest for the
spring season and weakest for the winter by analyzing the
seasonal variation of the 18-year UHI effect. The UHI effect
was the strongest in spring 2005 and 2018, in autumn 2000 and
2015, and summer 2010. In terms of spatial distribution, the
strong and strongest heat island areas were distributed mainly
in the southern and southwestern study areas and expanded
gradually north.

The correlation analysis between UHI and 10 influencing
factors found that the increase in the percent cover of cropland
and built-up land would aggravate UHI intensity. In contrast,
the negative coefficients of percent cover of forestland,
grassland, open water, and unused land indicated that UHI
intensity would decrease with the increase of relative
abundances of vegetation and water. However, factor
interaction detector analysis revealed that grassland, open
water, and unused land layers among all factors have no
significant influences on the LST. PD, LSI, and SHDI are
determined to have the greatest influences on the LST as
the three factors have the largest q values, which are
consistent with the results of correlation analysis. LSI, PD,
and SHDI have a positive relationship with UHI, whereas
CONTAG has a negative correlation with the UHI effect.
These indicate that the higher the degree of plaque
dispersion, the richer the land use type, and a more
irregular the size of landscape shape will lead to a higher
UHI intensity. Landscape metrics can enhance the explanatory
power of land cover types. Therefore, for UHI mitigation, a
prerequisite for multifactor analysis must be taken into
consideration during the implementation of cropland and
built-up land to alleviate urban thermal stress and thus
promote urban ecological sustainability. Our findings are a
good theoretical supplement for current UHI research,
providing urban administrators with useful information for
achieving optimized urban agglomeration development.
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