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Air pollution is generating serious health issues as well as threats to our natural ecosystem.
Accurate prediction of PM2.5 can help taking preventive measures for reducing air
pollution. The periodic pattern of PM2.5 can be modeled with recurrent neural
networks to predict air quality. To the best of the author’s knowledge, very limited
work has been conducted on the coupling of missing value imputation methods with
gated recurrent unit (GRU) for the prediction of PM2.5 concentration of Guangzhou City,
China. This paper proposes the combination of project to model plane (PMP) with GRU for
the superior prediction performance of PM2.5 concentration of Guangzhou City, China.
Initially, outperforming the missing value imputation method PMP is proposed for air quality
data under consideration by making a comparison study on various methods such as
KDR, TSR, IA, NIPALS, DA, and PMP. Secondly, it presents GRU in combination with PMP
to show its superiority on other machine learning techniques such as LSSVM and two other
RNN variants, LSTM and Bi-LSTM. For this study, data for Guangzhou City were collected
from China’s governmental air quality website. Data contained daily values of PM2.5,
PM10, O3, SOx, NOx, and CO. This study has employed RMSE, MAPE, and MEDAE as
model prediction performance criteria. Comparison of prediction performance criteria on
the test data showed GRU in combination with PMP has outperformed the LSSVM and
other RNN variants LSTM and Bi-LSTM for Guangzhou City, China. In comparison with
prediction performance of LSSVM, GRU improved the prediction performance on test data
by 40.9% RMSE, 48.5% MAPE, and 50.4% MEDAE.
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INTRODUCTION

The intrusion of foreign particles into the environment is identified as pollution that can make
terrible changes in the natural environment. This intrusion could be natural or anthropogenic. Air is
one of the most important resources of nature which is essential for humans, plants, and animals.
Most of the developing countries are facing extreme challenges to control and reduce air pollution.
Reasons of alarming levels of pollution are excessively increasing population, industries, and
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automobiles (Sosa et al., 2017). Unfortunately, air pollution has
become worst and intense over the time and has increased the
death rates at such an alarming level that millions of people lose
their lives every year. According to WHO, around 7 million
people died because of air pollution in 2012— one in eight deaths
worldwide. This report claims 9 out of 10 people are inhaling air
pollutants exceeding WHO standard limits (World Health
Organization, 2021). According to the WHO’s urban air
quality statistics, 98% of cities having financial issues in low-
income countries with populations greater than 100,000 do not
meet WHO air quality instructions. Reducing air pollution might
help millions of human lives from acute and chronic health
disorders (Kampa and Castanas, 2008; Bustreo, 2012). In high-
income countries, however, this percentage drops to 56% (Dora,
2016). Children, pregnant women, and people with respiratory
and cardiovascular problems are more prone towards air
pollution risks. Symptoms of air pollution on health might
include wheezing, coughing, breathing problems, and in some
extreme cases, mental health disorders (Kanner et al., 2021).
Quality of life strongly depend upon the quality of air we inhale
for breathing; a recent study has reported more vulnerability
towards COVID-19 infection for humans as air pollution
negatively affects the respiratory defense mechanism (Brauer
et al., 2021).

Airborne particulate matters (PM) including PM10 (10
micron) and PM2.5 (2.5 micron) are the main contributor
towards smog and disturb the human immune functionality
and increases susceptibility to other infectious diseases
(Sharma et al., 2021). A study has reported health issues of
PM10, PM2.5, and O3 as air-pollutants on children and has
claimed adverse health problems for them (Zhang et al., 2019).
The larger PM10 particles stick to mucosa and cause respiratory
irritation, exacerbating lung infections and asthma (Wu et al.,
2018). The finer particles of PM2.5 get into the internal
respiratory tract, absorb through the pulmonary vein, and
finally enter the bloodstream through the capillary network,
which has a detrimental effect on the cardiovascular system
(Xing et al., 2016). Recent study has reviewed health effects of
short-term and long-term exposure to PM10 and PM2.5 and put
forward the proof of morbidity and mortality related to different
diseases (Lu et al., 2015; Kim et al., 2021). Air pollution is
contributing to depletion of the ozone layer; acid rain and
global climate change induce greater responsibility to human
beings to protect the environment (Panda and Maity, 2021).
Major air pollutants are chemical contaminants like carbon
monoxide (CO), nitrogen dioxide (NO2), lead (Pb), sulfur
dioxide (SO2), PM, and ozone (O3) (Donald, 2021).
International standards have described the standard ranges of
Air Quality Index (AQI), and the concentration (µg/m3) of PM2.5
in the environment in order of their intensities is given elsewhere
(Omer, 2018). Rapid technological development and public
demand lead to industrialization that is becoming a major
cause of air pollution, and to curb the issue, multiple control
methods/strategies need to be adopted (Wang et al., 2021). A very
recent study found a convincingly positive relationship between
PM2.5 and OCV (outpatient clinic visit) for hypertension in
Guangzhou City in China (Lin et al., 2021). This study employed

Cox-regression model to see the effects of PM2.5 on daily OCV
for hypertension. Moreover, sensitive analysis study also pointed
out PM2.5 daily mean and hourly peak concentration can be
strong metrics for OCV. Owing to such serious medical and
visibility concerns of PM2.5 concentration, research attention
and practical measures on such issues are required in Guangzhou
City, China. The concerned city has a 13.64 million population
with reportedly high pollution rates. The official bodies of
Guangzhou city have installed different air pollution sensors
that constantly log SO2, NO2, O3, CO PM10, and PM2.5
pollutant concentration. To avoid serious medical conditions
and to take precautionary measures before time, reliable
prediction models for pollutant concentration are employed.

There are many parameters that tend to affect air quality and
can be recorded with sensitive devices and logged on different
time series scales such as per hour, per day, etc. Complexity of the
air quality parameters and other technical glitches cause missing
values in the logged data. Commercial scale processes where a
large number of variables are obtained might have 20–40%
missing values.

Data containing missing values already loose quality of
information and hence cannot be employed for effective
model training (Kwak and Kim, 2017). In data preprocessing,
the first step is to impute missing values using a suitable technique
that should not disturb the quality of data. For multivariate data,
principle component analysis (PCA) plays a significant role in
data analysis and preprocessing (Bigi et al., 2021). In a study, the
linear discriminant method has been employed and compared
with the PCA technique for dimensionality reduction and results
were evaluated by training different machine learning algorithms.
The study concluded that Machine Learning algorithm with PCA
performed better (Reddy et al., 2020). A study has also worked on
data imputation that is centered on a PCAmodel that imputes the
missing values by minimizing squared prediction error (SPE)
(Wise and Ricker, 1991). Another study has investigated iterative
algorithm (IA) for missing data imputation. This study has
discussed the performance of iterative PCA, partial least
square (PLS), and principal component regression (PCR)
(Walczak and Massart, 2001). A novel PCA model building
technique has also been reported with missing data imputation
including data augmentation (DA) and nonlinear programming
approach (NLP) along with the nonlinear iterative partial least
squares (NIPALS) algorithm, IA, and trimmed score regression
(TSR) (Folch-Fortuny et al., 2015). A study has discussed
graphical user interface (GUI)-based data analysis and
imputation methods such as DA, TSR, IA, projection to model
plane (PMP), and NIPALS in the MATLAB environment (Folch-
Fortuny et al., 2016).

Prediction of PM2.5 is an effective approach to improve the
concern of the public about air quality. Many of the researchers
provided the best contributions in improving the model
capabilities to predict and identify the pollutants along with
other quality variables (Oliveri Conti et al., 2017). A study
discussed the mathematical and statistical models, and their
coding methods were done by differential equation; drawbacks
and amendments were done in alternative models introduced
afterwards (Marriboyina, 2018). A study has put forward a
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novel hybrid of the least square support vector machine
(LSSVM), PCA-CS-LSSVM, for AQI prediction and
reported better prediction efficiency than LSSVM and
GRNN (Sun and Sun, 2017). Another study has worked on
time series AQI prediction using the internet of things (IoT)
and linear regression (LR) machine learning algorithms
(Kumar et al., 2020). Neural network architecture has been
evolving since the past decade and researchers have employed
deep neural network (DNN) for AQI prediction. Neural
network techniques such as multichannel ART-based neural
network (MART), deep forward neural network (DFNN), and
long short term memory (LSTM) have been used for AQI
prediction and found LSTM has outperformed (Karimian
et al., 2019). Keeping in mind the adverse effects of PM on
human health as well as crops, a study has also employed the
recurrent neural network (RNN) model as a time series
prediction framework (Gul and Khan, 2020). Furthermore,
considering the time series behavior of PM2.5, a recent study
has discussed the LSTM-based PM2.5 prediction model and
reported accurate and stable time series predictions (Li, 2021).
For comparison purposes, this study has employed the back
propagation model and proved LSTM superiority over it.

Data recorded on time basis contains sequences of pollutant
concentration variation in the environment. Researchers have
put efforts in developing time series deep learning models to
predict the air pollutant concentration trend with time using
LSTM and BILSTM. A recent study employed an LSTM neural
network using time series data to predict PM10 concentration
for major cities in China. This study reported superior
performance of LSTM compared to statistical prediction
and machine learning methods (Chen et al., 2021). More
sophisticated and complex models tend to be more
computationally expensive yet providing accurate
predictions. However, the computationally expensive
behavior of prediction models also needs attention.
Certainly, there is a need to put more emphasis on deep
learning models that are accurate and computationally
feasible. Moreover, data preprocessing techniques such as
outlier handling, missing data handling, feature extraction,
etc., impact modeling efficiency.

Considering medical and other physical concerns, this
work has dealt with input variables such as NO2, SO2, O3,
CO, and PM10 to predict the concentration of PM2.5 in the
environment using different machine learning algorithms
such as LSSVM, LSTM, Bi-LSTM, and GRU. Moreover,
suitable parameters of each abovementioned model are
then used in PM2.5 modeling. Researchers have developed
and investigated different deep learning models, but this
study aimed to investigate the abovementioned models for
their accuracy, reliability, and computationally inexpensive
behavior. The input variables that influence the concentration
of PM2.5 were collected from the website of Guangzhou City
in China and then preprocessed for missing values. Lastly, the
comparison among different models has been carried out
using error methods such as RMSE, MAPE, and MEDAE.
The outperformed model is then suggested for PM2.5
prediction for taking precautionary measures in time.

GATED RECURRENT UNIT

A standard Artificial Neural Network (ANN) usually consists of
three types of layers namely input layer, hidden layer, and output
layer, respectively. Input, hidden and output layers are
represented as x, h, and y. Recurrent neural network (RNN) is
a special type of neural network architecture that has significance
in learning sequential and time varying pattern (Cai et al., 2004).
Because of the structure of RNN, a vanishing gradient problem
comes in the way with large sequence input (Fei and Tan, 2018).

Hochreiter and Schmidhuber introduced LSTM back in
1997 to address the RNN vanishing gradient issue
(Hochreiter and Schmidhuber, 1997). Four gates have been
incorporated in a modified RNN memory cell to replace the
RNN hidden state. The bidirectional LSTM (Bi-LSTM) variant
of RNN was introduced in the same year as previous LSTM in
1997 (Schuster and Paliwal, 1997). It applies the previously
explained two LSTMs in positive as well as negative time axis
direction on input data. First, forward input sequence is
propagated through LSTM. After this, reverse input
sequence is propagated through the LSTM model. Bi-LSTM
has certain advantages over single propagated LSTM such as
good long-term learning capability and improved model
prediction accuracy (Siami-Namini et al., 2019).

Gated recurrent unit (GRU) was introduced back in 2014,
which performs a gating mechanism in RNN (Cho et al., 2014).
GRU contains a modified LSTM-unit type hidden unit that has
combined the input gate and forget gate into the update gate. The
cellular and hidden states have also been considered while mixing
the input and forget gate. The final model was simpler than LSTM
and had fewer training parameters Figure 1.

The activation of hidden unit at time step is processed as
follows:

rt � σ(Wrht−1 + Urxt) (1)
Initially, rt is calculated using (1) where σ represents logistic

sigmoid function and Wr and Ur represent weight matrices. The
new ht is calculated by rt with a tanh type layer:

h̃t � tanh(W(rt × ht−1) + Uxt) (2)
In GRU, zt replaces the remember gate along with the forget

gate in LSTM. zt is calculated as follows:

zt � σ(Wzht−1 + Uzxt) (3)
Finally, the hidden state gets updated as follows:

ht � (1 − zt)(ht−1) + (zt)(h̃t) (4)

DATA ACQUISITION AND
PREPROCESSING

In order to test imputation methods including KDR, IA,
NIPALS, DA, and PMP, 2514 observations of six
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parameters, PM2.5, PM10, SO2, NO2, O3, and CO were used
from Guangzhou air quality governmental website (TheWorld
Air Quality Project, 2020). The collected data contained ~2.5%
missing values, and imputation was required with a suitable
method. In order to select a suitable imputation method for
this PM2.5 data, comparison experimentation was carried out.
Firstly, all the rows with missing values were removed. The
resulting new data were without missing values and run into
random deletion of ~2.5% values of variables PM2.5, PM10,
SO2, NO2, O3, and CO overall.

Secondly, imputation methods including KDR, IA, NIPALS,
DA, and PMP were employed to fill the missing values. After
imputation, the imputed data results were compared using
numerical errors for the abovementioned imputation methods.
The criterion RMSE (Eq. 5) helped in opting the outperformed
technique.

RMSE �
�������������(xactual− ximputed)2

N

√
(5)

Each method was allowed to iterate 5,000 times to impute
missing data. The RMSE values obtained through comparison
experimentation are tabulated in Table 1. KDR and TSR
reported an RMSE value of 1.77 for overall imputed missing
values. RSME values obtained by IA, NIPALS, and DA are 2.66,
3.6, and 2.25, respectively. Amongst all the methods, PMP
showed better results with RMSE value equal to 1.22.

The outperformed method PMP was used to impute
originally collected data. In order to summarize the impact
of the individual variable on all other variables, correlation
coefficients were obtained. For that, the correlation matrix was
formed for imputed data that depicted the impact of individual
input variables, i.e. PM10, SO2, NO2, O3, and CO, in terms of
correlation coefficients, on the output variable PM2.5
(Figure 2). The magnitude of the correlation coefficient
shows the strength of correlation between two variables.
The correlation matrix provided all possible correlations
among all variables. Correlation coefficient ranges from −1
to +1. The coefficient value of −1 shows perfect inverse impact;
0 shows no impact, and +1 shows perfect direct impact. From
the bottom left of Figure 2, it can be seen that output variable
PM2.5 is strongly correlated with input variable PM10 with a
coefficient value of 0.65. High coefficient value depicts that the

FIGURE 1 | Parameter comparison between (A) LSTM framework and (B) GRU framework.

TABLE 1 | Missing value imputation parameters

Imputation method PCs Tolerance RMSE

KDR 6 10–10 1.77
TSR 6 10–10 1.77
IA 6 10–10 2.66
NIPALS 6 10–10 3.6
DA 6 10–10 2.25
PMP 6 10–10 1.22

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 9 | Article 8166164

Saif-ul-Allah et al. GRU for PM2.5 Prediction

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


change in concentration of PM10 will significantly affect the
output variable PM2.5. Moreover, the output variable PM2.5
was least affected with the variation in SO2 concentration that
can be analyzed using the correlation coefficient in Figure 2.
The correlation coefficient was very small, 0.07 between output
variable PM2.5 and input variable SO2. Removing SO2 from
the training data set for model training from the data under
consideration would not significantly decrease the prediction
performance of the model.

Moreover, the reported air pollutant safe limits (Agency,
2018) allow further analysis of the imputed data. A different
coloring scheme with respect to the severity of individual
pollutant concentration was employed to understand the
distribution of data with their ranges (Table 2). The
collected data contained approximately 80 months of PM2.5
and other pollutant data recorded on a per day basis.

Most of the PM2.5 data were found in an unhealthy range.
Percentage-wise, data distribution in various ranges is given in
Table 2. Out of 2514 total samples of PM2.5 collected for
Guangzhou City, 0 samples were in green limit, 59 samples in
yellow range, 330 samples in orange range, 1874 samples in red
ranges, and 250 samples in purple range. PM10 data did not show
much of the variation in ranges and categorized in safe or green
ranges.

However, out of 2,514 total samples of PM10, 1,636 data
points were in green range, 875 were in yellow, and 3 samples
were in orange range that were collectively categorized in safe
ranges. CO concentrations have shown variation in different
ranges. Most of the data points were categorized in a not-safe
range. Out of 2514 samples, three samples were in green range, 98
in yellow, 156 in orange, 269 in red, 1414 in purple, and 254 in
maroon range. Moreover, most of the CO pollutant distributions
were found in a very unhealthy range. NOx data and ozone data
did not show any categorical variations. Almost all the data were
in green range.

METHODOLOGY

The data were collected from the official Guangzhou air quality
website that contained 2514 samples from Jan 2014 to Nov 2020
that contained missing values. To impute the missing values,
various missing data imputation methods were employed and
compared as shown in Table 1. This comparison study has been

FIGURE 2 | Matrix of correlation among all variables.

TABLE 2 | Percentage wise data distribution in various ranges

Range PM2.5% PM10% CO % NOx % Ozone %

Good 0 65.07 0.11 100 100
Moderate 2.3 34.8 3.9 0 0
Unhealthy for some 13.12 0.11 6.20 0 0
Unhealthy for all 74.5 0 10.7 0 0
Very unhealthy 9.94 0 56.24 0 0
Hazardous 0 0 22.8 0 0
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discussed in the Data acquisition and preprocessing section in
detail. The imputationmethod giving the least RMSE was selected
to impute the original missing data. After the data was imputed,
in order to select the most correlated variables with PM2.5, a
correlation matrix was formed as shown in Figure 2. According
to the figure, SO2 was found least correlated with PM2.5 with the
correlation coefficient 0.07. Owing to the insignificant impact of
the SO2 on PM2.5 for the data under consideration, it was decided
that SO2 can be removed from the input variables list. Afterwards,
prior to model training, data standardization was carried out
using Eq. 6 to rescale the data for zero mean and unit variance.
The standardized data were incorporated inmodel training where
training input and corresponding output were termed as Xtrain
and Ytrain. Training data with 2214 samples and validation data
with 150 samples were devised for model training and validation,
and 150 samples were devised for model testing. Furthermore,
suitable parameters along with training data were employed to
train these models, while the validation data were used to validate
the model to check whether it is under-trained or over-trained.
Subsequently, test data were fed to the trained model to evaluate
the model prediction capability.

standardized (xi) � xi − µ
σ

(6)

where xi is the data value, µ represents the mean and σ represents
standard deviation of the data. Moreover, RMSE, MAPE, and
MEDAE were calculated using Eqs. 7, 8, and 9 respectively, to
evaluate model performance by comparing PM2.5 predictions
with actual PM2.5 from testing data.

RMSE �
��������������
1
n
∑n
i�1
(xi − predi)2√

(7)

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣xi − predi

xi

∣∣∣∣∣∣∣ (8)

MEDAE � 1
n
∑n
i�1

∣∣∣∣predi − xi

∣∣∣∣ (9)

Here, xi, predi, and n represent actual PM2.5 value, predicted
PM2.5 value, and testing data sample size, respectively.

LSSVM-based model development
Data standardization was done using Eq. 6 to scale it to zero mean
and include unit variance in the data set. For LSSVM, two
parameters, gamma and sigma, were selected after extensive
trials, and set values came out to be 20 and 40, respectively.

LSTM-based model development
Input layer of LSTM contained four input units that were
provided with training data to train the model. The training
progressed using Adam algorithm. The Adam algorithm has the
excellent capability to reach a globally optimal solution (Kingma
and Ba, 2014). The Adam algorithm back-propagates the error to
update the weights and biases of the LSTM to minimize the
training error. Validation of the model training has also been
performed to see if the model is under-trained or over-trained.
The model was trained with 80 epochs. Moreover, necessary

parameters for LSTM model training such as hidden units,
dropout, initial learn rate, learn rate drop factor, learn rate,
and drop period were set as 80, 0.9, 0.25, 1 × 10–6, and 80,
respectively. Finally, the test data were fed to obtain the
prediction of the model.

Bi-LSTM-based model development
Bi-LSTM consists of two LSTMs that work in opposite direction,
hence requiring more training time. The Adam algorithm was
used to update the weights and biases of the Bi-LSTM to
minimize the training error. The model was allowed to train
for 80 epochs and validation of the model training was also
carried out to see if the model was under-trained or over-trained.
A dropout layer was also added to avoid overfitting while training
the model. Moreover, necessary parameters for Bi-LSTM model
training such as hidden units, dropout, initial learn rate, learn rate
drop factor, and learn rate drop period were set as 80, 0.9, 0.75,
1 × 10–6, and 80, respectively.

GRU-based model development
The GRU-based prediction model is shown in Figure 3. The GRU
network trained the weights and biases while training to
minimize the validation errors. The Adam algorithm was used
for training due to its ability to reach the globally optimal solution
effectively. The model was trained using 80 epochs and validation
of the model training was also carried out to see if the model was
under-trained or over-trained. A dropout layer was also added to
avoid overfitting while training the model. If both training error
and validation error decrease simultaneously, then the model is

FIGURE 3 | GRU-based prediction framework.
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said to under-train. If training error decreases but validation error
increases, the model is said to be over-trained. Moreover,
necessary parameters for GRU model training such as hidden
units, dropout, initial learn rate, learn rate drop factor, and learn
rate drop period were set at 160, 0.9, 0.0009, 1, and 120,
respectively.

RESULTS AND DISCUSSION

The acquisition of the PM2.5 data was described in the Data
acquisition and preprocessing section along with missing data
handling. Amongst all the methods employed for the data
considered, KDR and TSR performed better with ~2.5% of
missing value imputations (Table 1). Moreover, through
imputation experiment, PMP was selected as the outperformed
imputation method and, hence, used for the imputation of
original collected PM2.5 missing data (Figure 4).

This study has employed time series predictive RNN models
such as LSTM, Bi-LSTM, and GRU for prediction of PM2.5 using
input variables of PM10, NO2, O3, and CO. The models were
compared and evaluated on prediction error. RSME, MAE, and
MAPE model evaluation techniques were used to evaluate model
prediction performance.

After preparing data for model training, LSSVM, LSTM, Bi-
LSTM, and GRU models were developed for PM2.5 prediction.
The training and testing performances of the respective models
are discussed afterwards.

Training performance of models
All models were trained with 2214 samples of the input variables
PM10, NO2, O3, and CO and output variable PM2.5. The training
data comprised almost 74 months of data. The training
performance, in terms of RMSE, of all the models are given in
Table 3.

LSSVM got trained with overall training RMSE of 29.4
(Figure 5A). The blue line in the upper graph shows the
original values of PM2.5 of 74 months of data samples. The

red line shows the trained PM2.5 values. It can be analyzed that
the model training RMSE of 29.4 is significantly high. Moreover,
the red-faced circles (Figure 6A) show the trained PM2.5 values
in the form of scatter graph plotted against actual PM2.5 of
74 months of data. The red-faced circles were found distributed
around the trend line (dashed diagonal line) and following it but
not significantly, representing the deviation from the trend line at
points. This was one of the reasons of high training RMSE,
though the closeness of the red-faced circles with the trend line at
various points also exhibits that the model was a good fit.

Seventy-four months of data were also employed to train the
LSTM network, and training performance was plotted on a per
day basis (Figure 5B). The solid blue line shows the actual PM2.5
from the training data and the red line shows the trained data by
the model. It can be seen that model was able to learn the time
series sequence very well and trained values showed relatively less
RMSE 17.32.

Generally, it is not recommended to train the model as much
in that trained values tightly fit the original data because
overfitting takes away the generalizability of the model and
future predictions get compromised drastically. Moreover
Figure 6B was also plotted between original PM2.5 from
74 months of training data and trained data by the model.
This scatter plot shows that the model was following the trend
line with lesser deviation, which means the LSTM was able to
learn time series sequence from the provided training data, and
the closeness of red-faced circles with the trend line showed the
superior learning capability of LSTM compared to LSSVM.

Figure 5C shows the training performance of the Bi-LSTM
model with 74 months of PM2.5 training data. The upper plot
shows the model has trained the time series sequences
substantially from the provided training data. The Bi-LSTM
model showed relatively poorer learning performance as
compared to LSTM and showed the training RMSE of ~19.29.
However, the model trained the time series sequence very well
and was also able to show good performance in learning training
data values.

Overall, the model showed relatively larger training error at
every instance of training than LSTM. Moreover, Figure 6C
shows that the trained data are distributed around the trend
line with lesser deviation than that of LSSVM but greater
deviation than that of LSTM. However, the trained data were
found following the trend line very well showing better time series
sequence learning capability as compared to LSSVM but not
better than LSTM.

The GRU network has fewer parameters to train as compared
to LSTM and Bi-LSTM (Figure 1). The GRU training looks
similar to the LSTM network (Figures 5B,D). However,

FIGURE 4 | Missing values imputation method comparison.

TABLE 3 | Model performance review

Models Training RMSE Validation RMSE Testing RMSE

LSSVM 29.4 23.77 17.94
LSTM 17.32 13.87 10.82
Bi-LSTM 19.29 16.23 12.43
GRU 18.24 13.60 10.60
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comparison showed that GRU model trained better than
previously discussed models from the 74 months of training
data and reported training an RMSE value of 18.24. Figure 6D
also shows that the trained data was spread along the trend line,
depicting good time series sequence learning capability of the
model comparable to LSTM.

Moreover, comparison of RMSE of the models for
training data shows that LSTM outperforms. However, it
is important to note that lesser RMSE while training might
not necessarily give lesser RMSE while testing. After
training, models were validated with 150 samples
(January 2020–June 2020) and validation RMSEs were

FIGURE 5 | (A) LSSVM model PM2.5 prediction on training data. (B) LSTM model PM2.5 prediction on training data. (C) Bi-LSTM model PM2.5 prediction on
training data. (D) GRU model PM2.5 prediction on training data.
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reported in Table 3. Validation performance figures can be
found in Supplementary data.

Testing performance of models
All models were trained and tested with four variables discussed in
the Data acquisition and preprocessing section. The test data set
contained 150 samples from July 2020 toNovember 2020 (5months).
Prediction performance criteria i.e., RMSE, MAPE, and MEDAE of
the models under consideration are tabulated in Table 4. For the first

2 months (July, August) of LSSVM model prediction, performance
was a bit poor (Figure 7A). For the next 2months (Sep, Oct), the
model showed a good trend following ability compared to previous
2 months of results. However, the model was found deviating from
the actual trend for the end of October and start of the final month
(November). The model reported overall prediction error using
testing data as RMSE, MAPE, and MEDAE equal to 17.94, 21.40,
and 11.70 respectively. From (Figure 8A) the scatter plot of predicted
values was visualized against the actual PM2.5 testing values. Red-
faced circles showed that the predicted values were getting far apart
along the trend line representing the poor performance of the model.
The model was not generalized enough to predict the PM2.5 values
accurately.

The testing performance of the LSTM model is shown in
(Figure 7B). For the first 2 months, some prediction values were
found less accurate but were following the actual trend. For next
2 months, the model prediction followed the actual trend very well
and predicted values were very close to the actual trend. For very few
points, the model compromised the prediction in these months.
However, for the last month the LSTM PM2.5 model was found
losing its outstanding trend following capability as it had shown in

FIGURE 6 | A) LSSVM training scatter plot. (B) LSTM training scatter plot. (C) Bi-LSTM training scatter plot. (D) GRU training scatter plot.

TABLE 4 | PM2.5 models prediction errors with test data

Models RMSE MAPE MEDAE

Value % Diff a Value % Diff a Value % Diff a

LSSVM 17.94 – 21.40 – 11.70 –

LSTM 10.82 39.7% 15.57 27.2% 8.54 27%
Bi-LSTM 12.43 30.7% 14.29 33.2% 7.22 38.3%
GRU 10.60 40.9% 11.01 48.5% 5.80 50.4%

a% diff refers to the percentage difference in RMSE, MAPE, and MEDAE, compared to
that of LSSVM.
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FIGURE 7 | (A) LSSVM model PM2.5 prediction on test data. (B) LSTM model PM2.5 prediction on test data. (C) Bi-LSTM model PM2.5 prediction on test data.
(D) GRU model PM2.5 prediction on test data.

FIGURE 8 | (A) LSSVMmodel test data scatter plot. (B) LSTMmodel test data scatter plot. (C)Bi-LSTM test data scatter plot. (D)GRUmodel test data scatter plot.
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the previous 4months Figure 8B shows the scatter plot of LSTM
PM2.5 prediction against the actual testing values of PM25. The
overall red-faced circles were found closely spread along the trend
line compared to LSSVM representing good time series trend
prediction of PM2.5 compared to that of the LSSVM model. The
values of RMSE, MAPE, and MEDAE are 10.82, 15.57, and 8.54,
respectively, which are 39.7%, 27.2%, and 27% lower than that of the
LSSVM model, respectively, as shown in Table 4 and Figure 9.

In case of Bi-LSTM, the actual trend following the ability of
the model is shown in Figure 7C. The Bi-LSTM model
predicted PM2.5 values accurately and actual trend
following for the first 2 months was even better than LSTM.
For the next 2 months, the prediction capability of the Bi-
LSTM model was reduced compared to LSTM model.
Figure 8C shows the Bi-LSTM prediction scatter plot
against the actual PM2.5 testing values. In terms of overall
prediction, the red-faced circles were closely spread along with
the trend line, however, a bit far compared to LSTM model
scatter plot. The Bi-LSTM model produced RMSE, MAPE, and
MEDAE as 12.43, 14.29, and 7.22, respectively, which are
30.7%, 33.2%, and 38.3% lower than that of the LSSVM
model, respectively, as shown in Table 4 and Figure 9.

The GRUmodel with testing data set performed very well in
terms of following the actual trend (Figure 7D). The model
performance for the first 4 months of the testing data was
significantly better than that of previously discussed models.
The model displayed good prediction capability and followed
the actual testing data trend accurately with close predicted
values. However, for the last month the model lost excellent
prediction performance but still predicted the actual trend
effectively. However, in terms of overall prediction, the GRU
model showed excellent performance with the testing data set
as compared to previous models such as LSSVM, LSTM, and
Bi-LSTM. Figure 8D shows the prediction performance of the
GRU model in the scatter plot. The red-faced circles were
found following the trend line excellently, better than that of
LSSVM, LSTM, and Bi-LSTM.

The RMSE, MAPE, and MEDAE values are 10.60, 11.01,
and 5.80 respectively, which are 40.9%, 48.5%, and 50.4% lower
than those of the LSSVM model, respectively, as shown in
Table 4 and Figure 9.

The performance criteria values of the GRU model are the
lowest among comparative models considered in this work. The
results depicted that the GRU model outperformed the other
PM2.5 prediction models with the least RMSE, MAPE, and
MEDAE.

CONCLUSION

In this study, predictions of PM2.5 in Guangzhou City in
China were performed with different machine learning models
including LSSVM, LSTM, Bi-LSTM, and GRU. Originally
collected data contained missing values ~2.5% of all data.
Prior to model development, imputation experiment was
run to shortlist the outperforming method among KDR, IA,
NIPALS, DA, and PMP. Comparison experiment showed that
PMP outperformed all other imputation methods with RMSE
of 1.22. Therefore, the prediction models were developed in
combination with PMP. The correlation result showed that
SO2 concentrations were badly correlated with PM2.5;
therefore, the models were developed without SO2

concentration in the data.
The RMSE, MAPE, and MEDAE of the LSSVM model with

test data were produced to be 17.94, 21.4, and 11.7,

FIGURE 9 | Model performance improvement summary. (A) RMSE
improvement summary. (B) MAPE improvement summary. (C) MEDAE
improvement summary.
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respectively. Compared to LSSVM, the LSTM improved the
prediction performance by 39.7% RMSE, 27.2% MAPE, and
27% MEDAE. In the case of Bi-LSTM, it improved the
prediction performance by 30.7%, 33.2%, and 38.3%
compared to that of LSSVM, according to RMSE, MAPE,
and MEDAE, respectively. Likewise, GRU improved the
prediction performance by 40.9%, 48.5%, and 50.4%
compared to LSSVM, according to RMSE, MAPE, and
MEDAE, respectively. Based on the prediction performance
improvement percentages, it can be concluded that GRU in
combination with PMP was able to update its learnable
parameters better and outperformed the LSSVM, LSTM,
and Bi-LSTM for the prediction of PM2.5 data from
Guangzhou City, China.
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