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In response to urban pluvial flooding and pollution, the Chinese government proposed a
“sponge city” policy in 2013 that aims to improve urban stormwater management and
promote sustainable urban development. However, at present, sponge city construction is
still in its exploratory stage. It is still not clear which models are capable of simulating the six
key processes (i.e., “retention,” “infiltration,” “storage,” “purification,” “discharge,” and
“utilization”) of sponge city practices. Its various benefits (e.g., social, economic and
environmental benefits) have not yet been systematically investigated in the context of the
sponge city. In this study, we reviewed and compared 19 urban stormwater management
models (including 13 hydrological models and 10 decision-support tools, as there are 4
overlap ones) and investigated their application in China. Firstly, we examined the
mechanisms behind the hydrological models and compared the abilities of the models
to simulate various processes. Secondly, we analyzed what kinds of benefits can be
addressed by these decision support tools (DSTs). Finally, we discussed the applications
and limitations of the models in various climate zones in China. The findings suggest that
none of the models consider the impact of climate change on the sponge city practices
(SCP) and none of DSTs can simulate the negative performance of SCP. Furthermore, the
lack of sufficient databases in China limited the applications of many of the models.
Additionally, we found that the hydrological processes corresponding to “storage” were
given more attention in southern China, and “infiltration” of stormwater was of greater
concern in northern China. In the context of sponge city construction, this paper provides
suggestions for future model development of urban stormwater management in China,
such as the development of a stormwater database and the incorporation of long-term
climate change impacts into the model.

Keywords: stormwater management, sponge city, green stormwater infrastructure, model comparison, stormwater
utilization

1 INTRODUCTION

Rapid urbanization increases impervious surface area and reduces opportunities for stormwater
infiltration, altering the urban hydrological cycle (Oudin et al., 2018; Hou et al., 2019; Rosenberger
et al., 2021; Wang and Palazzo et al., 2021). In the context of climate change, extreme rainfall events
have increased in frequency, resulting in greater urban flooding potential, non-point source
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pollution, and more frequent discharges from combined sewer
overflows (Hou et al., 2020; Mishra et al., 2021, Yang et al., 2021).
Due to the inadequacy of conventional stormwater management
systems, countries have begun to explore novel and more
sustainable stormwater management techniques such as low
impact development (LID), best management practices
(BMPs), and green infrastructure (GI) in the United States,
water sensitive urban design (WSUD) in Australia, sustainable
drainage systems (SUDs) in the United Kingdom, low impact city
design and development (LIUDD) in New Zealand, as well as the
active, beautiful, clean (ABC) water program in Singapore (Chang
et al., 2018; Zhang et al., 2019; Kazantsev et al., 2020; Islam et al.,
2021). In 2013, the Chinese government proposed its own urban
water management programme, the national “sponge city”
initiative, meaning that cities can promote infiltration, retain,
store, and purify stormwater like a sponge to utilize stormwater
resources and alleviate the problems of flooding, water shortages,
and pollution (Li H et al., 2017;Wang et al., 2017). Such SCP have
significantly impacted urban hydrological processes and
stormwater-resource utilization in China (Suppakittpaisarn
et al., 2017; Traver and Ebrahimian, 2017; Li C et al., 2019).
They can increase the permeability of urban surfaces and
infiltration, alleviate the negative impacts caused by
stormwater runoff (e.g., flooding and non-point source
pollution), and also replenish groundwater (Fanelli et al.,
2017). Moreover, through SCP, stormwater resources are
collected and treated in sustainable, cost-effective ways for
urban public and residential applications such as firefighting,
road cleaning, and toilet flushing (Sartor et al., 2018; Grytsenko
et al., 2020). “Sponge city” has been mentioned in the sixth IPCC
report as one of effective practices. Chinese government also
strongly promotes it in the new urban planning and defined six
words to mark the functions of sponge city (i.e., “retention,”
“infiltration,” “storage,” “utilization,” “purification” and
“discharge”) (Xia et al., 2017). The six processes have the
specific Chinese words for each of them, which are proposed
in an official document issued by the Chinese State Council
(i.e., Zhi for retention, Shen for infiltration, Xu for storage,
Yong for utilization, Jing for purification, and Pai for
discharge) (Liu H et al., 2017). They are used to describe the
process from rainwater dropped from the sky to it is discharged
through the surface or pipes. However, the practices lack the
scientific instructions for the successful implementation.

Numerous studies have applied hydrological models to
simulate processes and evaluate the cost effectiveness of
various SCP configurations. For example, Li et al. (2018) used
Hydrus-1D to investigate the operational effects of bioretention
on tanks in Xi’an, Shanxi Province. Zhang et al. (2021) used
SWMM and SUSTAIN to assess the cost effectiveness of SCP in
Dali, Yunnan Province. Additionally, DSTs have supported
policymakers or stakeholders in making better and more
effective decisions. For example, the Spatial Suitability
ANalysis TOol (SSANTO) was used in Melbourne, Australia
to involve stakeholders in urban planning through integration of
WSUD (Kuller et al., 2019), and STORMKIT was applied in the
Australian state of Victoria to assist in the design of a stormwater
system using minimum input requirements (Imteaz, 2015). A few

studies have reviewed or compared model applications in
multiple situations. For example, Jayasooriya and Ng (2014)
selected 10 models and conducted a series of comparisons
relating to data requirements, model accuracy, simulation
approaches etc., and Elliott and Trowsdale (2007) compared
10 models in terms of application range, calculation methods,
contaminant removal, SCP devices, and user interfaces. Haris
et al. (2016) reviewed 12 models to explore their functionality,
accessibility, characteristics, and components.

These studies have, however, not compared the application of
stormwater models in the context of China’s sponge city policy.
For example, how do models or algorithms embedded in
stormwater models correspond to the six mandated functions
for sponge city construction? The variables and parameters used
as inputs to the models are not yet summarized for sponge city
policymakers and other related stakeholders. Moreover, are
current DSTs capable of supporting a cost benefit analysis of
sponge city construction? These questions require further
elucidation, hence our study has investigated the performance
of 19 urban stormwater management models in terms of
hydrological simulations and decision support in the context
of the sponge city. Given that the six hydrological processes
(i.e., “retention,” “infiltration,” “storage,” “utilization,”
“purification” and “discharge,” Figure 1) are mandated in the
construction of sponge cities (Jia et al., 2017), we have analyzed
hydrological simulations based on these six processes.
Additionally, sponge city practices provide environmental,
economic and social benefits, an understanding of which can
provide support to decision making. However, their relevant
benefits in China have not been systematically summarized
and evaluated (He et al., 2019; She et al., 2021). Therefore, our
study also aims to evaluate DST from this perspective.

2 MATERIALS AND METHODS

In this paper, we firstly reviewed the stormwater modelling and
tools, which are currently assessed worldwide. Then we found the
assessed their applications in China based on the published
articles.

Firstly, we identified 33 stormwater models from published
articles, conference papers, project websites, government
technical reports and modeling guidelines. Amongst these, we
selected ones simulating different SCP processes which are
currently available and widely used. After manually screening,
we identified 19 models, which detail information and their
advantages and shortcomings are included in the
Supplementary Tables. Based on their main features, we
divided the models into two types: hydrological models (13
no.) and DSTs (10 no.). Amongst the 19 models, LIDRA,
L-THIA LID, MUSIC, and SUSTAIN were able to model both
hydrological and DST functions, hence were included in both
categories. Then we compared the mechanisms and the required
input variables of the hydrological models with regard to
retention, infiltration, storage, utilization, purification, and
discharge. We also compared the DSTs in terms of their
ability to model social, economic, and environmental benefits.
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Secondly, to assess the application of these 19 models in
Chinese sponge city construction, we reviewed related articles
inWeb of Science and Scopus, excluded the review articles. Given
that LID practices were firstly applied in Beijing since 2000,
articles published from January 1, 2000 were investigated. The
search terms in this study were “Model name + Stormwater or
Rainwater”. After the manual filtering, 199 case studies were
retrieved.

3 RESULTS

3.1 Hydrological Performance of Models
The internal mechanisms and input variables for simulating
the six main processes of each hydrological model are
summarized in Table 1. The mathematical algorithms
associated with different processes are displayed in the
mechanism row. Some processes are not explicitly described
in the user manual of several reviewed models, and these are
shown as blanks. The comparison of the six main processes
simulated by these models is described below.

3.1.1 Retention
Retention is an important component in calculating surface
runoff, and it is usually embedded in the rainfall-runoff
module (i.e., SWMM, SUSTAIN, MIKE-URBAN, L-THIA
LID, and MUSIC) (Zhang D et al., 2018; Liu et al., 2019).
Retention is regarded as a process related to ground
conditions such as slope, surface storage and roughness
(Sharior et al., 2019). The input parameters of the models are
similar, including slope, surface manning coefficient, storage

depth, vegetative cover and width. However, specific
algorithms for retention are not separated from the runoff
calculation.

The retention process in the RECARGE and HEC-HMS
models include interception and surface depression. The
former calculates surface depression as a function of zone
thickness and storage layer thickness based on the water
balance model (Tu A et al., 2020), while the latter uses an
empirical equation to estimate the interception and surface
depression as an empirical value may vary with different
surface conditions (Roy et al., 2013; Gebre, 2015). The SWAT
model can estimate retention based on soil profile water content
or accumulated plant evapotranspiration (Elçi, 2017; Cheng et al.,
2021). The LIDRA model considers retention as tree canopy
interception, which is related to rainfall depth (Horton, 1919).
Retention cannot be simulated in Hydrus-1D because the model
only considers the longitudinal movement of stormwater in the
soil layer and ignores its horizontal movement on the surface. GIF
Mod and P8 lack specific algorithms to calculate the retention
process.

3.1.2 Infiltration
With the exception of GIF Mod, all other models can simulate
infiltration. LIDRA,MUSIC andHydrus-1D use specific methods
related to soil properties to calculate infiltration, whilst the others
estimate infiltration based on algorithms embedded in the surface
runoff modules. The most widely used methods are the Green-
Ampt method and the Soil Conservation Service (SCS) curve
method. SWMM, SUSTAIN, HEC-HMS and MIKE-URBAN
have several methods to calculate infiltration (see below).
StormTac calculates infiltration as a residual of the water

FIGURE 1 | The six hydrological processes in sponge city design.
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TABLE 1 | Comparison of the mechanisms and input variables of hydrological models in terms of the six mandated processes in sponge city design.

Model
name

Types Retention Infiltration Storage Utilization Purification Discharge

SWMM Mechanism a process related to
the ground
conditions such as
slope, surface
storage, and
roughness

Horton infiltration
equation; Green-Ampt
method; SCS curve
method

1. Function Area � A
× (Depth)B + C to
describe how surface
area varies with
depth; 2. Tabulated
area versus depth
curve

LID facility
storage
layer

power function,
exponential function,
saturation function,
exponential wash-off
function and rating
curve wash-off
function

Manning equation

Input
variables

slope, manning
coefficient,
impervious rate,
storage rate, width

Horton: max and min
infiltration rate, decay
constant, drying time, max
infiltration volume; Green-
Ampt: suction head,
conductivity, initial deficit;
SCS Curve: SCS number,
conductivity, drying time

storage area; volume
or depth

storage
depth

pollutant initial buildup,
street sweeping
interval, street
sweeping availability,
last swept; buildup:
pollutant, function,
buildup rate constant,
power/sat. constant,
scaling factor, time
series, normalizer;
wash-off: pollutant,
function, coefficient,
exponent, cleaning
efficiency, bmp
efficiency

seepage rate value (in/
hr or mm/hr)

SUSTAIN Mechanism a process related to
the ground
conditions such as
slope, surface
storage, and
roughness

Horton infiltration
equation; Green-Ampt
method; SCS curve
method

1. Function Area � A
× (Depth) B + C to
describe how surface
area varies with
depth; 2. Tabulated
area versus depth
curve

LID facility
storage
layer

VFSMOD algorithms
for sediment
interception

Manning equation

Input
variables

slope, manning
coefficient,
impervious rate,
storage rate, width

Horton: max and min
infiltration rate, decay
constant, drying time, max
infiltration volume; Green-
Ampt: suction head,
conductivity, initial deficit;
SCS Curve: SCS number,
conductivity, drying time

storage area; volume
or depth

storage
depth

pollutant initial buildup,
street sweeping
interval, street
sweeping availability,
last swept; buildup:
pollutant, function,
buildup rate constant,
power/sat. constant,
scaling factor, time
series, normalizer;
wash-off: pollutant,
function, coefficient,
exponent, cleaning
efficiency, bmp
efficiency

seepage rate value (in/
hr or mm/hr)

MIKE-
URBAN

Mechanism the catchment editor
can perform the
retention related to
surface conditions

Kinematic Wave and
Linear Reservoir: Horton
infiltration equation UHM:
SCS curve method RDI

Kinematic Wave:
surface storage RDI:
snow storage,
surface storage,
unsaturated zone
(root zone) storage,
and groundwater
storage

LID facility
storage
layer

— —

Input
variables

storage depth,
vegetative cover,
surface roughness,
surface slope, swale
side slope

Horton: minimum and
maximum infiltration
capacity, infiltration time
constant for wet and dry
conditions SCS: curve
number, initial abstraction
depth, initial antecedent
moisture condition

height, porosity,
conductivity,
clogging factor

storage
volume
parameters

— —

(Continued on following page)
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TABLE 1 | (Continued) Comparison of the mechanisms and input variables of hydrological models in terms of the six mandated processes in sponge city design.

Model
name

Types Retention Infiltration Storage Utilization Purification Discharge

RECARGA Mechanism surface depression
water balance model

Green-Ampt method — — — van Genuchten
equation

Input
variables

SCP to connected
impervious area ratio,
roof depression
storage

saturated hydraulic
conductivity, average
capillary suction head,
ponded depth, the initial
soil water deficit

— — — soil layer
dimensionless water
content, the limiting
hydraulic conductivity

HEC-HMS Mechanism interception and
surface depressions

The deficit and constant
loss model; The
exponential loss model;
The Green and Ampt loss
model; The initial and
constant loss model; The
SCS curve number loss
model; The Smith
Parlange loss model; The
soil moisture accounting
(SMA) loss model

The relationship
between storage and
other variables,
i.e., Elevation-
Storage-Discharge,
Storage-Discharge,
Elevation-Area, and
Elevation-Storage
(identified by routing
method)

— Transport potential
functions

Outflow Curve,
Specified release, and
Outflow Structures

Input
variables

empirical value The deficit and constant
loss model: maximum
deficit, percolation rate,
and initial deficit; Green
and Ampt Loss Model:
initial loss, hydraulic
conductivity, wetting front
suction, volume moisture
deficit; Initial and Constant
Loss Model: loss rates;
SCS Curve Number: soil
cover, land use, and
antecedent moisture;
SMA model: the maximum
infiltration rate,
evapotranspiration (ET),
volume of soil storage

— — the specific gravity of
the sediment grains,
the density of dry clay
sediment

—

GIF Mod Mechanism — — head-storage
relationship: Van
Genuchten-Mualem
equation

— transport of solid
particles and dissolved
and Solid-Associated
water quality
constituents governing
equation

head-flow equations:
Van Genuchten-
Mualem equation,
Manning equation,
and Darcy equation

Input
variables

— — — — bottom area, initial
water depth, depth,
saturated moisture
content, initial particle
concentration

external flux, inflow
time series

StormTac Mechanism An equation
quantifying
acceptable recipient
loads considers
retention; different
SCP have different
equations to
calculate retention
volume

Losses such as
evaporation, ET and
infiltration are considered
in water balance
calculations

— — The total pollutant
concentration is
calculated as a flow-
weighted average of
stormwater and
baseflow
concentrations

—

Input
variables

— — — — the catchment area —

(Continued on following page)
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balance model. RECARGA, L-THIA LID and P8 use the SCS
curve method and SWAT uses the Green-Ampt method.

In SWMM and SUSTAIN, infiltration can be calculated using
the Horton infiltration equation, the Green-Ampt method or the

SCS curve method. Users can choose a specific method according
to their research needs and data availability. For example, the
Horton infiltration equation is applicable when exploring a small
watershed or when soil data is inadequate; however, a limitation is

TABLE 1 | (Continued) Comparison of the mechanisms and input variables of hydrological models in terms of the six mandated processes in sponge city design.

Model
name

Types Retention Infiltration Storage Utilization Purification Discharge

SWAT Mechanism 2 methods: vary with
soil profile water
content or
accumulated
plant ET

Green-Ampt method Manning’s equation

Input
variables

Water content, ET

P8 Mechanism SCS curve method Particle concentrations
in runoff are calculated
using an empirical
equation

Manning’s equation

Input
variables

L-THIA-
LID

Mechanism The initial abstraction, which describes all losses of
precipitation (interception, infiltration, surface
storage, and evaporation), is a function of the CN
(SCS method)

NPS pollutant masses
are computed by
multiplying runoff
depth for a land use by
the area of that land
use and the
appropriate EMC value
and converting units

Input
variables

Soil properties Land use properties

Hydrus-1D Mechanism — soil hydraulic function — — — deep drainage from
the soil profile function

Input
variables

— scaled unsaturated soil
hydraulic conductivity,
pressure head, scaling
factor for the water
content, scaling factor for
the hydraulic conductivity,
scaling factor for the
pressure head, scaled
volumetric water content,
residual soil water content,
scaled residual soil water
content

— — — empirical parameter in
the deep drainage
function, empirical
parameter in the deep
drainage function, the
reference position of
the groundwater level,
pressure head

MUSIC Mechanism a process related to
the ground
conditions

the infiltration rate is
defined as an exponential
function of the soil
moisture storage

impervious storage,
pervious storage: soil
moisture storage,
and groundwater
storage

Transfer functions; The
graphical relationship
between the inflow and
outflow concentration

—

Input
variables

sub-catchment
properties,
impervious store
capacity

soil moisture store
capacity, maximum
infiltration loss, infiltration
loss exponent, soil
moisture, field capacity,
groundwater data

catchment properties pollutant concentration
information

rainfall and ET

LIDRA Mechanism the rainfall
interception from tree
canopy is related to
rainfall

The soil infiltration rate is a
function of soil type

— — — —

Input
variables

Rainfall depth Soil type, hydraulic
conductivity

— — — —
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that it does not consider the conditions of the saturated and
unsaturated zones (Wang and Chu, 2020; Yang et al., 2020). The
Green-Ampt method has strict data requirements i.e., requires
comprehensive soil data (Huo et al., 2020; Salifu et al., 2021). The
SCS curve method is applicable to large watersheds, but a
limitation is that it does not reflect the influence of rainfall
intensity and rainfall processes on runoff (Nile et al., 2018;
Lian et al., 2020).

HEC-HMS calculates infiltration based on loss models, e.g.,
the exponential loss model, Green and Ampt loss model or the
Smith Parlange loss model (Zema et al., 2017). Different models
corresponded to various parameters, and users can choose the
appropriate model according to research needs or data
availability.

The algorithm to calculate infiltration in MIKE-URBAN is
incorporated in the four surface runoff models, which are
Time-Area Method, Kinematic Wave Method, Linear
Reservoir Method, Unit Hydrograph Method (UHM), and one
continuous hydrological model called MOUSE Rainfall
Dependent Infiltration (RDI) (DHI, 2017). In the Time-Area
method, infiltration is included as runoff loss, and it is not defined
separately (Akram et al., 2014; Fariborzi et al., 2019). Both the
Kinematic Wave and Linear Reservoir methods apply the Horton
infiltration equation to calculate the infiltration (Yin et al., 2020).
For UHM, the SCS Curve method is used to estimate the
infiltration (Kocsis et al., 2020; Strapazan et al., 2021). In RDI,
there are two methods for simulating the infiltration process: Fast
Response Component (FRC) and Slow Response Component
(SRC) (Zhang S et al., 2018). If the soils’ previous hydrological
conditions are considered, users can choose the SRC method
(Ohlin Saletti, 2021).

L-THIA LID cannot calculate infiltration based on
independent methods. The infiltration coefficient in StormTac
can be estimated from its relationship with runoff. LIDRA
estimates soil infiltration rate from the hydraulic conductivity
of different soil types (Rawls et al., 1982). In MUSIC, the
infiltration rate of the soil can be calculated from an
exponential function of soil moisture storage (https://wiki.
ewater.org.au/display/MD6). When the soil water reserve is
empty, the infiltration rate reaches its maximum value, and
when the soil water reserve is full the infiltration rate
gradually decreases to its minimum value. Hydrus-1D uses a
soil hydraulic function which can more precisely simulate
infiltration compared with the above-mentioned models,
however it requires more input variables than other models
(Feitosa and Wilkinson, 2016; Hilten et al., 2008; Jiang et al.,
2010; Tu et al., 2021).

3.1.3 Storage
The calculation of storage is mainly based on two methods.
Some models (e.g., SWMM) directly calculate storage by
detecting its relationship with other parameters (e.g.,
catchment area and depth) (Rossman et al., 2015). Some
other models (e.g., MUSIC) divide storage into different
parts and calculate each part based on various
corresponding methods (https://wiki.ewater.org.au/display/
MD6), as shown below.

The storage curve is used in SWMM and SUSTAIN to
calculate storage based on the relationship between storage
and water depth (Yazdi et al., 2019; Tu et al., 2020). The
former uses a linear equation to calculate storage area, while
the latter applies a tabulated method (Liu et al., 2018; Deitch and
Feirer, 2019); both require water depth or volume as input
variables.

GIF Mod applies the Van Genuchten-Mualem equation to
estimate catchment wide storage, which identifies catchment
storage based on the relationship between storage and water
head (Onoja et al., 2019; Weber et al., 2020). In HEC-HMS
storage is computed by various equations revealing the
relationship between storage and other variables such as
catchment area, elevation and discharge (https://www.hec.
usace.army.mil/confluence/hmsdocs/hmstrm).

In MIKE-URBAN storage is calculated using the Kinematic
Wave method, which considers the surface storage as three parts:
snow surface, unsaturated zone (“root zone”) and ground water
in RDI (Hernes et al., 2020; Thrysøe et al., 2021). The input
variables are height, porosity, conductivity and clogging factor.

In MUSIC, storage is divided into impervious storage and
pervious storage. Impervious storage is a user defined constant,
and pervious storage consists of soil moisture storage and
groundwater storage. The specific equations are however not
publicly available (https://wiki.ewater.org.au/display/MD6).

3.1.4 Purification
The number of pollutants that can be removed from stormwater
by SCP is difficult to accurately simulate. Amongst the models we
reviewed only MUSIC and L-THIA LID are able to simulate
purification performance by different types of SCP. However,
most models (such as SWMM, SUSTAIN, HEC-HMS, GIF Mod,
L-THIA LID, StormTac, and P8) can calculate the concentration
of sedimentation or pollutants.

For pollutant accumulation models such as SWMM and
SUSTAIN, pollutant accumulation and wash-off are simulated
based on the accumulation and wash-off functions (Johannessen
et al., 2019). However, both functions only estimate the pollutant
reduction within the runoff flow volume (Rossman et al., 2015).
SUSTAIN uses the Vegetative Filter Strip Model algorithms for
sediment interception, which is more accurate than SWMM
(Shoemaker et al., 2009). The input variables in each process
are pollutant initial buildup, street sweeping interval, street
sweeping availability, and last swept. In StormTac, the total
pollutant concentration is calculated as a flow-weighted
average of stormwater and baseflow concentrations (Lindgren,
2019; Wu J et al., 2021). In P8, particle concentrations in runoff
are calculated using an empirical equation (Walker, 1990). For
pollutant transporting models, GIF Mod uses a governing
equation to calculate the transport of solid particles and other
water quality constituents (Massoudieh et al., 2017). HEC-HMS
calculates pollutant transport with potential functions (MacAsieb
et al., 2021).

In L-THIA LID, NPS pollutant concentration masses can be
calculated by the runoff depth, multiplying the area and the
appropriate Event Mean Concentration (EMC) value (Engel and
Harbor, 2017). The treated pollutants by SCP was estimated by

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 8160937

Liu et al. Stormwater Modeling in “Sponge City” Construction

https://wiki.ewater.org.au/display/MD6
https://wiki.ewater.org.au/display/MD6
https://wiki.ewater.org.au/display/MD6
https://wiki.ewater.org.au/display/MD6
https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm
https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm
https://wiki.ewater.org.au/display/MD6
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the treatment node in MUSIC, using the transfer functions
(Gavrić et al., 2019). These transfer functions calculate the
effluent concentration of stormwater based on the simple
graphical relationship between inflow and outflow
concentrations. Therefore, compared with other models,
MUSIC can simulate stormwater quality more accurately.

Hydrus-1D and LIDRA do not include algorithms to simulate
water quality.

3.1.5 Utilization
Here, it should be noted that the collection function of SCP, such
as rainwater collected by rainwater harvesting tanks or cisterns, is
regarded as a function of “utilization” in the context of China’s
sponge cities. Therefore, only models with rainwater harvesting
simulation capability (e.g., SWMM, SUSTAIN and MIKE-
URBAN) were investigated in this category. These models
have specific SCP modules, and users can define the collecting
capacity by relevant input variables such as storage layer
parameters. For example, Campisano et al. (2017) estimated
rainwater harvesting and evaluated the performance of rain
tanks based on SWMM. They found that SWMM
overestimated this value, especially for rain tanks smaller than
2 m3. Li et al. (2021) simulated rainwater harvesting and reuse of
rain barrels in Brentwood watershed (Texas, United States) and
designed the optimizing parameters of rain barrels for efficient
stormwater management, based on SWAT.

However, utilization functionality is still in development and
there are different interpretations of it. Some researchers found
stormwater utilization is associated with stormwater storage
capacity, domestic water demand and current technologies
(Hamdan, 2009; Nnadi et al., 2015). For example, the
capability of stormwater storage is related to the size of rain
tank or reservoir (Vargas et al., 2019; Kim et al., 2021). Domestic
water demand can be affected the public policies and local
population and industries (Takagi et al., 2018; Fernandes et al.,
2020). Sustainable stormwater management can alleviate the
water scarcity with some degree (Morales-Torres et al., 2016).
Additionally, the development of advanced purification
technologies and the new materials can also influence the
stormwater utilization (Kolavani and Kolavani, 2020; Awang
Ali et al., 2021).

3.1.6 Discharge
Discharge describes the movement of stormwater through
drainage pipes, and models calculate this using various
hydraulic equations (Chang et al., 2015; Cao et al., 2021).
SWMM and SUSTAIN calculate the runoff routing in the
pipeline based on the St. Venant flow equations for the
dynamic wave and kinematic wave. Regarding the steady
flow, the joint solution of Manning and continuous
equation is used to calculate the flow rate (Rossman, 2015).
SWAT uses the Manning equation to model stormwater
movement in drainage systems, while P8 applies the curve
number method to simulate runoff from pervious and
indirectly connected with imperious surface (Minnesota
Stormwater Manual). RECARGA and GIF Mod use the van
Genuchten equation. The MIKE-URBAN module features an

advanced Real-Time Control (RTC) simulation capability for
urban drainage and sewer systems in the form of overflow
pipes, weirs, orifices, etc. The stormwater between two nodes
can be calculated with Muskingum Cunge method in MUSIC.
The outflow hydrograph and pollutograph can be estimated by
the continuity of mass equation (Peters, 2012). Hydrus-1D and
LIDRA do not consider stormwater discharge in the urban
drainage system. The processes of retention, infiltration,
storage, and discharge are well simulated in SWMM,
SUSTAIN, MIKE-URBAN, and MUSIC. The algorithms
adopted in SWMM and SUSTAIN to simulate the above
processes are similar, such that the required input
parameters are the same. MIKE-URBAN can more
accurately simulate the movement of stormwater in the
drainage system given that it adapts five hydraulic methods
depending on the process in question. The purification
process, which corresponds to the improvement of water
quality and the removal of pollutants, was fully simulated
by MUSIC, i.e., it simulates the entire removal of various
pollutants. SWMM and SUSTAIN only model the reduction
in runoff mass load caused by the reduced runoff flow volume
(Rossman et al., 2015; Shoemaker et al., 2009). None of these
models can simulate the process of stormwater utilization and
this is an area requiring further research.

3.2 The Performance of Stormwater
Management Models in Decision Support
and Policy Making
Amongst the 10 selected DSTs there were two free online tools,
one free GIS-based tool, two commercially available software
programs, two free software programs, and three free MS
Excel-based tools. Specially MUSIC, WinSLAMM,
UrbanBEATS and E2 STORMED DST, as stand-alone
software, have more complex operating processes than the
online and spreadsheet tools. The environmental, economic
and social benefits evaluated by the 10 DSTs are summarized in
Table 2.

3.2.1 Environmental Benefits
The environmental benefits of SCP include improved
hydrological performance (Dagenais et al., 2017; Spahr et al.,
2020) such as stormwater quality improvement, flood mitigation,
runoff reduction and groundwater recharge, as well as indirect
benefits related to ecosystem services (Andersson et al., 2015;
Dietrich and Rahul Yarlagadda, 2016; Gallo et al., 2020).
Improved ecosystem services include adjustment to the local
microclimate, carbon sequestration and storage, biodiversity
conservation and restoration, and air pollution (Gómez-
Baggethun and Barton, 2013; Ando and Netusil, 2018; Kazak
et al., 2018).

Most models containing DST capability only address the
hydrological aspects of environmental benefits, for example the
reduction of water quantity and the improvement of water
quality. LIDRA, for example, evaluates the benefits related to
runoff reduction in various SCP scenarios. SWMM, SUSTAIN,
MUSIC, winSLAMM, WMOST, and UrbanBEATS can evaluate
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the benefits associated with runoff reduction and water-pollutant
removal by various SCP.

The benefits associated with ecosystem services may also be
assessed. For example, the E2 STORMED DST can evaluate CO2

reduction and energy benefits resulting from SCP. Additionally,
the GI valuation toolkit can incorporate climate change
adaptation and mitigation, as well as the biodiversity
conservation related to SCP.

3.2.2 Economic Benefits
There are three main methods for evaluating the economic
benefits of SCP. The first method calculates the life cycle cost of
various SCP configurations. E2 STORMED DST, GI Valuation
Toolkit, LIDRA and MUSIC utilize this method. The second
method generates a cost-benefit curve or report to help with
decision making, and is used by SUSTAIN, WinSLAMM and
WMOST. SUSTAIN has an optimization module to generate
the most cost-effective scenarios based on the scatter search
method and the non-dominated sorting genetic algorithm II
method. Regardless of the cost related to improving water
quantity, WinSLAMM provides the most cost-effective
solutions for urban stormwater quality requirements (Pitt
et al., 2002). In WMOST, a Pareto Frontier or trade-off
curve can be generated by setting control experiments. The
third method is associated with net present value (NPV),
which is a widely used method to assess financial viability.
This method incorporates the time value of money into
decision making based on discounted cash flow techniques
(Ye and Tiong, 2000). In the GVC this method is adopted to
evaluate economic benefits.

In terms of life cycle costs MUSIC can calculate more types of
cost compared with E2 STORMED, LIDRA and L-THIA LID.
More specifically, the life cycle cost of MUSIC includes the total
acquisition cost, annual establishment cost, typical annual
maintenance cost, renewal/adaptation cost, decommissioning
cost and nominal cost. The types of cost in other models are
mainly limited to construction costs and maintenance costs, for
example LIDRA and L-THIA LID.

3.2.3 Social benefits
The social benefits related to SCP involve the improvement of
aesthetics, public health, human welfare, public acceptability

and city sustainability, noise reduction and entertainment
(Keeley et al., 2013; Chini et al., 2017; BenDor et al., 2018;
Bell et al., 2019). Only two tools amongst the reviewed models
were found to be able to evaluate social benefits: UrbanBEATS
and GI Valuation Toolkit. UrbanBEATS is a spatial planning
tool with advanced visual outputs; it considers the influence of
urban population density and the urban drainage system to help
stakeholders make better decisions. The GI Valuation Toolkit
can evaluate the improvements in community performance,
health and wellbeing, tourism and recreation, and leisure related
to SCP.

In conclusion, with the exception of UrbanBEATS, all other
tools were found to be able to evaluate the economic benefits of
SCP by calculating the NPV of the sponge system or by
identifying the cost of SCP under various scenarios. Amongst
the reviewed models only the GI Valuation Toolkit and
UrbanBEATS can evaluate social benefits. At present, the
methods used to evaluate the social benefits of SCP are mainly
indicator based screening and quantification (Dagenais et al.,
2017; He et al., 2019; Li H et al., 2019). Because the original
purpose of SCP is to reduce urban runoff and remove pollutants,
all models except GVC can evaluate environmental benefits
(Steffen et al., 2013; Berland et al., 2017).

TABLE 2 | Comparison of DSTs.

Model name Free or not User interface Simulated benefit

Economic Social Environmental

E2 STORMED DST √ Software √ √
GI Valuation toolkit √ Excel-internal tool √ √ √
GVC √ Online tool √
LIDRA √ Online tool √ √
L-THIA LID √ Online tool √
MUSIC × Software √ √
SUSTAIN √ GIS-based tool √ √
UrbanBEATS √ Software √ √
winSLAMM × Software √ √
WMOST √ Excel-internal tool √ √

FIGURE 2 | Number of publications relating to Sponge City modelling
between January 1st, 2000 and July 3rd, 2021.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 8160939

Liu et al. Stormwater Modeling in “Sponge City” Construction

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


4 CASE STUDIES IN CHINA

Among the filtered 199 studies, 146 cases with a defined
municipal study area were selected. Specially, 66 of the 146
cases are in northern China, while the remainder are in
southern China. Only 5 studies were published before 2010,
which reflects the increased application of stormwater
modeling over the last decade. Moreover, we found that most
of studies were based on experiments at community or
neighborhood scales. The results were mainly based on
monitoring and simulations for single or multiple rainfall
events, rather than long-term monitoring or simulations.

Amongst the articles we reviewed there were only seven
models applied in China (Figure 2), of which SWMM was the
most widely used. SWMMwas capable of not only addressing the
hydrological performance of SCP but, when coupled with other
land use planning software, achieving real-time stormwater
management and comprehensive performance evaluation (Li C
et al., 2019; Zeng et al., 2021). Hydrus-1D was used to simulate
infiltration-based SCP such as green roofs, permeable pavements,
and bioretention (Qin et al., 2016; Fu et al., 2020; Li et al., 2020).
MIKE-URBAN was useful for simulating urban stormwater
drainage system performance, such as urban waterlogging
(Luan et al., 2018). SUSTAIN was applied in both SCP
hydrological performance assessment and assisting in the
planning of SCP (Gao et al., 2015; Zhang et al., 2021).
RECARGA was used to simulate the influence of bioretention
on the water balance in an expressway service area in China and
the appropriate parameters for bioretention was identified (Gao
et al., 2018). HEC-HMS was applied to compare and analyze
comprehensive regulation effects of three different storm water
management scenarios (Liu et al., 2020). SWAT performed the
cost-benefit analysis of SCP in Xiangxi River, China (Liu et al.,
2014).

Early studies focused on the simulation of water quality and
water quantity, as well as evaluation of the environmental benefits
of SCP in terms of runoff and pollution control (Meng et al., 2014;
Li et al., 2016). Outcomes identified optimal scheme choice and
spatial layout amongst different configurations of SCP (Liao et al.,

2015; Xu et al., 2017). Amongst the literature investigated, Guo
et al. (2008) conducted the first stormwater modeling application
study in Beijing with SWMM, and analyzed the different rainfall-
runoff characteristics of various rainfall densities. Recently,
studies related to improving the accuracy, efficiency, and
robustness of hydrological models have been highlighted (Pang
et al., 2020; Yin et al., 2020; Tang et al., 2021). Moreover, these
stormwater management models are increasingly coupled with
other platforms or models to achieve more comprehensive
functions or to run simulations at larger spatial scales (Duan
and Gao, 2019; Liang et al., 2020; Xu et al., 2021). Hydrological
models were also integrated with remote sensing techniques, and
neural networks have become more popular (Wang et al., 2021;
Wu Z et al., 2021).

We further summarized the simulations of the six physical
processes involved in the 199 case studies (Figure 3). Only 2 cases
refer to utilization, and both of these used the SWATmodel. Most
studies focused on infiltration (38 no.) and discharge (32 no.).
Thus, these two physical processes are well simulated in current
models, whereas other processes such as storage and utilization
were relatively uncommon.

Amongst the 199 case studies, 146 cases focused on specific
study areas. We extracted these and further summarized model
applications to climatic zones in China. The climate classification
map is based on data retrieved from the Resource and
Environment Science and Data Center (Figure 4, https://www.
resdc.cn/data.aspx?DATAID�243). It may be seen that these
cases are mainly distributed in eastern China where
precipitation is higher and sponge city pilot projects are
mostly located. The cases were spread amongst 57 cities, in
which Beijing has the largest portion, corresponding to
stormwater-resource management demands (Zhang D et al.,
2018).

We further analyzed these cases and found that in northern
China hydrological model use tends to focus on simulation of
infiltration processes of SCP (Luan et al., 2017; Li et al., 2018).
Precipitation in northern China is low, and unsaturated zones can
reach hundreds of meters. As a result, rainfall exhibits low

FIGURE 3 | Breakdown of the six hydrological processes included in
Sponge City case studies in China.

FIGURE 4 | Spatial distribution of case studies, retrieved from Web of
Science and Scopus between January 1st, 2000 and July 3rd, 2021.
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infiltration and field capacity is rarely reached (Han and Banin,
1999; Li H et al., 2019). Improving soil infiltration capacity is an
effective way of reducing runoff, recharging groundwater and
reducing surface water flooding (Li Z et al., 2017). In the southeast
coastal area, application of hydrological models focused on
simulating the storage of SCP (Qin et al., 2016; Mao et al.,
2017). Because rainfall is more abundant and groundwater
levels are high, soil moisture content is also high in the early
stages. It is vital therefore to increase stormwater storage capacity
through SCP in order to reduce flood risk.

DST functionality has not yet been widely applied in China. At
present, sponge city planning mainly relies on a combination of
hydrological models and other decision-support methods, such as
multi-objective decision making (MODM), analytic hierarchy
process (AHP), and a multi-objective evolutionary algorithm
(MOEA) (Jia et al., 2015; Xu et al., 2017; Zhu et al., 2021).
There are no systematic social and environmental evaluation
criteria for sustainable stormwater management in China.

5 DISCUSSION AND CONCLUSION

This research reviewed 19 stormwater models, of which 13
models can perform hydrological simulations and 10 can
function as decision support tools. We primarily analyzed the
hydrological models for six key processes, as mandated by the
Chinese government for sponge city construction. We also
compared various DSTs in evaluating the economic, social,
and environmental benefits of SCP. Finally, we collected case
studies of model applications in China and analyzed the spatial
variability and simulation advantages in various climatic zones.

This study reveals some deficiencies in the current simulation
for SCP. First, the changes in the nature of SCP over time, such as
change in plant coverage and/or the volume of water storage
facilities, were not longitudinally studied. In the context of
climate change and more intense and frequent rainfall, greater
pressure is being placed on the urban ecosystem. Hence, the
related hydrological impacts have not been validated by
stormwater management models. Observations for vegetation
and hydrologic changes need to be recorded to enable
improved performance of stormwater management models.

Second, models are known to perform well in different regions
of the world, but need further refinement for more meaningful
application in sponge city construction in China. For example,
the construction standards of rain gardens in China are different
to those in other countries, so the parameters related to the
capacity of stormwater treatment are also different (Wang et al.,
2009). Moreover, these hydrological models cannot fully simulate
the entire circulation of stormwater in the context of a sponge
city. Case studies in China have mainly focused on reducing
stormwater runoff and mitigating stormwater pollution; there is
no coherent analysis of how stormwater replenishes groundwater,
thus requires further research. Additionally, how stormwater is
utilized, such as toilet flushing and irrigation of public green
spaces, is still unknown. The model algorithms for understanding
how SCP affect the six processes also need to be further
optimized.

Third, it should be noted that rainwater harvesting by
rainwater tanks or cisterns is classified as “utilization” in the
context of China’s sponge cities (Peng J et al., 2018; Peng S et al.,
2018; Wei et al., 2019). How the collected water is then used (e.g.,
toilet flushing and urban irrigation) cannot be simulated by
current stormwater management models, to our best
knowledge. In the “utilization” category, we’ve clarified how to
assign collected rainwater or treated stormwater (Takagi et al.,
2018; Fernandes et al., 2020; Hajani and Rahman, 2014).

Finally, current DSTs only focus on evaluating the positive
benefits of SCP and ignore the negative effects of SCP. Many
studies have shown that SCP can also have negative effects. For
example, rain gardens may accidentally increase the phosphorus
content in stormwater (Hatt et al., 2009), and wetlands may cause
eutrophication of water bodies (Heal et al., 2006). Reservoirs may
act as a sink for pollution, endangering health in wildlife and
humans (Paus et al., 2014). Data on economic costs in DSTs are
lacking in China and require further study. Another limitation of
DSTs is the lack of social-benefit assessment modules. Modules
that evaluate the social benefits of SCP would assist in the long-
term implementation of more SCP in communities. In addition,
combining increased stakeholder participation with DSTs is
becoming a crucial aspect of sponge city construction
(Cousins, 2017; Qiao et al., 2018); DSTs are still not fully used
in policy and decision-making.

Overall, for Chinese sponge cities, most models are capable of
simulating the hydrological performance of SCP, however the
application of DSTs is relatively poor and ineffective in China.
Decision-making involves many social, economic, and political
factors which may be different from the countries in which the
DSTs were developed. Therefore, developing models that can
adapt to China’s sponge city conditions is crucial. Our review of
case studies application in China show that stormwater models
use is mainly distributed to central and eastern China. In
northern China, studies tend to focus on simulating
infiltration, whilst in southern China studies focus on the
storage functions of SCP. This finding is significant in terms
of selecting an appropriate model according to climatic zone and
simulation functions. In summary, in this study, we have
evaluated and compared the physical mechanisms embedded
in stormwater models based on water retention, infiltration,
storage, utilization, purification, and discharge; these factors
are important in sponge city construction in China.
Additionally, our study explored the social, environmental,
and economic benefits of sponge city practices, which can be
simulated by current decision-support tools. Furthermore, the
application of these tools was also investigated in various climatic
zones in China. The study not only improves the understanding
of processes involved in the construction of a sponge city, but also
provides insight into the development of future stormwater
models.
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