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Net primary productivity (NPP) is a critical component in terrestrial ecosystem carbon
cycles. Thus, quantitatively estimating and monitoring the dynamics of NPP have become
key aspects for exploring the carbon cycle of terrestrial ecosystems. Anthropogenic
activity, such as urbanization, has significant effects on NPP and increases pressure
on the natural resources of a specific region. However, to date, although many studies
have focused on the relationship between NPP variation and urbanization, they usually
ignored any differences at a long-term spatiotemporal variation of urbanization factors,
which led to the insufficient understanding of the urbanization-induced impacts on NPP.
As a result, this study effectively explored the spatiotemporal variation of NPP from 2001 to
2012 and its corresponding relationship with urbanization, taking the Hubei Province in
China as a case study area. To clarify the degree of urbanization, the spatial distribution
and temporal variation of population and gross domestic product (GDP) were simulated
based on the elevation-adjusted human settlement index and nighttime lights data. The
major results showed that high NPP areas were located in those highlands with
widespread woodland, in which the NPP value continued to grow during the period.
The low NPP areas were mainly distributed in urban areas, and the NPP value had a
continued and visible loss. The population and GDP both had a strong correlation with
NPP. The significant negative correlation was concentrated in the center of Hubei, with a
dense population and developed economy. In order to further realize their complex
relationship, the correlation coefficients between the annual NPP and the two factors
from 2001 to 2012 were calculated, and the changing trends were investigated. Overall,
the findings of this study may provide a reference for studies on the interaction between
ecological environment and socioeconomic processes under the background of global
rapid urbanization.
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INTRODUCTION

As one of the most important components of terrestrial
ecosystems, vegetation can mitigate the trend of increasing
atmospheric greenhouse gases, maintain the global climate,
and adjust the global carbon balance (Piao and Fang, 2003;
Peng et al., 2015). Net primary productivity (NPP), which
refers to the net accumulation of organic matter by plants
over a period of time, is an important evaluation indicator of
vegetation growth (Buyantuyev and Wu, 2009; Shang et al., 2018;
Yan et al., 2018). Moreover, as a critical component of the
terrestrial ecosystem carbon cycle, NPP is a sensitive indicator
of ecosystem’s health at both the local and global scale (Fang et al.,
2000; Gao et al., 2003; Xu et al., 2011). Therefore, quantitative
estimates of vegetation NPP are critical for monitoring regional
carbon exchanges, thus understanding ecosystem functions and
further developing regional carbon management plans (Yu et al.,
2009; Zhang et al., 2016).

A series of models have been established to estimate the net
primary productivity, which can be mainly grouped into three
aspects: statistical models, process-based models, and light-use
efficiency (LUE) models (Potter et al., 1993; Wang et al., 2009;
Chu et al., 2021). The Carnegie–Ames–Stanford approach
(CASA) model, which is a typical LUE model, has been widely
used to perform carbon cycling parameter estimations because of
its applicability at both local and continental scales (Wang et al.,
2017; He et al., 2018). Based on the CASA model, lots of
researchers have investigated the long-term variation of NPP
in different regions, and many different conclusions have been
reached. For example, Gao et al. estimated the grassland net
primary productivity in northern Tibet using remote sensing and
meteorological data for the period from 1981–2004 (Gao et al.,
2009). Potter et al. estimated the carbon flux of the ecosystem of
Yellowstone National Park using MODIS data based on the
CASA model (Potter et al., 2011). Tan et al. calculated NPP of
Xuzhou, China, and the results showed that the average NPP
showed a decreasing trend from 2001 to 2010 (Tan et al., 2015).
Zhu et al. estimated NPP based on the CASAmodel in the Greater
Khingan Mountain region and analyzed the temporal-spatial
variability characteristics of net primary productivity during
the period from 1982 to 2013 (Xie et al., 2021).

As we knew, the distribution patterns of NPP and their
changes are both driven by natural and anthropogenic factors
(Luo et al., 2018). Natural factors, such as temperature and
precipitation, have significant influences on vegetative
photosynthesis. In addition, the high amount of anthropogenic
activities has increased the demand for resources and energy,
which can strongly affect the carbon cycle of terrestrial
ecosystems. Urban expansion converts vegetation into
impervious surfaces, which leads to a significant decrease in
vegetation productivity and carbon sequestration capacity
(Solecki et al., 2013). It means that the formation of NPP is a
typical natural ecosystem function and can effectively indicate the
ecological response of urbanization. In general, the urbanization
level is very closely related to economic and demographic factors.
There is a significant positive correlation between urbanization
level and economic growth, and the higher the level of economic

development, the higher the level of urbanization. The level of
economic development can be quantified through the gross
domestic product (GDP), which can be regarded as the typical
characteristics of urbanization that can explain the emergence
and development of cities (Jiang and Zeng, 2019; Li, 2019).
Meanwhile, the increasing intensity of the population makes
the impact of anthropogenic activities on the terrestrial
ecosystem more and more complex (Shen et al., 2021).
Urbanization is a process in which the population of a
country or region shifts from rural to urban areas, the rural
areas gradually evolve into urban areas, and the urban population
keeps growing. Cities that are less populated tend to have a more
compact land-scape structure and more vegetation in the city
center. Therefore, the study of NPP changes during urbanization
and their ecological impacts have become an important topic for
clarifying the interactions between GDP and population. The
previous studies have assessed the effect of anthropogenic
activities on vegetation NPP dynamics by quantifying the
population and GDP. For example, Li and Cheng found that
there was a stable long-term equilibrium relationship between
China’s urbanization development and economic growth from
1978 to 2004 (Li and Cheng, 2006). Lu et al. concluded that
population and GDP had a significant negative correlation with
NPP in Southeast China in a specific year (Lu et al., 2010). Zhao
et al. chose NPP and GDP as proxy evaluators to explore the
interaction between economic development and environmental
change in China (Zhao et al., 2011). Li et al. analyzed the impact
of urbanization on vegetation degradation in the Yangtze River
Delta of China, and the results showed that the rise of population
growth rate and GDP growth has significantly deepened
vegetation degradation (Li, 2019). However, these studies only
focused on either the spatial or temporal growth of population
and GDP. They often ignore any differences at a long-term
spatiotemporal variation of urbanization and lack a
comprehensive measure associated with NPP relating to
population urbanization and economic urbanization.

To overcome this issue, in this article, a long-term
spatiotemporal variation of NPP and associated influence of
urbanization in Hubei Province from 2001–2012 were
monitored and analyzed. As a significant component of the
Yangtze River economic zone development strategy, Hubei
Province represents a typical region for studying the long-term
impact of population and GDP on NPP and should receive
considerable attention (Chai et al., 2019). According to the
Hubei Statistical Yearbook, the proportion of the urban
population increased from 40.8 to 53.5% during the period
from 2001 to 2012, and the GDP value grew from 388,000
million CNY to 1,963,200 million CNY. With the rapid
growth of the population and the acceleration of urbanization,
the ecosystem of Hubei changed significantly, and it is facing
severe challenges caused by the pursuit of development.
Therefore, understanding the impact of urbanization on NPP
in this region has important practical significance. The main
objectives of this article are: 1) to analyze the spatiotemporal
variations and change trend of NPP in Hubei Province; 2) to
estimate the distribution of the population and GDP density and
explain their variation trends; and 3) to discuss the correlation
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relationship between the population and GDP with NPP from
both time and space. The results of this study are of great
theoretical and practical significance for the effective
coordination of nature, economy, and society as well as for
sustainable development in Hubei Province.

The remainder of this article is organized as follows: In the
Data Description section, the materials and methods are
described, including the study area, dataset, data processing,
and methods. In the Results and Discussion section, the results
and analysis are presented. The discussion is provided, and it
includes information on the spatiotemporal variations of NPP,
effects of urbanization on NPP dynamics, limitations, and future
research recommendations. In the Conclusion section, the
conclusions are drawn.

DATA DESCRIPTION

Study Area
Hubei Province is located in Central China (between 29°01′ and
33°06′ north latitude and between 108°21′ and 116°07′ east
longitude), and it has an area of approximately 185,900 km2

(Figure 1) (Wang et al., 2014; Chen et al., 2018). The terrain of
Hubei is higher in the west and lower in the middle and
includes various and complicated geomorphic types, such as
mountains, hills, and plains, among which mountains account
for approximately 55%, hills account for 24.5%, and plains
account only for 20% of the total area. The province has a
humid subtropical climate, with average temperatures of
15–17°C and rainfall of 1100–1300 mm (Lin et al., 2016).
The dominant land cover types in Hubei are forests,
cropland, wetland, grassland, water bodies, and urban
building. There are various vegetation types, including
subtropical evergreen broad-leaved forest and subtropical

mixed evergreen broad-leaved/deciduous broad-leaved forest
(Tao et al., 2017). In 2001, Hubei Province’s population was
59.56 million, and its GDP was RMB 0.39 trillion, which rose to
61.65 million and RMB 2.25 trillion in 2012. With the rapid
growth of population and urbanization, environmental
protection in Hubei Province is facing severe challenges
caused by the pursuit of development.

Data Preprocessing
MODIS13Q1 Data
The 16-day composition MODIS NDVI product (MOD13Q1) with
a spatial resolution of 250m between January 2001 and December
2012 was acquired from the National Aeronautics and Space
Administration (NASA, http://edcimswww.cr.usgs.gov/pub/
imswelcome/). The MOD13Q1 dataset is a MODIS Level-3 data
product, which has been preprocessed with radiance calibration and
atmospheric correction. The MODIS NDVI dataset was
transformed to the Universal Transverse Mercator (UTM) with a
World Geodetic System (WGS-84) datum using the MODIS
Reprojection Tool (MRT), and monthly NDVI datasets were
generated using the maximum value composite (MVC) method.

Nighttime Light Data
Global inter-calibrated nighttime lights (NTLs) (1992–2012),
which were provided by Zhang et al. (2016), were downloaded
from the website of Yale University (https://urban.yale.edu/data).
NTLs were generated from the stable nighttime light annual
composite product (version 4) acquired from the National
Oceanic and Atmospheric Administration’s National
Geophysical Data Center (NGDC) using a novel “ridgeline
sampling and regression” method. The DMSP/OLS stable
nighttime light annual composite product cannot be used
directly due to the lack of continuity and comparability. The
“ridgeline sampling and regression” method can create a

FIGURE 1 | Study area location.
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consistent NTL time series that can be applied globally. The NTL
data need to be re-scaled bymultiplying pixel values with a scaling
factor of 0.01 and reprojected to a value equivalent to NDVI data.
The bilinear algorithm was used to resample the NTL data to a
pixel size of 250 m × 250 m to match the spatial resolution of the
MODIS NDVI dataset.

Meteorological Data
The meteorological data included the monthly mean
temperature, monthly cumulated precipitation, and the
monthly total solar radiation from 2001–2012, and these data
were acquired from the monthly datasets of the terrestrial climate
data and the monthly datasets of the radiation data published on
the China Meteorological Data Sharing Service System (http://
data.cma.cn/). There were 32 stations of temperature and
precipitation and 11 stations of solar radiation. Meteorological
data were interpolated to the same spatial resolution as NDVI
data using the kriging spatial interpolation method.

Other Ancillary Data
Ancillary data used in this study include digital elevation model
(DEM) data, land use/land cover data, the MODIS NPP products
(MOD17A3), and the GDP and population data at the county
level. DEM data with a spatial resolution of 90 m were obtained
from the geospatial data cloud (http://www.gscloud.cn/), and
land use/land cover data were acquired from the MODIS
Level-3 land cover type product (MCD12Q1). Land cover
types were divided into evergreen needleleaf forest (ENF),
evergreen broadleaf forest (EBF), deciduous broadleaf forest
(DBF), mixed forest (MF), grassland, wetland, cropland,
urban, and water bodies. The MODIS NPP products
(MOD17A3) covering the period from 2001 to 2012 were
selected to validate the simulated NPP results. Datasets with a
spatial resolution of 1 km and a temporal resolution of 1 year
were acquired from the Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov). All the above data
were resampled to match the 250 m spatial resolution of
MODIS NDVI data using the Resample tool of ArcGIS. The
GDP and population data from 2001–2012 at the county level for
Hubei Province (81 counties in total) were obtained from the
Hubei Provincial Bureau of Statistics (Hubei Statistical Yearbook
and Hubei Rural Statistical Yearbook).

Methods
NPP Estimation
The CASA model is based on light-use efficiency (LUE) theory,
and it simulates net primary productivity by estimating optimal
metabolic rates of carbon fixation under the limiting effect of
temperature and water stress scales (Potter et al., 2003). In the
original CASA model, the maximum light energy utilization rate
of all vegetation in the world was set to 0.389 g CMJ−1. However,
different vegetation types should correspond to different
maximum light energy utilization rates. The researchers
simulated the maximum light energy utilization rate of all
vegetation types according to the actual vegetation distribution
in China (Guan et al., 2021). Therefore, the improved NPP
estimation model developed was applied in this study to

simulate NPP over Hubei Province from 2001 to 2012. NPP
can be calculated based on the following equation:

NPP(x, t) � APAR(x, t) × ε(x, t), (1)

where x represents the spatial location, t represents time, APAR
represents absorbed photosynthetically active radiation, and ε
represents light-use efficiency.

APAR(x, t) � SQL(x, t) × FPAR(x, t) × 0.5; (2)

ε(x, t) � T11(x, t) × T2(x, t) ×W(x, t) × εp, (3)

where SQL represents the total solar radiation per unit time,
FPAR represents the fraction of photosynthetically active
radiation, T1 and T2 represent the effect of temperature on
light-use efficiency, and W represents the effect of soil
moisture on light-use efficiency.

Population Density Mapping
It has been proved that the night light data are an effective tool for
the spatialization of population and GDP density at national and
province levels (Yue et al., 2014; Song et al., 2015; Wang et al.,
2018). The global inter-calibrated nighttime light (NTL) data
were introduced in our study to spatialize the population and
GDP density. Moreover, the human settlement index (HSI) is an
index for mapping spatial population distribution by
incorporating vegetation information into the nighttime light
data. This index was proposed by Lu et al. (2008) and based on the
rationale that impervious surfaces are closely and inversely
correlated with vegetation abundance. Many studies have
shown that elevation has a profound impact on the human
population distribution because most human settlements occur
at lower elevations in China (Yue et al., 2003; Yang et al., 2013). If
the influence of altitude is not taken into account, then large
errors will be introduced into the population simulation results
for high-altitude areas. In our study, the average population
density and average altitude of 81 counties in Hubei Province
were analyzed by exponential function regression. The coefficient
of determination (R2) was greater than 0.7 (the coefficient of the
exponential equation was -0.002), which indicated that there was
a strong negative correlation between altitude and population
density. Therefore, an elevation-adjusted human settlement index
(EAHSI) was used to estimate the population density in Hubei
Province. The data include DEM, standard MODIS NDVI
products (23 images per year), and nighttime light data from
2001 to 2012. The EAHSI is defined as follows:

EAHSI � (1 −NDVImax) + NTLnor
(1 − NTLnor) + NDVImax +NTLnor × NDVImax

× e−0.002DEM; (4)

NDVImax � MAX(NDVI1, NDVI2, ...., NDVI23); (5)

NTLnor � (NTL − NTLmin)
(NTLmax −NTLmin), (6)

where NDVImax is the maximum image of 23 MODIS NDVI
composite images, NTLnor is the normalized value (0–1) of the
nighttime light image, and NTLmax and NTLmin are the
maximum and minimum values of the image, respectively.
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A total of 41 cities were randomly selected from Hubei
Province as experimental areas and the remaining 40 counties
as verification areas. A population density model was then built
by inputting the cumulative DN of EAHSI at the county level and
the corresponding population of the 41 experimental counties
into the regression. The model creates a spatial population
density map, and the performance of the modeled population
density results is calculated by the relative error (RE) and mean
relative error (MRE) (Yang et al., 2013; Yue et al., 2014; Sun et al.,
2017). The RE and MRE are calculated as follows:

RE � POPm − POPa

POPa
× 100%; (7)

MRE � ∑n i
�1|(REi)|

n
, (8)

where POPm and POPa represent the simulated population and
the actual statistical population, respectively, and n represents the
number of counties.

GDP Density Mapping
Night light data have the strongest correlation with the sum of the
GDP of secondary and tertiary industries; however, these data are
not well suited for estimating GDP in rural areas. Therefore, the
spatialization process of non-agricultural GDP (the GDP of
secondary and tertiary industries) is similar to that of
population, while that for agricultural GDP (the GDP of the
primary industry) uses land cover data. In this study, MCD12Q1
land cover data were used to model the agricultural GDP, and the
EAHSI images were used to model the non-agricultural GDP.

To conduct the spatial simulation of agricultural GDP, the
land cover types related to agricultural activities in MCD12Q1
were combined into farmland, forestland, grassland, and water,
which corresponded to the gross production values of agriculture,
forest, animal husbandry, and fishery, respectively. The EAHSI
image was used to model the non-agricultural GDP. When the
non-agricultural GDP is spatialized, the minimum value of the
NTL image (NTLmin) was determined. The agricultural and non-
agricultural regions were divided by a threshold value. First, the
mean NDVI value of artificial surfaces in land cover data was
calculated for Hubei Province. Second, the regions with non-
artificial surfaces larger than the average NDVI value and NTL
DN values >0 were divided. The DN threshold value of the image
was determined by the mean NTL DN value in this region.

Trend Analysis
Ordinary least square estimations were performed for each pixel
to quantify the linear trends of NPP in Hubei Province from 2001
to 2012. The equation was calculated as follows:

Slope � n ×∑n i
�1i × θi −∑n i

�1i∑n i
�1θi

n∑n i
�1i

2 − (∑n i
�1i)2 , (9)

where i represents the ordinal year, 1, 2, . . . , 12; n � 12 (the time
series is from 2001 to 2012); θi is the annual NPP, in the year i;
and Slope is the slope of the linear fitting equation. Slope >0
indicates an increasing trend, and the converse denotes a
decreasing trend. The F-test is generally used to determine the

significance of the change trends. The equation for this test is as
follows:

F � U × n − 2
Q

, (10)

where U is the error sum of squares, and Q is the regression sum
of squares, n � 12. Based on the results of the F-test and the trend
analysis, the trends were classified according to four ranks:
significant decrease (Slope <0 and p ≤0.05), insignificant
decrease (Slope <0 and p >0.05), significant increase (Slope ≥0
and p ≤0.05), and insignificant increase (Slope ≥0 and p >0.05).

Analysis of the Impacts of Urbanization on NPP
In this study, a correlation analysis, which is a common method
of analyzing the relations between the net primary productivity
and associated influencing factors, was performed to quantify the
impact of population and GDP on NPP at the pixel scale, and
Pearson’s correlation coefficient, which can show the strength of
the relationship between urbanization indicators and NPP, was
calculated. The T-test was used to determine the significance of
the correlation analysis. A value of p <0.05 was considered
significant. The equation of the correlation coefficient is
expressed as follows:

r �
∑n

i�1[(xi − −
x
) × (yi − −

y
)]																												∑n

i�1[(xi − −
x
)2

× (yi − −
y
)2]√ , (11)

where xi is the NPP of the ith year, yi is the corresponding
population or GDP density of the ith year, ‾x and ‾y are the
means of x and y, respectively, and r is the correlation coefficient
of the two variables x and y.

Study Process
The study process includes the following steps.

1) The NPP values in Hubei Province from 2001 to 2012 were
calculated based on the modified CASA model. After that, the
spatial patterns, temporal variations, and the spatiotemporal
variation trends of NPP were acquired.

2) The MODIS NDVI data, SRTM DEM data, land cover map,
NTL data, and other ancillary data were all effectively coupled.
Then, the population and GDP density were spatialized under
the specified scale.

3) The correlation relationship between the population and GDP
density with NPP was calculated. Finally, the variation trend
of NPP with population and GDP density was analyzed. The
flow chart of this study is shown in Figure 2.

RESULTS AND DISCUSSION

Validation of the Estimated Results
Validation of the NPP Calculations
The MOD17A3 NPP products were used to assess the accuracy.
First, the MOD17A3 NPP products were resampled to a 250-m
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spatial resolution. After that, the average NPP values estimated by
the CASA model for different land cover types were calculated
and compared with the MOD17A3 NPP. The linear regression
analysis results between the NPP estimates based on the CASA
model and MOD17A3 NPP products are shown in Figure 3. A
strong correlation was observed between them; the average

relative error was 19.52%, and the correlation coefficient was
0.85. The results calculated in this article are similar to those of
the MOD17A3 NPP products. Additionally, the estimated results
of specific cities in Hubei Province can also be compared with
those observed in previous studies. For example, the average
inter-annual NPP of the evergreen needleleaf forest in Wuhan in
our study was 578.06 g C/m2, which is similar to the value of
582.4 g C/m2 based on historical data as estimated in Zhang et al,
(2011). Therefore, the CASA model in our study is practical and
applicable for calculating NPP in Hubei Province.

Error Analysis of the Population Density Map
The NTL, NDVI, DEM, and census population data at the county
level were used to generate the spatial population density maps of
Hubei Province with a resolution of 250 m from 2001 to 2012
based on the population spatial model mentioned in the
Population Density Mapping section. The cumulative DN
values of the EAHSI at the county level were input into the
regression with the corresponding population of 41 counties
selected randomly in Hubei Province. Then, the overall
accuracies of the regression model were evaluated by
calculating the MRE in the remaining 40 counties. Table 1
presents the regression model among the cumulative EAHSI,
population statistical data, and the results of accuracy assessment
from 2001 to 2012. In the table, the R2 represents the fitting
degree of the regression equation of the population spatial model,

FIGURE 2 | Methodological framework of this study.

FIGURE 3 | Correlation between the estimated NPP values and
MOD17A3 NPP values.
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and the values were all relatively large over the 12 study years.
Their values were all above 0.79, and the highest value occurred in
2012. The excellent fitting effect of the model indicates that the
night light data can well reflect the spatial distribution of the
population. For the accuracy of the model, all the MRE values
were less than 30%, indicating that the overall simulation error is
small during the period from 2001–2012. In addition, the error in
2006 was the smallest whereas the error in 2005 was the largest,
with MRE values of 25.82 and 28.86%, respectively.

Error Analysis of the GDP Density Map
The spatialization process and error analysis of non-agricultural
GDP density were similar to those of the population density.
Table 2 presents the regression model between the cumulative
EAHSI and GDP statistical data and the results of the accuracy
assessment from 2001 to 2012. The table shows that the
determination coefficients were all relatively large with values
above 0.80 during the period from 2001 to 2012. The excellent
fitting effect of the model indicates that the night light data can
well reflect the spatial distribution of non-agricultural GDP. For
the accuracy of the model, all the values of MRE were less than
30%, indicating that the overall simulation error was small from
2001 to 2012.

Spatiotemporal Variation of NPP
In this section, the long-term characteristics of NPP in Hubei
Province were evaluated from three aspects: spatial patterns,
temporal variations, and the variation trend of NPP.

Spatial Patterns of Mean Annual NPP
In order to conveniently describe the distribution of NPP, the
degree of NPP can be divided into four different grades with red,
yellow, blue, and green, which mean very lower (NPP <400 g C/
m2), lower (400 < NPP < 600 g C/m2), middle (600 < NPP <
800 g C/m2), and higher (NPP >800 g C/m2), respectively.
According to the land cover type product MCD12Q1 in Hubei
Province, the main land cover types are ENF, EBF, DBF, MF,
grassland, wetland, cropland, urban, and water, respectively.
Except for water, all of the land cover types had the influence
on NPP. The spatial pattern of the mean annual NPP from
2001–2012 in Hubei Province is shown in Figure 4A, and the

land cover types and mean NPP are shown in Figure 4B. As
shown, the western part of Hubei has a high altitude, and the
main land cover types are woodland (ENF, EBF, DBF, and MF)
and grassland, which can be seen as the higher NPP grade
areas. Woodland and grassland accounted for 63.78% of the
study area, and the mean annual NPP value was more than
500 g C/m2. Among them, the mean annual NPP values of EBF
and DBF were both more than 800 g C/m2, which were mainly
distributed in the northwest of Hubei. East Hubei was the
middle NPP area. There are three main land cover types,
including cropland, little woodland, and grassland. Due to
the hilly region, the mean annual NPP value was general lower
than that of west Hubei. Central Hubei, especially in the south
central region, is the Middle-Lower Yangtze Plain. It presents
a flat terrain and concentrated population. The main land
cover types are cropland, wetland, and urban. The mean
annual NPP values of wetland and urban land were both
lower than 500 g C/m2. Therefore, the very lower and lower
grade NPP values were both distributed in this region. In
addition, the different land cover types had a different
combination of four NPP grades. Figure 4C explains the
percentage of four NPP grades according to each land cover
type. In the higher grade, EBF and DBF showed higher NPP
percentages with 83.9 and 63.8%, respectively. In the middle
grade, MF and grassland were the mainly distributed land
cover types with 83.9 and 81.7%. In the lower grade, the
proportions of wetland, cropland, ENF, and urban were
higher than those of others, which were both more than
50%. In the very lower grade, urban and wetland were
accounted for 37.7 and 25.9%, respectively.

Temporal Variations of NPP
The temporal variations of the annual average NPP of Hubei
Province from 2001 to 2012 are shown in Figure 5. Generally, the
annual NPP varied from 573.51 g C/m2 to 701.85 g C/m2 over the
past 12 years, with the highest in 2004 and the lowest in 2011. The
change in NPP can be divided into two sub-periods throughout
the period. NPP showed an increasing trend from 2001 to 2004
(32.34 g C/m2 yr), followed by a wavelike decrease from 2004 to
2012 (11.30 g C/m2 yr). Table 3 lists the different changes for the
four grades. In the very lower NPP areas (NPP <400 g C/m2),

TABLE 1 | Population spatial model from 2001 to 2012 (ρ and β are the population
density and Ln values of EAHSI, respectively).

Year Regression model R2 MRE (%)

2001 ρ � 0.649×β-0.869 0.790 27.28
2002 ρ � 0.658×β-0.943 0.793 28.06
2003 ρ � 0.663×β-0.962 0.839 27.95
2004 ρ � 0.678×β-1.072 0.820 26.73
2005 ρ � 0.664×β-1.259 0.654 28.86
2006 ρ � 0.695×β-1.291 0.867 25.82
2007 ρ � 0.663×β-0.982 0.877 26.93
2008 ρ � 0.653×β-1.097 0.891 27.81
2009 ρ � 0.664×β-1.144 0.898 26.84
2010 ρ � 0.645×β-1.002 0.913 26.35
2011 ρ � 0.651×β-1.093 0.899 26.77
2012 ρ � 0.649×β-1.049 0.901 26.11

TABLE 2 | Non-agricultural GDP spatial model from 2001 to 2012 (ρ and β are the
GDP density and Ln values of EAHSI, respectively).

Year Regression model R2 MRE (%)

2001 ρ � 0.6622×β+0.0344 0.858 26.58
2002 ρ � 0.6664×β+0.0031 0.851 26.98
2003 ρ � 0.6558×β+0.1145 0.819 27.44
2004 ρ � 0.6699×β+0.4443 0.808 28.65
2005 ρ � 0.6546×β+0.4419 0.828 28.40
2006 ρ � 0.6631×β+0.5498 0.811 27.74
2007 ρ � 0.6502×β+0.511 0.826 28.87
2008 ρ � 0.6421×β+0.6246 0.830 27.53
2009 ρ � 0.6377×β+0.8756 0.842 25.54
2010 ρ � 0.6688×β+0.9583 0.843 26.40
2011 ρ � 0.6658×β+1.0782 0.808 29.01
2012 ρ � 0.6622×β+0.0344 0.834 26.48
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FIGURE 4 | (A) Spatial distribution of themean annual NPP; (B) land cover types of Hubei Province andmeanNPP; and (C) percentage of four NPP grades for eight
land cover types.

FIGURE 5 | Temporal variations of the annual average NPP.

TABLE 3 | Change of NPP for the four grades.

NPP grade (g C/m2) Change of NPP (g
C/m2)

Main land cover type Percentage of area
in 2001 (%)

Percentage of area
in 2012 (%)

<400 −18.58 Urban 32.62 37.87
400–600 10.60 Cropland 55.67 58.42
600–800 5.44 Grassland 74.67 68.69

Cropland 31.33 34.93
>800 13.86 DBF 91.72 82.70

Grassland 8.09 17.00

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 8084018

Wu et al. Spatiotemporal NPP and Urbanization

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


there was a negative change with a value of −18.58 g C/m2 from
2001 to 2012. The main reason for the decline was that more and
more cropland and grassland are converted into urban land with
the development of the economy and the acceleration of
urbanization. The percentage of urban area was increased by
5.25% during the period, and approximately 90.36% of the total
urban area has negative change rates on NPP, which led to a
significant NPP loss in time and space. In contrast, the different
positive changes occurred when the NPP value exceeded 400 g C/
m2. In the lower NPP areas (400 g C/m2 < NPP < 600 g C/m2),
there was a positive change with 10.60 g C/m2. The main land
cover type is the cropland, and the percentage area increased from
55.67 to 58.42% from 2001 to 2012. In the middle NPP areas
(600 g C/m2 < NPP < 800 g C/m2), the NPP value has increased
by 5.44 g C/m2. The grassland is the main land cover type.
Although the area of grassland has been reduced little from
74.67 to 68.69%, the percentage of cropland area increased
from 31.33 to 34.93%, which still kept the NPP in an
increased state. In the higher NPP areas (NPP > 800 g C/m2),
the NPP values have increased by 13.86 g C/m2. The main land
cover type is DBF decreased from 91.72 to 82.70% from 2001 to
2012. But, the percentage of grassland area increased from 8.09 to
17.00% from 2001 to 2012. The high increase rate was maintained
due to the significant NPP correlation of the DBF and grassland.

The Variation Trend of NPP
The slope of the equation obtained by linear least-square fitting of
long-term NPP series can show the development trend of NPP
over 12 years. As shown in Figure 6, there are four different
colors (red, yellow, green, and blue) representing the variation
trends, including the significant decreasing trend (SDT, p >0.05),
decreasing trend (DT, p <0.05), significant increasing trend (SIT,
p >0.05), and increasing trend (IT, p <0.05). The area with DT of
annual NPP accounted for 59.82% of Hubei Province and was
distributed roughly in the central area of the study region. The

area with an IT of annual NPP was mainly distributed in west
Hubei and accounted for 25.37%. Only 7.88 and 6.92% of the
study area showed SDT and SIT, respectively. Therefore, the
number of pixels of the two variation trends is too small to find in
the figure.

Different land cover types had different responses to NPP,
which was the major reason for the variation trend. The rate of
NPP change for each land cover type is listed in Table 4. It is found
that there were only two land cover types with positive change
rates, EBF (37.38 g C/m2 yr) and DBF (4.03 g C/m2 yr). The rest of
land cover types all had negative change rates. The order of the
decreasing rate from high to low was as follows: urban (-10.63 g C/
m2 yr), wetland (−9.95 g C/m2 yr), ENF (−9.51 g C/m2 yr),
cropland (−3.52 g C/m2 yr), MF (−2.64 g C/m2 yr), and grassland
(−1.73 g C/m2 yr). Among all land cover types, grassland showed
the most significant SIT with 7.91% and the most significant SDT
with 8.55%. Moreover, the largest percentage of DT and IT
occurred in urban areas with 87.28% and EBF with 90.19%.
The main land cover types are cropland, grassland, and MF in
the area with DT of annual NPP. They all had the negative change
rates, and the percentages of DT were both more than 50% in these

FIGURE 6 | Change trends in annual NPP within Hubei Province between 2001 and 2012.

TABLE 4 | Rate of NPP change for each land cover type.

Land cover
type

NPP change
rate(g C/m2 y r)

DT (%) SDT (%) IT (%) SIT (%)

ENF −9.51 75.36 3.08 18.70 2.87
EBF 37.38 4.11 1.58 90.19 4.11
DBF 4.03 31.62 7.13 54.24 7.02
MF −2.64 58.78 7.86 25.89 7.48
Grassland −1.73 54.02 8.55 29.51 7.91
Wetland −9.95 81.44 3.90 11.59 3.07
Cropland −3.52 73.66 7.71 12.78 5.85
Urban −10.63 87.28 3.08 7.20 2.44

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 8084019

Wu et al. Spatiotemporal NPP and Urbanization

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


areas, which caused the decreasing trend. In the area with IT of
annual NPP, the main land cover types are EBF, DBF, and
grassland. There were higher positive change rates in EBF and
DBF, which caused the increasing trend on the whole.

Correlation Between Urbanization and NPP
The urbanization process has an important impact on NPP
variation. Population growth and economic development, a
representation of the agglomeration effects, are highly
correlated with urbanization. In this section, the relationships
between NPP and the two urbanization indicators were described.

Population Density Map
The spatial distributions of the population density for Hubei
Province from 2001 to 2012 are presented in Figure 7. The unit
of population density is defined as PD � 10,000/0.0625 km2

because the resolution of the population density map is 250 m
(0.25 km). The sparsely populated areas (population density less

than 0.1 PD) were mainly distributed in the western areas of Hubei
Province, such as Shiyan, Enshi, and Shennongjia Forestry District,
while densely populated areas (population density more than
0.4 PD) were mainly in the highly urbanized regions, such as
Wuhan City, Xiangyang City, Yichang City, and Jingzhou City.
The population of sparsely populated areas increased from 22.87 to
47.87% from 2001 to 2004 and continued to decline after 2004,
accounting for only 28.37% in 2012. The population in the densely
populated areas decreased from 2001 to 2004 and increased
steadily after 2004, accounting for 10.97% in 2012. In general,
from 2001 to 2012, the proportions of the population in sparsely
populated areas were large but showed a decreasing trend, whereas
the population in densely populated areas increased steadily.

Correlation Between Population and NPP
With the change in population density, the NPP values would
change. Figure 8A shows the change in NPP in different
population density ranges from 2001 to 2012. Even though the

FIGURE 7 | Population density maps with a 250 m × 250 m grid (A)–(L) the different maps from 2001 to 2012.
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population densities of 12 years were quite different, the trends in
NPP were the same. With an increase in population density, the
average NPP value decreased. Figure 8B shows the annual

average NPP changes during the period. It is found that the
average NPP value was the minimum when the population
density was more than 0.4 PD.

FIGURE 8 | (A) NPP change in different population density ranges from 2001 to 2012 and (B) annual average NPP change in different population density ranges.

FIGURE 9 | (A) Spatial distribution of the correlations between population and annual NPP; (B) correlation coefficients between population and annual NPP for the
different population density ranges; and (C) correlation coefficients between NPP and population for different land cover types.
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To further investigate the correlation between NPP and
population density, the correlation coefficient is calculated and
analyzed from two aspects. First, the spatial pattern of the
correlation coefficient is shown in Figure 9A. The negative
correlation (NC) is labeled as yellow, significant negative
correlation (SNC; p <0.05) is labeled as red, positive
correlation is labeled as green, and significant positive
correlation (SPC; p <0.05) is labeled as blue. The area with
NC between NPP and population accounted for almost
85.49% of Hubei Province, of which approximately 15.08%
showed SNC. The significant negative relationship was
concentrated in the center of Hubei, which was mainly
covered by cropland and urban areas. With the increase of
population density, the negative correlation coefficients
become more significant. The tendency and process of the
mass population gathering toward big cities that leads to land-
use/cover change. It is found that more and more cropland and

woodland (including EBF, DBF, and MF) are converted into
urban land during the period. This is probably the main reason
for the decrease in NPP caused by population growth. Moreover,
areas with PC accounted for almost 14.51% of the study region,
and approximately 0.48% showed SPC. These areas were mainly
distributed in the western Hubei mountains and eastern Hubei
Province. Second, themain considerations and affecting factors of
the correlation coefficient were provided. Figure 9B describes
that the correlation coefficient is different when the population
density ranges. The coefficients were all negative that shows NC
and SNC were dominant in the five population densities. The
negative correlations become larger and larger with increased
population density. When the population density was more than
0.4 PD, the negative correlation coefficient with the population
was the maximum. Besides, correlation coefficients were different
for different land cover types, which could be seen as indirect
impacts. As shown in Figure 9C, the negative correlation

FIGURE 10 | GDP density maps with a 250 m × 250 m grid. (A)–(L) the different maps from 2001 to 2012.
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coefficient between NPP and population was the largest in urban,
with the mean value of −0.46. The negative correlation
coefficients of other land-use types were smaller. The order
from high to low was mainly as follows: wetland (−0.39), EBF
(−0.31), DBF (−0.30), cropland (−0.29), grassland (−0.28), and
MF (−0.19). Although there was a positive correlation in ENF
with a mean value of 0.01, it had little influence on NPP.
Therefore, urban had more importance in influencing NPP
than other land cover types.

GDP Density Map
The spatial distributions of the GDP density for Hubei Province
from 2001 to 2012 are presented in Figure 10. The unit of GDP
density is defined as GD � 100 million CNY/0.0625 km2. As
shown in the figure, most of the GDP contributions were from
regions with a concentrated population and a high level of
economic development, especially from Wuhan City, which
had a high level of urbanization. Areas with a GDP density
greater than 0.1 GDmainly occurred in Wuhan City. In addition,
the GDP density in most areas of Hubei Province was in the range
of 0–0.01 D. GDP density ranging from 0 to 0.01 GD accounted
for 95.31% of the study region in 2001, while in 2012 it only
accounted for 76.94%. Since 2004, the GDP density had exceeded
0.1 GD. The proportions of GDP density greater than 0.1 GD
increased from 0.06% in 2001 to 2.70% in 2012.

Correlation Between Population and GDP With NPP
Similarly, the correlation between NPP and GDP is described as
follows: Figure 11A shows the variation trend of the annual
average NPP with GDP density. With the increase of GDP
density, the average NPP value decreased. Therefore, the
higher the GDP density, the greater the reduction rate of NPP.
Figure 11B shows the annual average NPP changes during the
period. The average NPP value was the minimum when the
population density was more than 0.1 GD.

The correlation coefficient was calculated and analyzed from
two aspects. First, the spatial pattern of the correlation coefficient
between GDP and NPP is shown in Figure 12A. The areas with
negative correlation (NC) between NPP and GDP accounted for
almost 73.97% of Hubei Province, of which approximately 12.6%

showed a significant negative correlation (SNC; p <0.05). The
areas with a positive correlation (PC) between NPP and GDP
accounted for almost 36.03% of the study region, and
approximately 6.48% showed a significant positive correlation
(SPC; p <0.05). Areas with a negative correlation between NPP
and GDP were mainly located in central Hubei Province, while
the areas with positive correlations were mainly distributed in
northwest, southwest, and southeast Hubei Province. Second, the
affecting factors of the correlation coefficient are analyzed,
including the GDP density and land cover types. The
correlation coefficients for the different GDP density ranges
are described in Figure 12B. The trend of the negative
correlation was not the same as the one between NPP and
population. In the beginning, it increased with the continuous
increase of GDP density. When the GDP density was 0.2–0.3 GD,
the negative correlation coefficient reached the maximum. After
that, the negative correlation between NPP and GDP was not
significant, which means that the growth of GDP might lead to
the increase of NPP in some regions under a certain threshold.
For example, the economic growth can further improve
management capacity with good policies. Artificial
management, such as irrigation and planting, resulted in
improved vegetation coverage and increased NPP. Similar to
NPP and population, correlations between NPP and GDP were
also different for different land cover types. Urban had more
importance in influencing the relationship between NPP and
GDP than other land cover types. In Figure 12C, the cropland,
wetland, ENF, and MF were all greater than −0.3. There was a
positive correlation in EBF with a mean value of 0.26. But, its area
was so small that it was almost negligible.

Limitations and Future Research
Due to urbanization being a complex process, the interaction
between terrestrial ecosystems and socioeconomic processes is
also relatively complicated. The process of population
urbanization is different in different stages of urbanization, so
is economic urbanization. The relationship of NPP and
urbanization needs to be studied over a longer period of time.
Some researchers have indicated that the negative impacts of
urbanization on vegetation gradually weaken with the continuous

FIGURE 11 | (A) NPP and GDP density from 2001 to 2012 and (B) annual average NPP and its regression slope with GDP density.
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improvement of urbanization levels, and the positive impacts of
urbanization on vegetation will be increasingly obvious. It is
because that some anthropogenic activities have led to an increase
of vegetation cover in urban areas, such as irrigation and tree
transplantation. This means that urbanization unavoidably leads
to the degradation of vegetation and the decrease of vegetation
productivity. However, cities may further strengthen ecological
management capacity as the economy grows. These measures can
make a great contribution to the vegetation in urban areas. In
addition, the population is gathering toward the city with the
expansion of the city size. Population migration can improve the
vegetation conditions in rural areas with the increase of
urbanization levels. Although 12 years were analyzed to
determine the impacts of urbanization on vegetation, the
different stages of urbanization cannot be fully described.
Therefore, in future studies, vegetation NPP should be
estimated and monitored over a longer study period to explore
the effects of population and GDP on NPP in different stages of
urbanization.

FIGURE 12 | (A) Spatial distribution of the correlations between GDP and annual NPP; (B) correlation coefficients between GDP and annual NPP for the different
GDP density range; and (C) correlation coefficients between NPP and GDP for different land cover types.

FIGURE 13 | Inter-annual variations of temperature and precipitation of
Hubei Province from 2001 to 2012.
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Moreover, climate change is also a major controlling factor in
the response of NPP. Research shows that the temperature had a
significant decreasing trend during the period from 2001–2012,
which was similar to the trends of the annual NPP (Figure 13).
Precipitation also tended to decrease but was not significant. The
decreasing trend in temperature and precipitation changes the
environmental conditions of vegetation growth, which further
affects the vegetation distribution and vegetation net primary
productivity. The two factors need to be further investigated.

CONCLUSION

In this study, the NPP in Hubei Province during the period from
2001 to 2012 was calculated, and the spatiotemporal dynamics of
NPP and its relationships with the urbanization indicators
(population and GDP) were investigated. The main conclusions
can be summarized as follows: 1) The distribution pattern of NPP is
as follows: northwest Hubei has a high altitude, and the main land
cover type is woodland with high vegetation coverage and little
human activities. Therefore, there were higher NPP values in
northwest Hubei. The urban areas, which have an extensive
distribution of urban and built areas, showed the lowest NPP
values. In addition, the land cover type had significant influences
on the spatial distribution of NPP. 2) During the study period, the
average NPP value increased in high NPP areas. Because the inter-
annual variation of NPP in DBF, the main land cover type in this
region, was positive. On the contrary, the average NPP value
decreased in low NPP areas. The urban areas continued to
expand, but the inter-annual variation of NPP was negative in
urban areas. From 2001 to 2012, NPP decreased by 18.58 g C/m2

in low NPP areas. The losses of NPP in urban areas are continuing
and evident. 3) Population and GDP density are the typical
indicators of anthropogenic activities, which can play an
important role in the distribution and dynamics of NPP. During
the study period, there was a negative correlation between NPP,
population, and GDP. On the whole, the highest values of negative
correlation coefficients were found in urban areas and the lowest in
woodlands. The expansion of the built-up land in themiddle and east
can decrease the size of green areas and reduce the productivity of

vegetation. Meanwhile, the remaining woodlands are mostly
distributed in the west. The estimated NPP values were likely to
remain unchanged with the urbanization developments. In addition,
the impact of human activity onNPPwas different depending on the
intensity of human activity. With the increase of population density,
the negative correlation coefficients between population and annual
NPP become larger. But, the correlations between NPP and GDP
were not the same as the correlation between NPP and population.
The negative correlation coefficients between GDP and NPP
increased first and then decreased with the continuous increase of
GDP density. This indicates that the impact of urbanization on NPP
is not completely negative when GDP reaches a certain threshold.
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GLOSSARY

APAR Absorbed photosynthetically active radiation

CASA Carnegie–Ames–Stanford Approach

DEM Digital elevation model

DBF Deciduous broadleaf forest

DT Decreasing trend

EAHSI Elevation-adjusted human settlement index

ENF Evergreen needleleaf forest

EBF Evergreen broadleaf forest

FPAR Fraction of photosynthetically active radiation

GLO-PEM Global production efficiency model

GDP Gross domestic product

HIS Human settlement index

IT Increased trend

LUE Light-use efficiency

MRT MODIS Reprojection Tool

MVC Maximum value composite

MF Mixed forest

MRE Mean relative error

NGDC National Geophysical Data Center

NDVI Normalized difference vegetation index

NTLs Nighttime lights

NPP Net primary productivity

NC Negative correlation

PC Positive correlation

RE Relative error

R2
Determination coefficient

SDT Significant decreasing trend

SIT Significant increasing trend

SNC Significant negative correlation

SPC Significant positive correlation

UTM Universal Transverse Mercator
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