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Hotspots of endemic biodiversity, tropical cloud forests teem with ecosystem services
such as drinking water, food, building materials, and carbon sequestration. Unfortunately,
already threatened by climate change, the cloud forests in our study area are being further
endangered during the Covid pandemic. These forests in northern Ecuador are being
razed by city dwellers building country homes to escape the Covid virus, as well as by illegal
miners desperate for money. Between August 2019 and July 2021, our study area of 52
square kilometers lost 1.17% of its tree cover. We base this estimate on simulations from
the predictive model we built using Artificial Intelligence, satellite images, and cloud
technology. When simulating tree cover, this model achieved an accuracy between 96
and 100 percent. To train the model, we developed a visual and interactive application to
rapidly annotate satellite image pixels with land use and land cover classes. We codified
our algorithms in an R package—loRax—that researchers, environmental organizations,
and governmental agencies can readily deploy to monitor forest loss all over the world.
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INTRODUCTION

CLOUD FORESTS (CF) are mountain forests persistently shrouded by clouds and mist. They have
been likened to island archipelagos because, like an island, each CF constitutes a unique, isolated
habitat where heterogeneous, endemic species proliferate (Foster, 2001).

Although they cover less than one per cent of the planet’s land surface, CFs disproportionately
host its most biodiverse ecoregions, which are regions of natural communities where species share
environmental conditions and interact in ways sustaining their collective existence (Bruijnzeel et al.,
2010). Nearly 90% of CFs across the globe are on the World Wildlife Fund’s list of the 200 priority
ecoregions—a list based on species richness, number of endemic species, rarity of habitats, and other
features of biodiversity (Olson and Dinerstein, 2002).

Twenty-five percent of the earth’s CFs can be found in the Americas. In particular, the tropical
Andes mountains are hotspots of biodiversity, including the CFs of Ecuador, site of this paper’s study
area (Figure 1). These forests comprise 10% of the country’s territory, but they contain half of the
country’s species, of which 39% are endemic. In the previous 5 years alone, new species of frogs
(Guayasamin et al., 2019), bamboo (Clark and Mason, 2019), lizards (Reyes-Puig et al., 2020),
hummingbirds (Sornoza-Molina et al., 2018), and orchids (Romero et al., 2017) have been discovered
in Ecuador’s CFs.

Huston’s Dynamic EquilibriumHypothesis helps explain the explosion of endemic biodiversity in
tropical CFs (Huston, 1979). The hypothesis proposes optimal diversity perches between
environmental productivity and disturbance, between sustenance and stress.
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In tropical CFs, sustenance and stress are caused by these
forests’ low latitude and high altitude. At low latitudes near the
equator, sustenance is spurred by year-long growth,
uninterrupted by winter, and by relatively constant thermal
conditions. Sustenance is further enhanced in the high
altitudes of mountains by ubiquitous clouds and fog, which
provide moisture for epiphytes—such as moss, lichens,
bromeliads, and orchids—that have evolved the ability to draw
water from the atmosphere (Gradstein et al., 2008).

But without stress in an ecosystem, only few species would
dominate by outcompeting all others for resources. In tropical
climates, stress is generated when high precipitation leaches
minerals from the soil, lowering its fertility. Competition for

nutrients prevents dominance by the few, thereby creating
opportunities for the many to survive and for biodiversity to
thrive.

Biodiversity is boosted further by the topographic structure of
CFs. Mountains occupy a lower surface area than lowlands; they
are physically separated from other mountains; and each
mountain is distinct from other mountains in terms of slope,
height, and lighting conditions. These topographic features create
plant and animal communities that are small and isolated, where
populations can diverge genetically to form endemic taxa
(Myster, 2020).

Beyond biodiversity, CFs provide other ecosystem services
(Figure 2). They control soil erosion and regulate water supply by

FIGURE 1 | (A) Running north and south across South America, the Andes supports 15 and 12 percent of globally known plant and vertebrate species,
respectively. The study area is in northern Ecuador (B), centered around a pueblo called Mindo, for which Sentinel-2 satellite rasters were cropped (C). From these
rasters, we extracted tiles of 38 × 38 pixel resolution (D), with each pixel having a spatial resolution of 10 m2 To manually classify individual pixels, we compared these
Sentinel-derived tiles to higher resolution Airbus satellite images (E).

FIGURE 2 |Mountainous, cloud forests (A) completely surround our study area in Mindo, Ecuador. Ecosystem services from these forests include (B) food, such
as plantains; (C) building materials and carbon sequestration by Guada angustifolia, the native bamboo; (D) water; and biodiversity of epiphytes, such as orchids, and
vertebrate species, such as hummingbirds (E).
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intercepting, retaining, and filtering rainfall. CFs surrounding
Quito, Ecuador’s capital of 1.85 million people, provide the
majority of the city’s water supply (Bubb et al., 2004).

Researchers concluded that contributions by CFs to carbon
sequestration have been underestimated because their vegetative
cover lies vertically on slopes, rather than the planar, horizontal
orientation traditionally used to estimate coverage of carbon sinks
(Spracklen and Righelato, 2016). In particular, Guada
angustifolia, the bamboo indigenous to South America, thrives
in CFs and is notably effective at converting carbon dioxide to
plant matter (Muñoz-López et al., 2021). Because of its tensile
strength, Guada is also used as a primary source of building
materials.

Given the value of their ecosystem services, it is indeed tragic
that CFs are being threatened by climate change and habitat
destruction. With temperatures predicted to rise by four degrees
centigrade, the cloud uplifts to which life in CFs have evolved are
dissipating (Helmer et al., 2019).

Beyond climate change, other human activities are having a
more direct and immediate influence on CF destruction. From
2016 to 2017, Ecuador’s Ministry of Mining increased mining
concessions from 3 to 13 percent of the country’s continental land
area, with the majority of this territory occurring within CFs (Roy
et al., 2018).

The 2019 outbreak of the Corona virus has made this bad
situation worse. The world’s unstable economy has driven up
gold prices to record highs. Without jobs and money, desperate
illegal miners in South America have taken advantage of
pandemic lockdowns and their government’s focus on Covid-
related activities to expand their activities in cloud forests
(Brancalion et al., 2020).

A literature review noted recently that researchers increasingly
recognize the global threats to forests, as well as the important
role these forests play in creating a sustainable world. To
investigate forest loss and deforestation, these researchers have
been relying heavily on digital technologies—such as Remote
Sensing and Artificial Intelligence (Nitoslawski et al., 2021). In
this project, we based much of our investigations on these
technologies.

Broadly defined, REMOTE SENSING refers to any technique
obtaining information about an object without physical contact
(Aggarwal, 2004). In the case of satellites, information comes in
the form of fluxes in electromagnetic radiation from the
remotely-sensed object to the satellite sensor.

The technology is based on two capabilities of remote-sensing
satellites (Boyd, 2005). They emit electro-magnetic energy of
various wavelengths; and they gather information about the
distinctive manner in which an individual object reflects back
the energy from each wavelength, so that its singular reflectance
curves can be used to identify the object’s nature.

These capabilities have extended the scientific community’s
ability to observe the world. For example, remote sensing is now
being put to field-scale and site-specific agricultural use (Huang
et al., 2018); to identify and classify marine debris on beaches
(Acuña-Ruz et al., 2018); to assess the adequacy of environmental
conditions for freshwater fisheries (Dauwalter et al., 2017); to

map areas of severe soil erosion (Sepuru and Dube, 2018); and to
track oil spills in the ocean (Fingas and Brown, 2018).

In 2015, the European Space Agency (ESA) launched the first
of the series of Sentinel-2 satellites, which contain sensors for 13
bands of spectral wavelengths (Kaplan and Avdan 2017). Figure 3
summarizes the portion of the electromagnetic spectrum for
which each band was designed, as well as the spatial
resolution at which their data are collected. These bands can
be classified according to their respective foci. Bands two through
four extend across the red, blue, and green portions of the
electromagnetic spectrum corresponding to colors perceived by
humans. Bands 1, 9, and 10 have been designed to detect
information for correcting distortions from atmospheric and
cloud conditions. (Note that as of 2019, ESA adjusted its
methods, so it no longer provides data on Band 10.) The
remaining bands have been designed to collect data for
specific purposes, such as detecting vegetation and moisture.

Once obtained, the values of these bands can be manipulated
to compute indicators—or indices—of land use and land cover
(LULC) classes. For example, one such index is the Normalized
Difference Vegetation Index (NDVI) for delineating vegetative
cover (Figure 4). NDVI is based on plant biology (Segarra et al.,
2020). To carry out photosynthesis, green plant cells absorb solar
energy in the visible light region of 400–700 μm wavelength,
known as the region of photosynthetically active radiation (PAR).
To avoid cellular damage, they reflect near-infrared light (NIR)
wavelengths of 700–1,100 μm because NIR energy is too low to
synthesize organic molecules; its absorption would merely
overheat and possibly destroy plant tissue. NDVI capitalizes
on this evolutionary artifact. It is the ratio of the difference
between and the sum of the band values at the PAR and NIR
regions. The NDVI enables researchers to translate remotely
sensed band values into indicators of plant cover.

FIGURE 3 | European Space Agency’s Sentinel-2 series collects
information across 13 bands of the electromagnetic spectrum, sampled at
four different spatial resolutions. These bands and resolution are shown on the
y-axis. The x-axis shows the central wavelength value for each individual
band. Bands 2–4, respectively, cover the blue, green, and red bands of light
visible to humans. Bands 1, 9, and 10 are used to correct for atmospheric
distortion. The remaining bands are designed for specific uses, such as
detecting vegetation and moisture.
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Table 1 summarizes the raster-based indices we used in this
project, along with their formulas and pertinent references. It will
be useful, for later analyses, to categorize these indices by type,
according to the purposes for which they were developed, such as
to identify vegetation or moisture. These types are listed along
Table 1, Column 3.

Many researchers have used these raster indices to classify
LULC classes. Ma et al., for example, used three indices—the BSI,
the NDVI, and the MNDWI—to model urbanization across
several cities in China (Ma et al., 2019). Wasniewski et al.
used the NDVI and digital elevation maps to map forest cover
and forest type in Western Africa (Waśniewski et al., 2020). To

develop the predictive model for their project, these latter
researchers relied on Sentinel-2 images, together with the
Random Forest classifier, a machine learning algorithm.

RANDOM FORESTS are called forests because they aggregate
the results of many individual decision trees (Schonlau and Zou,
2020). To construct a decision tree, the analyst assumes a
predictive function relates the response variable Y to the
vector of predictor variables X. The decision tree algorithm
maximizes the joint probability P(X,Y) by iteratively
minimizing an associated loss function. In a later section, in
relation to Figure 13, we discuss the graphical depiction of the
algorithm’s logic.

FIGURE 4 | Raster indices capitalize on the fact that different objects absorb and reflect different regions of the electromagnetic spectrum. For example, green
plants absorb energy in the 400–700 μm wavelengths to photosynthesize, while reflecting wavelengths of 700–1,100 μm. To serve as an indicator for vegetation, the
Normalized Difference Vegetation Index calculates the ratio of the difference between and sums of Sentinel’s Bands 4 and 8.

TABLE 1 | These Raster Indices derive from calculations based on Sentinel-2 band values. Using the formulas in column 4, we estimated the indices in Column 1 to serve as
predictors for our Random Forest models. In our project, we categorize them according to the Land Use and Land Cover type for which they were developed (column 3).

1 2 3 4 5

Index Acronym Type Formula References

Normalized Difference Vegetation Index NDVI vegetation (b8 − b4)/(b8 + b4) Rokni and Musa (2019)
Normalized Pigment Chlorophyll Ratio Index NPCRI vegetation (b4 − b2)/(b4 + b2) Peñuelas et al. (1994)
Shadow Index SI vegetation sqrt((256 − b2) * (256 − b3)) Ono et al. (2010)
Normalized Difference Snow Index NDSI water (b4 − b6)/(b4 + b6) Gascoin et al. (2020)
Normalized Difference Water Index NDWI water (b3 − b8)/(b3 + b8) Du et al. (2016)
Modified Normalized Difference Water Index MNDWI water (b3 − b11)/(b3 + b11) Xu (2006)
Bare Soil Index BSI soil ((b11 + b4)−(b8 + b2))/((b11 + b4)+(b8 + b2)) Nguyen et al. (2021)
Normalized Built-up Area Index NBAI built area ((b12 − b8)/b2)/((b12 + b8)/b2) Bouhennache et al. (2019)
Normalized Difference Built-up Index NDBI built area (b11 − b8)/(b11 + b8) Zha et al. (2003)
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Because the response variable Y is defined, training a decision
tree risks over-fitting, a problem that sometimes besets empirical
models (Pothuganti, 2018). Over-fitting occurs when the model is
so dependent on the data used for training that it generates poor
results when applied to other, new data. This happens because the
model estimates not only the systemic relationship between
predictors and the response variable, but also the random
noise inherent in real-world data.

To constrain over-fitting, Breiman proposed two additional
algorithms to supplement decision trees at each node (Breiman,
2001). The first randomly selects rows across the set of
observations. The second randomly selects a subset of
predictors in each randomly selected row.

In the Random Forest algorithm, any individual decision tree
might be biased towards the particular dataset upon which it has
been trained. But if analysts create a forest of thousands of such
trees—with each tree modeling P(X,Y) based on randomly chosen
observations—they could then pool the results from each tree in
the forest, thereby reducing the influence of noisy information.
To put it differently, if analysts consistently get the same model
results from iteratively and randomly sampled data, then they can
more confidently conclude the results are based on signals rather
than noise. The algorithm’s randomizing features increase their
predictive capabilities. We use this principle of randomization
later, when we run simulations from an ensemble of models.

Previous studies have usefully applied Random Forests to
Sentinel-2 images. For example, Ghorbanian et al. achieved
accuracy rates of 85% in identifying pixels of mangrove plants
(Ghorbanian et al., 2021). They report that the lowest rates of
accuracy occurred in areas with mixed or boundary conditions,
such as areas where mangroves tended to mix with mudflats or
shallow waters. They therefore speculated that accuracy might be
improved with satellite images of finer spatial scale than the 10 m2

resolution of Sentinel images. In another study, the investigators
applied Random Forest to Sentinel-2 images to classify LULC
classes (such as cropland, water, forests, and bare soil) in Croatia,
achieving an overall accuracy of 89% (Dobrinić et al., 2021). The
investigators noted the usefulness of predictors such as raster
indices and landscape textural features.

One other feature of Random Forest enhances its utility in this
project. Because the algorithm randomly selects subsets of
predictor variables at each individual tree, they are not heavily
influenced by correlated predictors. That is, multicollinearity
does not affect the predictive capacity of models produced by
random forests, thereby enabling us to use, as predictor variables,
both the computed raster indicators listed in Table 1, along with
the original band values upon which they are based.

The models produced by the random forest algorithm can
then be run against the predictors to generate simulations.
Running random forests and generating simulations across
voluminous rows and columns of data can be time-
consuming. In our project, we ultimately had to analyze 1.56
× 106 rows of observations with 58 columns of predictors.
CLOUD TECHNOLOGY provided us with the tools we
needed to analyze these data.

We received a grant fromMicrosoft’s Artificial Intelligence for
Earth program, which provided us with a cloud platform enabling

us to parallelize many of our calculations in a virtual machine
with 14 CPU cores and 64 gigabytes of memory. The grant also
provided us access to time-stamped and geocoded Airbus satellite
rasters at 1.5 m2 resolution that we used as reference images
against which to compare our Sentinel images.

Cloud technology further enabled us to integrate
computational efficiency with data integrity. One of our
project’s objectives is to provide a low-cost method for
researchers and environmental groups to apply our algorithms
to monitor other vulnerable forests in the world. For this reason,
we developed an R package codifying our methods. Our package,
loRax, is available on the web at http://pax.green/lorax/.

We hope other researchers will use loRax to share data and
metadata from their own projects. To preserve data integrity, we
developed an algorithm to encode our data and metadata within
blockchains. The technical foundation for bitcoins and other
digital currency, the blockchain algorithm provides a way to
maintain data provenance while also minimizing data tampering.
Data are linked, block by block in a chain, so that each block
connects to the previous one with a hash value, i.e., a randomly
generated key that maps to the data in the previous block (Beck
et al., 2017). The blockchain algorithm validates the series of hash
values along this chain of blocks and detects any attempt to
corrupt or replace the information within any block. Through this
algorithm, data providers who use our R package can maintain
proprietorship and provenance over their data.

MATERIALS AND METHODS

Study Area
The Andes cordilleras run down Ecuador’s central spine from
north to south, a narrow (150–180 kmwide) stretch of mountains
about 600 km long. The study area lies on the northern end of this
length, on the western foothills of the volcano, Mount Pichincha.
The area centers around a pueblo called Mindo, and it lies within
one of the world’s five “megadiversity hotspots,” a term referring
to areas containing 5 × 103 vascular plants species per 104 km2.

The study area, which hereinafter we refer to as Mindo, covers
52.13 km2. It has an average elevation of 1.49 kms and is bounded
by the following longitudes and latitudes in the NW and SE,
respectively: (−78.80, −0.04) and (−78.74, −0.1).

Data and Tools
Figure 5 provides an overview of our methods and our workflow
for this project. We derived our data from three sources of
satellite information: the European State Agency’s series of
Sentinel-2 satellite images; the United States National
Aeronautics and Space’s Administration (NASA’s) elevation
data, estimated by its Global Digital Elevation Model (GDEM);
and Airbus, a private aerospace company that provided us with
satellite images with pixel resolution of 1.5 m2. At 10 m2

resolution, images from Sentinel rasters can be difficult to
interpret. We therefore used the higher resolution of Airbus
images to compare with the Sentinel rasters (see Figures 1D,E).

Our primary analytical tool was R, the public-domain
statistical package (R Core Team, 2020). We also used SNAP,
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FIGURE 5 | This project takes Sentinel-2 rasters as its input. From these rasters, we estimate predictors based on Sentinel’s 12 band values, as well as raster
indices and elevation. To derive spatial information, we estimate the median and variance of the raster indices at three spatial scales: pixel-, cluster-, and tile-levels. We
use annotated images to train an ensemble of 10models using the Random Forest algorithm.With this model ensemble, we select pixels for which consistent simulations
have been made across all 10 models. We then use these simulations to map areas of tree cover loss.

FIGURE 6 | The raster above is the same one featured in Figure 1D. For each pixel (such as the one above enclosed within a red square), we developed predictors
at three spatial scales: the individual pixel; the cluster of nine adjoining pixels; and all pixels within the tile. At the pixel-level, predictors consist of the 12 normalized band
values; 9 raster indices; and the logarithm of the elevation level. At the cluster-level, we took themedian and variance for each raster index across the nine pixels within the
cluster. At the tile-level, we took the median and variance of each index across all pixels within the tile.
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a software application developed by ESA to process, analyze, and
visualize the Sentinel rasters. We codified our data, algorithms,
and workflow in an R package, loRax, information about which is
available at: http://pax.green/lorax/.

Select and Process Sentinel Satellite
Images
We searched ESA’s data hub for satellite rasters for Mindo having
the least amount of cloud cover. To minimize seasonal differences
across the three time periods we downloaded, we tried choosing
rasters for months that were as close to each other as possible, but
this desideratum was constrained by the availability of relatively

cloud-free rasters for Mindo. Listed below are the monitoring
dates and filenames of the Sentinel raster we downloaded.
Ultimately, to maximize our number of cloud-free pixels, we
decided to compare only two time periods, 2019 and 2021.
Rasters can be accessed by filename from the European Space
Agency at: https://scihub.copernicus.eu/dhus/#/home.

• 2019-08-30 (S2B_MSIL2A_20190830T153619_
N0213_R068_T17MQV_20190830T205757.SAFE)

• 2020-08-24 (S2B_MSIL2A_20200824T153619_N0214_
R068_T17MQV_20200824T193939.SAFE)

• 2021-07-05 (S2A_MSIL2A_20210705T153621_N0301_
R068_T17NQA_20210705T213848.SAFE)

TABLE 2 |We developed a Model Ensemble based on 120 iterations of the Random Forest algorithm on our annotated dataset. We sampled and manually classified 2.65 ×
105 pixels. For each iteration, pixel numbers for training, testing, and oversampling are listed in columns 3 through 5. To evaluate the accuracy of our model ensemble, we
developed Confusion Matrices for two types of test data. In column 6, we combined all test results across all iterations. In column 7, we selected only those pixels that were
classified consistently across at least 10 iterations.

For each individual iteration Across all iterations

1 2 3 4 5 6 7

Land use
and land
cover class

No. of
annotated pixels

No. of
pixels for
training

No. of
pixels for
testing

No. of
pixels for

oversampling

No. of
pixels across
all iterations

No. of
pixels restricted
by consistent

classification across
at least

10 iterations

water 6,132 4,292 1839 220,680 217,388
built 7,221 4,292 1839 1,090 220,680 218,803
cloud 12,365 4,292 1839 220,680 219,523
soil 17,539 4,292 1839 5,000 220,680 101,136
grass 58,268 4,292 1839 5,000 220,680 10,136
tree 164,041 4,292 1839 5,000 220,680 146
TOTAL 265,566

FIGURE 7 | The raster above (A) is the upper-right cross-section of the raster featured in Figure 6, with a red square around the same pixel from Figure 6. Within
each tile, for each raster index for each pixel, we took the 99% percentile value of the index, which we refer to as the Index Bin. For example, the selected pixel had an SI
(shadow index, used to monitor tree canopy) value of 255.97 (see Figure 6). The pixel has an SI Index Bin (b_si) value of 48. To annotate or tag a pixel, we developed a
Shiny, interactive application (B) for our R package, loRax. In the example above, we selected “b_si” from the drop-down box and manipulated the scroll bars to
select minimum/maximum values of 33/77. Colored numbers corresponding to the Index Bin values of each pixel within this range appeared on the raster image (A). After
comparing the resulting image with the higher resolution Airbus image (see Figures 1D,E), we selected the class “tree” from another drop-down list (B) to save the class
and location of the selected pixels to file (C).
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FIGURE 8 | These Confusion Matrices are based on results from Random Forest tests for two different types of data (see Table 2). In (A), we estimated accuracy
scores based on all the test data derived from the 120 iterations we ran of Random Forest. In (B), we selected pixels that were classified consistently across at least 10
iterations.

FIGURE 9 | (A) Airbus mid-resolution image of a Mindo tile for which (B) the model simulation showed tree cover loss in the tile. The Airbus image (taken on April
2021) does not show tree cover loss. But the model was based on a Sentinel raster (C) taken on July 2021. A site visit clarified the discrepancy. Construction of a new
subdivision broke ground (D) after the Airbus image was taken in April. Sentinel’s July image and the Random Forest model detected the more recent pattern of tree
cover loss.
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To prepare these rasters for analysis, we used ESA’s SNAP
software to resample and reproject the rasters to a 10 m2 pixel
resolution with the World Geodetic System (WGS84) coordinate
system. We then exported the results to GeoTIFF format for
further analysis with R.

Crop Raster Into Tiles
Each raster listed in above covers an area in northern Ecuador
with spatial resolution of 110 × 110 kms. From each of these, we
cropped rasters for our study area in Mindo. Each Mindo raster
had a spatial resolution of 7.22 × 7.22 kms and pixel resolution of
722 × 722 pixels. To create even smaller rasters that were more
computationally manageable, we further cropped each Mindo
raster into tiles (see Figures 1C,D). Each tile has a pixel resolution
of 38 × 38 pixels, corresponding to a spatial resolution of 380 ×
380 m. Each Mindo raster supplies us with 361 tiles, and each tile
provides us with 1,444 (38 × 38) rows of data. Ultimately, our
dataset consisted of 1.56 × 106 rows, i.e. (1444 pixels per tile) x
(361 tiles per Mindo raster) x (3 time periods per raster).
Ultimately however, to maximize the number of cloud-free
pixels we could track over time, we decided to use only the
rasters for 2019 and 2021.

Transform the Information in Each Tile Into
a Set of Predictors
To prepare for our Random Forest model, we converted the
information in the GeoTIFF of each tile into a set of predictor
variables. Figure 6 summarizes our approach (The tile in

Figure 6 is the same one shown in Figure 1D). All in all, we
developed 58 predictors representing information for each pixel
at three different spatial scales.

At the scale of individual pixels, we extracted the numeric
values of each of the 12 bands recorded by the Sentinel raster and
calculated the normalized values of each band. From the original,
non-normalized band values, we calculated the various raster
indices shown in Table 1. Lastly, we calculated the logarithm of
the elevation, in meters, provided by NASA’s GDEM. To
implement the annotation method we describe in the next
section, we also needed to calculate the 99-percentile value
within each tile for each raster index for each pixel. In the
example in Figure 6, we highlight these values in yellow and
refer to each as an “Index Bin.”

We hypothesized we could achieve a higher prediction
accuracy if we captured spatial information about our pixel-
level predictors. We therefore calculated indicators of raster index
homogeneity at two other spatial scales. At a cluster level—for
each pixel and its eight adjoining pixels—we calculated the
median and variance of each raster index. At the tile level, we
performed the same calculations for median and variance of each
raster index across all pixels in the tile.

In Figure 6 and in the rest of the paper, we use the following
the notation to refer to predictors. We use the prefix “p”, “c”, and
“t” to refer to the scale (pixel, cluster, and tile) of the predictor.
This is followed by the acronym for each index (e.g., NDVI, BSI,
SI, etc.) as denoted in Table 1. For the cluster- and tile-level
predictors, we use the suffix “med” or “var” to refer to whether the
predictor represents the median or variance of the group of pixels.

FIGURE 10 | Mean Decrease Accuarcy measures each predictor’s influence on the LULC classes simulated by the Random Forest Model. Each predictor has
three attributes: type, scale, and homogeneity. Type refers to how they are used (e.g., to detect vegetation, water, etc.). Scale is the spatial level at which each was
measured. Homogeneity is the median or variance of each raster index at the cluster or tile levels. The most influential predictors are shown inset. They are a mix of
predictors varying by type, scale and homogeneity.
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So, for example, the notation “t_ndvi_med” refers to the NDVI’s
median value across all pixels in a tile.

Annotate Tile Samples With Land Use and
Land Cover Classes
Before training our model, we first needed to annotate samples
from our data. To perform our annotations, we developed an
interactive application using R’s Shiny package. An interactive
demonstration of the Shiny app is available at http://pax.green/
lorax/. The application is summarized in Figure 7 (The raster in
Figure 7A is the upper-right cross-section of the raster from
Figure 6. The pixel within the red square is the same pixel
featured in Figure 6).

As we stated earlier, for each raster index for each tile,
we categorized each pixel value into 0-99 percentiles, which
we refer to as an Index Bin. For example, in Figure 7A, the
selected pixel’s value for the Shadow Index (si)—a raster index

used to estimate tree canopy cover—falls into the 48th percentile,
or Index Bin.

Using loRax’s Shiny application, we selected “b_si” (for binned
Shadow Index) from the drop-down list that allows one to choose
from any of the indices listed in Table 1 (see Figure 7B). We then
manipulated scroll bars to choose 33 and 77 as the minimum and
maximum values, respectively, for the selected tile’s Index Bins for
SI. On the tile’s satellite image (Figure 7A), pixels with Index Bin
values between and including these min/max numbers
interactively appeared as colored numbers (their Index Bin
values). We then compared this image to the higher resolution
image from Airbus (see Figures 1D,E), as well as Figures 9A,C).
Once we were satisfied that the colored pixels corresponded to the
corresponding LULC class (in this example, tree cover), loRax
enabled us to select the LULC class from another drop-down list
(Figure 7B) and to save the results—i.e. the pixels’ LULC class,
along with their location (Figure 7C)—to a file for inclusion in
the dataset for annotated LULC classes.

FIGURE 11 |We conducted a PCA on our annotated dataset. The first three dimensions (PC1, PC2, and PC3) explain 70% of the data variability. Individual PCA
scores are shown above as differently colored density clouds, with the highest density points for each class shown as diamonds. The Random Forest’s high accuracy
scores for cloud and tree conform to the observation that their PCA scores cluster distinctly at the east and west quadrants of the PCA. Contrariwise, the individual
scores for the other classes merge closely together near the point of origin. PC1’s west and east quadrants are dominated by loadings related to vegetation and
moisture, respectively. Both PC2’s and PC3’s southern quadrant is dominated by tile-level measures of homogeneity—median and variance for PC2 and PC3,
respectively.
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FIGURE 12 | Individual red dots show areas of tree cover loss in Mindo. Yellow boxes indicate tiles where tree cover loss equaled or exceeded 5% of the tile area.
Based on our model results, the total area of tree cover loss between August 2019 and July 2021 is 0.61 km2

—1.17% of the study area.

FIGURE 13 | This graphic visualizes the Random Forest Algorithm’s logic for a single Decision Tree for a simplified annotated dataset. The original dataset was
filtered for data with the LULC classes of “tree” and “grass;” only three predictors were selected; and values of the predictors were grouped into three percentile bins. In
this example, rules govern whether a branch in the Decision Tree ultimately leads to a pixel being classified as “grass.” Generally, (A) p_ndwi must be≥2.5; and (B)
t_npcri_med must be≥1.5. If (A) is true and (B) is false, then p_ndvi must be <1.5. If (A) and (B) are false, then p_ndwi must be >1.5 and p_ndvi must be <2.5.
Simulations from our ensemble of Random Forest models are the net, probabilistic result from thousands of such trees for all predictors and response variables in our
annotated dataset.
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Train the Random Forest Models and Run
Simulations
These annotated LULC classes served as the response variables
for the Random Forest algorithm, and the 58 variables shown in
Figure 6 served as predictors. Before running the algorithm, we
split the data into two bins—one for training and another for
testing the model. Table 2 summarizes the number of annotated
pixels within each class. In total, we had 265,566 pixels in our
annotated dataset, with six classes: tree, grass, water, soil, built,
and cloud. Water had the fewest annotations, with 6,132 pixels.
For each iteration of training our Random Forest model, we took
70 and 30 percent of 6,132 as the number of pixels within each
class to respectively train and test the model. Because we had
sufficient annotations for the other classes, we over-sampled from
these classes, as detailed in Table 2.

To create an ensemble of models, we ran Random Forest 120
times, with each iteration’s model based on randomly sampled
data. The testing data thus produced were of two types. For the
first type, we merged the test data from across the 120 iterations,
generating 220,680 (120 iterations x 1839 rows of test data per
iteration) as shown in Table 2’s Column 6. For the second type,
we created a second test dataset, one that was restricted by two
criteria: 1) the pixel needed to have been simulated by at least 10
iterations; and 2) the classification of the pixel must have been
consistent across all 10 iterations (Table 2’s Column 7).

For this second, “restricted” dataset, trees had fewer data (146)
because it was a class with many annotated pixels (164,041). Each
pixel therefore had a low probability of being randomly selected
over 120 iterations, making it difficult for this class to fulfill the
first criteria of needing to have been simulated for at least 10
iterations.

R’s Random Forest package computes the Mean Decrease
Accuracy (MDA), a measure of each predictor’s influence on
model accuracy. After an initial run of the Random Forest using
all predictors, we selected those predictors with an MDA value of
at least 0.02. Our objective was to choose predictors that were
influential, but not to have so many predictors that the models
would run the risk of over-fitting.

After running the Random Forest, we applied Principal
Component Analysis to our annotated dataset to better
understand the influence of each predictor on each LULC
class (Jolliffe and Cadima, 2016).

RESULTS

Assess Simulation Accuracy With
Confusion Matrix
To evaluate accuracy across the simulations from our ensemble of
10 models, we developed the Confusion Matrices shown in
Figure 8. Figure 8A’s Confusion Matrix is based on test data
of the first type, which merged all test data across the 120
iterations. In this matrix, the models simulated tree cover
correctly 96.72% of the time; they misidentified tree cover as
grass 2.08% of the time (for clarity, only error rates greater than or
equal to 1 percent are shown).

The highest rates of error of the Random Forest simulations
occurred in the models’ simulation of grass cover. These grass
simulations generated a true positive accuracy rate of 87.58%. For
grass, the models generated false positives 11.62% of the time,
classifying as grass those pixels that were actually soil (7.31%),
tree cover (2.08%), and water (2.23%). The models also generated
false negatives for grass, misclassifying as soil (10.56%) and tree
(1.09%) pixels that should have been classified as grass.

Assess Simulation Accuracy With Satellite
Images and Field Visits
We tried evaluating simulation accuracy by comparing our
simulations against the higher resolution Airbus satellite
images. But because of the temporal mismatch between the
Sentinel and Airbus rasters, this approach can lead to
misleading results. Figure 9 provides an example of the
problems of temporal mismatch.

To calculate loss of tree cover, we filtered our data in two steps.
First, we selected only those pixels in Mindo that were cloud-free
across two time periods (2019 and 2021). Second, we used only
the “restricted” test data. For these data, we defined a pixel as
having lost tree cover if the pixel was classified as tree cover in
2019 but was classified as some other class in 2021.

We also identified tiles having a relatively higher proportion of
tree cover loss—at least 5%. We refer to these tiles as “tree loss
hotspots.” To avoid the bias of small samples, we selected only
those tiles that retained at least 1,000 pixels after filtering for
cloud cover. We then calculated the proportion within these tiles
of pixels identified as having lost tree cover.

Given the Covid lock-down, we could only visit “tree loss
hotspots” within walking distance of Mindo’s central plaza.
Fortunately, within one such area, we obtained results
enabling us to verify our simulations.

In Figure 9B, the model simulation for 2021 indicates loss of
tree cover (shown as red pixels) that do not appear in the
corresponding Airbus image (Figure 9A). A visit to the site
clarified the reasons for this apparent discrepancy. The Airbus
image was taken in April, while the simulation was derived from
the Sentinel raster for July (Figure 9C). A site visit enabled us to
confirm that new construction had broken ground between April
and July (Figure 9D).

Evaluate Influence of Predictor Variables
With Mean Decrease in Accuracy
Figure 10 shows the relative importance of the various predictors,
based on the mean decrease in accuracy (MDA). This metric
estimates relative importance by calculating how removing a
predictor affects prediction accuracy. As discussed in Figure 4
and its accompanying text, each predictor can be characterized by
type (i.e., by the purpose for which each index was developed,
such as to identify vegetation or moisture); scale (pixel-, cluster-,
or tile-levels); and, at the cluster- and tile-level, by measures of
homogeneity (median and variance). Figure 10’s coloration of
points characterizes each predictor by scale. As shown in the
figure’s inset, the most influential predictors, as measured by
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MDA, are a mix of predictors varying by type, scale, and measure
of homogeneity.

Evaluate Influence of Predictor Variables
With Principal Component Analysis
Principal Component Analysis (PCA) simplifies high-
dimensional, complex data by extracting features of the data
and then projecting these features on to lower dimensions (called
principal components). These features are extracted and
projected one dimension at a time; each dimension
cumulatively explains the variability of data features, and each
succeeding dimension is estimated independently from preceding
dimensions.

We conducted a PCA on the annotated dataset used to train
and test our Random Forest model. The first three dimensions,
results for which are summarized in Figure 11’s biplots, explain
70% of the variability across our dataset. The density of points for
each class across the PCA quadrants is shown as color gradients
on the biplots, with diamond points indicating each class’s center
of highest density.

The influence of a predictor along one dimension is measured
by its so-called loading, represented on the biplot as the length of
each arrow. The angles between arrows show the correlation
between predictors. For example, in Figure 11A, along the PCA’s
first dimension, points 2 and 3 (c_ndvi_med and p_ndvi, the
cluster-level median and pixel-level values of NDVI) are closely
related. Points 7 and 8 (p_ndwi and c_ndwi_med, the pixel-level
and cluster-level median values for NDWI) are closely related;
however, compared to points 2 and 3, they exert an opposite
influence on the first dimension. On the other hand, along the
second dimension, point 12 lies on the PCA’s southern quadrant.
This point, representing t_ndbi_med, exerts an influence that is
orthogonal to any of the points along the first dimension.

Map of Tree Loss
One of our primary objectives was to produce a map of individual
pixels of tree loss and of tiles that are “tree loss hotspots.”We have
shared this map, shown in Figure 12 with environmentally-
motivated stakeholders in Mindo to help them focus their
efforts on these areas of greatest concern.

DISCUSSION

The convergence of remote sensing, Artificial Intelligence, and
cloud computing supplied us with massive amounts of data and
with the computing power to process them.We set out to develop
a workflow for monitoring deforestation with satellite data and to
build a corresponding R package that is scalable and transferrable
for use by others to protect forests across the globe. For our tool,
loRax, to be credibly implemented, it must deliver results that are
accurate, in a way that is relatively transparent.

Artificial Intelligence has been criticized as being a “black box”
through which one feeds copious data to be digested by obtuse
algorithms, and from which predictive simulations are
regurgitated (Castelvecchi, 2016). Although the mathematical

computations of the Random Forest can be obtuse, we have
tried in this paper to provide an intuitive explanation of its
theoretical underpinnings, which we believe can be
communicated more easily than those of, say, a Convolutional
Neural Network (CNN) (LeCun et al., 2015). Additionally, most
pre-trained CNNs have been built on RGB images (Senecal et al.,
2019). In the future, researchers may yet develop CNNs that can
analyze more than three bands and that would not require the
computational resources typically demanded by deep CNNs.

For the present, we hypothesized we could use Random Forest
to obtain useful information from the 12 bands of Sentinel rasters.
We further hypothesized that we could improve the accuracy of
our simulations:

• by developing predictors to capture spatial information; and
• by generating these simulations with a model ensemble.

Figure 8B’s Confusion Matrix suggests there is much
analytical value to be gained from these two innovations.

Influence of Individual Predictors on
Simulated Classes
As an additional step towards model transparency, we also
investigated how the predictors might be influencing model
simulations. Figure 10’s MDA indicates that the predictors
wielding the most influence are a combination of normalized
band values; raster indices for vegetation and moisture; and
measures of homogeneity of these indices across spatial scales.
Out of the 38 predictors used for the Random Forest, 15 were at
the pixel level and another 16 at the tile level—9 for the median
and seven for the variance. This result confirms the importance of
information provided by our predictors of spatial homogeneity.
Out of all predictors, 13 were for vegetation-related indices and 12
for moisture-related indices.

Figure 11’s PCAs provide additional insight about the
predictors. While Random Forests maximize the joint
probability between predictor and response variables, PCAs
aim to group predictors into fewer dimensions by eliminating
information redundancies in the data. In doing so, the PCA
provides insight on how individual predictors might be
influencing the Random Forest simulations.

The PCAs indicate 70% of variability in the dataset could be
accounted for in the PCA’s first three dimensions: respectively 48,
12, and 10 per cent in the first, second, and third dimensions. The
first dimension is defined by raster indices for vegetation and
moisture lying west and east, respectively, of the point of origin
(POI). In the second and third dimensions, predictors south of
the POI relate to spatial information at the tile level—the tile
median in the second dimension and the tile variance in the third.
These results conform to Figure 10’s MDA indicating the
importance of spatial information to complement water- and
vegetation-related raster indices at the individual pixel level.

Looking beyond the PCA loadings to the scores for individual
observations, we observe that these PCA scores are consistent
with Figure 8’s Confusion Matrices. Figure 8 shows simulations
for tree and cloud cover to be highly accurate (more than 99%). In
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Figure 11’s PCA, individual scores for tree and clouds form
distinct clusters lying west and east on the PCA quadrants.
Contrariwise, data for grass, soil, water, and built classes are
widely dispersed around the POI. Although the highest density
points for these classes are distinct, their individual points merge
with one another across the four quadrants of the PCA. This
might account for their relatively lower accuracies in Figure 8’s
Confusion Matrices. We hypothesize that the electromagnetic,
spectral signals sent by objects in the grass, soil, water, and built
LULC classes are less distinctive than those sent by the tree- and
cloud-cover classes.

At this juncture, one point merits mention. This paper’s senior
author has co-written several policy- and law-oriented papers on
the importance of understanding a model’s epistemic framework,
i.e., its assumptions and underlying theoretical foundations
(Fisher et al., 2014). PCA and Random Forest are built upon
different epistemic foundations. That each corroborates the
other’s results should provide one with a measure of
confidence in the models’ simulations.

Visualizing the Random Forest
With a better understanding of the influence of individual
predictors on the modeling process, with a mind to enhance
the transparency of our modeling process, we now visualize the
logic of the Random Forest algorithm. To do so, we trained a
model using a highly simplified annotated dataset which we
created by modifying the original annotated dataset as follows:

• We subset the response variables to only two classes—tree
and grass.

• We subset the predictors to only three—p_ndwi, p_ndwi,
and t_mndwi_var.

• We binned the raw predictor values into three percentile
groups.

We ran the Random Forest on this simplified annotated
dataset to produce a model distinguishing between grass and
tree cover. Figure 13 graphically depicts the logic through which
the algorithm produced a single decision tree. The decision tree
goes through a series of Yes/No choices based on the value of each
predictor, with each tree branch leading to either “grass” or “tree.”
During the training period with our full, annotated dataset,
Random Forest aggregates the results of thousands of such
trees to generate the set of rules the models use to classify the
different LULC classes.

We glean a plausible narrative from Figure 13’s decision
tree and Figure 11’s PCAs. Although NDVI and NPCRI have
both been developed to detect vegetation, Figure 13 suggests
higher NPCRI values are associated with grass cover.
Figure 11B’s PCA suggests that the tile-level variance of
NPCRI exerts an influence on the third dimension that is
opposite that of elevation. These results suggest a spatial
structure consistent with Mindo’s settlement pattern. Tree
cover tends to prevail at higher elevations. At lower elevations,
in Mindo’s valleys, there is greater variability in the
distribution of trees and pastureland.

Addressing Model Uncertainties
Uncertainties are inherent in the modeling process (Wagner et al.,
2010). As highlighted in Figure 9, a significant source of
uncertainty stems from the temporal mismatch between the
Sentinel rasters and whichever high-resolution image one uses
to verify the simulations. To put it another way, “model errors”
may have as much to do with the manual annotations of the
training data as it does with the algorithms of Artificial
Intelligence.

To constrain the latter type of error, we attempted to deal with
its uncertainties in three ways. First, for those LULC classes for
which we had sufficient data—soil, tree, and grass—we
oversampled for the training set for the Random Forest.

Second, we ran simulations based on an ensemble of models.
Each iteration of the Random Forest algorithm was based on
randomly sampled data from the annotated dataset. In our earlier
discussion on the theory of Random Forests, we noted that if
analysts consistently get the same model results from iteratively
and randomly sampled data, they can more confidently conclude
the results are based on signals rather than noise. We extended
this principle to ensemble modeling, and Figure 8B’s Confusion
Matrix shows promising results.

Third, to identify those areas with tree loss between 2019 and
2021, we selected only those pixels which were classified
consistently across all simulations from an ensemble of at least
10 model iterations.

Given these precautions and given that we filtered out pixels
that were cloud-covered, we suggest that if anything, our results
likely underestimate forest loss in Mindo. We were hampered by
our inability to find more cloud-free satellite rasters for Mindo
than we would have wanted for our analyses. We suspect this
would not have been the case for areas thought to offer more
commercial opportunities than Mindo, where ecosystem services
redounding to global sustainability go largely unpriced by the
market.

Topics for Future Research
There is considerable future work to be done. First, it is generally
recognized that data-intensive, place-based models may have
limited application beyond the region from which data were
collected. Figure 11’s PCAs are consistent with Mindo’s spatial
structure. In Mindo, people have tended to settle in valleys at
lower elevations, where the landscape is crisscrossed by rivers,
pastures, and homes. This would account for the importance of
spatial measures of homogeneity along dimensions 2 and 3,
particularly in dimension 3’s measures of variance, which have
an inverse relationship with elevation. It would be fruitful to
investigate how our models would compare to models run in
areas with vastly different settlement patterns.

Second, at the code level, we have tried to speed our
computations by using parallel-processing whenever possible.
We also have tried to use transparent data structures by
organizing our data hierarchically and grouping pixels within
tiles. We hope that other data scientists can improve the efficiency
of our workflow while maintaining clarity and transparency in
their algorithms and data structures.
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Third, we cropped the Mindo raster into 380 × 380 m tiles
because this resolution roughly corresponded to the spatial
resolution of Google’s satellite images at Google Map’s API’s
16x resolution. (We did this before being notified we received a
grant to purchase Airbus images.) It would be worth exploring
whether a different spatial resolution for tiles would generate
more accurate results.

Fourth, to generate spatial information, our current
algorithms estimate tile- and cluster-level median and
variance. We can improve upon these algorithms by clustering
pixels within each tile into segments where pixels share similar
attributes. The shape and area of the segments might serve as
predictors that would provide greater accuracy to our predictions.

Fifth, we are presently trying to classify LULC classes and
predictors across the Mindo tiles into some typology of tiles. We
then intend to integrate this typology of tiles with bird
observations. In Mindo, in a roughly 100-hectare area of forest
reserve, 356 species of birds have been identified (Stevens et al.,
2021). Our objective is to build a hierarchical, Bayesian model
relating Mindo’s land attributes with bird counts obtained from
Cornell’s ebird database (Wood et al., 2011).

Finally, a fruitful ground for social science research is how to use
computational models for forest governance. Elinor Ostrom’s work
on how communities collectively manage shared resources
emphasizes the importance of performance measures (Anderies
et al., 2013). It would be extremely useful to explore how
deforestation models based on public data and Artificial
Intelligence can be communicated more clearly and credibly to
community stakeholders. As a corollary, it would be worth
investigating whether model results can be used as performance
measures to encourage community-based tree conservation
activities.

CONCLUSION

To summarize our project in concrete terms, we are accessing
data from observations made from a distance of 786 km.
(Sentinel’s orbiting altitude) to make predictions about
whether or not an area half the size of a singles tennis court
(roughly the spatial resolution of an individual pixel from
Sentinel) is covered by trees. Despite this task’s challenges,
Figure 8’s Confusion Matrices indicate a probability of more
than 96% that our simulations of tree cover loss would be correct.
To summarize Figure 12’s results in concrete terms, in our study
area of 52 km2 (about a third the size of Washington, DC), tree
cover loss over the past 2 years added up to an area of 0.61 km2,
about the size of 3,106 tennis courts.

We had set out to extract the signals in our satellite images and
to transform them into actionable information based on evidence.
For this reason, we exercise conservatism in our modeling
approach, as described in the previous section. For the same
reason, we developed our R package, loRax, and based it primarily
on open-access data. It is the reason our package uses blockchain
technology to preserve the integrity and provenance of the
annotated dataset.

Briefly put, we hope both our algorithms and data will be
used by researchers, environmental groups, and governmental
agencies to protect forests across the globe. We hope the results
generated by anyone using loRax can serve as presumptive
evidence that an area is losing forest cover, particularly in
those countries that are resource-poor and that need to
prioritize areas for conservation or for other forms of
intervention. We hope that others who use the R package
will block-chain and share their annotated data (or improve
upon our algorithms) so that collectively, we can increase the
accuracy, and therefore the defensibility, of its simulations of
tree cover loss, thereby boosting our ability to conserve this
precious resource.
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