AUTHOR=Cowell Nicole , Chapman Lee , Bloss William , Pope Francis TITLE=Field Calibration and Evaluation of an Internet-of-Things-Based Particulate Matter Sensor JOURNAL=Frontiers in Environmental Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2021.798485 DOI=10.3389/fenvs.2021.798485 ISSN=2296-665X ABSTRACT=
This paper presents a field evaluation of IoT-enabled Plantower PMS5003 particulate matter sensors in Birmingham, United Kingdom. Commercial, off the shelf, sensors were adapted to utilise Low Power Wide Area Network (LPWAN) IoT technology enabling batteries to be used as a power source. The devices are capable of measuring and communicating data to an online platform with a battery life of ∼2 months, at a measurement interval of 15 min, allowing for automated air quality monitoring for extended periods at high density. The sensors demonstrate success at being integrated into a wireless sensor network, with a high presence of readings. The average correlation coefficients (r2) between raw PMS device data and reference instrumentation are 0.718, 0.703, and 0.543 for PM1, PM2.5, and PM10, respectively. The devices also demonstrate good intersensor consistency, with Pearson’s