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Climate warming has increased grassland productivity on the Qinghai-Tibet Plateau, while
intensified grazing has brought increasing direct negative effects. To understand the
effects of climate change and make sustainable management decisions, it is crucial to
identify the combined effects. Here, we separate the grazing effects with a climate-driven
probability model and elaborate scenario comparison, using the Normalized Difference
Vegetation Index (NDVI) of the grassland on the Qinghai-Tibet Plateau. We show that
grazing has positive effects on NDVI in the beginning and end of the growing season, and
negative effects in the middle. Because of the positive effects, studies tend to
underestimate and even ignore the grazing pressure under a warming climate.
Moreover, the seasonality of grazing effects changes the NDVI-biomass relationship,
influencing the assessment of climate change impacts. Therefore, the seasonality of
grazing effects should be an important determinant in the response of grassland to
warming in sustainability analysis.
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INTRODUCTION

Grasslands provide food and habitats for humankind and animals (de Jong et al., 2013), but are
facing increasing pressure under climate change, in addition to intensifying human activities and
increasing food demands (Chen et al., 2013; Seddon et al., 2016; Zhu et al., 2016). A key concern, at
the current time, is whether grassland systems are sustainable under these double threats. While
grasslands are among the most important indicators of the impacts of climate change (Li et al.,
2018a), only very little research has been done on the role of human activities on the grasslands in
climate change models (Väisänen et al., 2014).

The Three-River Headwaters Region (TRHR) on the Qinghai-Tibet Plateau is a crucial rangeland
ecosystem with great importance to water resources and ecological security of China (Figure 1A)
(Zhang et al., 2016; Han et al., 2018). Dubbed as China’s Water Tower, the TRHR is the source of the
Yellow River, the Yangtze River, and the Lancang River (the upper part of the Mekong River). The
Plateau grassland, covering 91% of the land surface with a mean altitude of 4,500 m above mean sea
level (Zheng et al., 2018), is mainly used as rangeland of nomadic Tibetans, providing grass for
Tibetan yak and sheep, as well as wild animals, to graze (Figures 1B,C).
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Weather station data revealed that air temperature and
precipitation had increased significantly from 1960 to 2018
in the TRHR, and the increasing trend had particularly
accelerated since the 1990s (Figures 1D,E). The warming
trend in the TRHR (at a rate of 0.036°C/yr) had been much
stronger than that at the global level (0.016°C/yr), with more
than double the rate (Figure 1D). Climate change, including
warming and CO2 fertilizing, currently contributes to the
greening of vegetation (Figure 1F) in the water-
temperature-constrained TRHR (Nemani et al., 2003). On
the other hand, the grazing intensity (represented by meat
production throughout this paper) almost doubled from 1995
to 2015 (Figure 1G), exerting great pressure on the grassland
ecosystem. The sustainability of the rangeland as well as the
heritage of this unique Tibetan nomadic culture are facing
huge challenges. However, the effects of grazing and climate
change combine together to impact vegetation [e.g., yielding
an overall rising Normalized Difference Vegetation Index
(NDVI)], thus making it difficult to analyze and assess the

influences and impacts, not to mention the complex nature of
the individual factors involved as well as their interactions.

The combined effects of climate change and grazing on
vegetation productivity, phenology and ecosystem properties
have been explored by some studies (Klein et al., 2007; Zhang
et al., 2015; Li et al., 2018c; Kohli et al., 2021). On the one hand,
grazing alters the response of vegetation to climate change by
modulating the dependency of vegetation growth on temperature
(Wei et al., 2020). On the other hand, warming offsets the grazing
effects on vegetation through altering the vegetation living state,
i.e. increasing the plant height and the aboveground biomass
(Zhang et al., 2015; Tang et al., 2019). The complexity associated
with climate change and grazing and, hence, their combined
effects on vegetation has generated contrasting results (Li et al.,
2011; Wang et al., 2012; Xu et al., 2014; Ge et al., 2021). For
example, grazing could exert both positive and negative
influences on biomass due to the complex relationships
between livestock grazing and biomass (Li et al., 2019a). How
climate change and grazing interactively affect the biomass,

FIGURE 1 | The background and climate change of the Three-River Headwaters Region (TRHR). (A) Location of the TRHR; (B) Land cover of the TRHR; (C)
Population density in 2015; (D) Station-based annual mean air temperature from 1961 to 2018; (E) Station-based annual mean precipitation from 1961 to 2018; (F)
Growing season (May to September) NDVI from 1981 to 2015; (G) Grazing meat production from 1995 to 2015.
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biodiversity and ecosystem sustainability needs further
investigation (Li et al., 2018c).

We analyzed the combined effects of climate change and
grazing with elaborate scenario comparison (O’Neill and
Nakicenovic, 2008; Huntzinger et al., 2013; McKenna et al.,
2021), using a climate-driven probability model for time series,
i.e., the Non-Homogeneous Hidden Markov Model (NHMM)
(Holsclaw et al., 2017). First, we used the NHMM to simulate the
vegetation dynamics month by month at county scale (a total of
414 months and 22 counties, Figure 1B, Supplementary Table
S1), with the standardized climate inputs and NDVI. Then, we
devised two scenarios to separate the grazing effects. We find that,
besides the negative effects on NDVI in the middle of the growing
season (May to September), grazing shows surprising but obvious
positive effects in the beginning and end of the growing season.
This seasonal pattern has important implications for better
understanding of the grazing pressure on grasslands and for
modifying the existing NDVI-biomass relationships, towards a
more reliable indication of climate change.

MATERIALS AND METHODS

Data
Climate data. In general, climatic factors impose complex and
varying limitations on vegetation growth (Nemani et al., 2003).
Therefore, monthly precipitation and temperature data were
obtained from the Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS) (Funk et al., 2015) and
ERA-Interim (Dee et al., 2011), respectively, to feed the NHMM.
The data from CHIRPS have a spatial resolution of 0.05° for the
period from 1981 to the time being, and the monthly-mean
surface temperature at 2-m from ERA-interim has a resolution
of 0.125° for the period from 1979 to the present. To evaluate the
amplitude of climate change on the Qinghai-Tibet Plateau study
area, the monthly gauging station data from 1960 to 2018
provided by the China Meteorological Administration were
used. Moreover, global temperature anomaly data were
obtained from the National Oceanic and Atmospheric
Administration (NOAA) to make comparison between
regional and global warming, and to demonstrate the relatively
extraordinary effects of warming on rangeland vegetation on the
Qinghai-Tibet Plateau. Since the non-stationary climate system
might also be related to vegetation growth, the climate oscillation
indexes from NOAA were used as candidate predictors in
our model.

Vegetation data. NDVI, a proxy of vegetation greenness and
production, was acquired from the Global Inventory Monitoring
and Modelling Studies (GIMMS) NDVI3g (Tucker et al., 2005).
The biweekly datasets span from July 1981 to December 2015
with a spatial resolution of 0.083°. Monthly NDVI was
composited from the biweekly data using the Maximum Value
Composite method (Holben, 1986). The moderate-resolution
imaging spectroradiometer (MODIS) land cover data
(MCD12Q1) (Friedl et al., 2010), with 500 m resolution, were
utilized to composite a binary pasture mask. The grassland pixels
were classified as the pasture area. Apart from the non-grassland

pixel, the surrounding eight pixels were masked out to make the
classifying result more robust.

Anthropogenic data. Yak and sheep meat production data, for
the period 1995–2015, were obtained from the records of the
Qinghai Statistical Almanacs, considering the lack of information
and reliability on the livestock population data. Here it is noted
that during our study analysis, we have found a clear correlation
between the meat production and the livestock population data,
thus meat production could be used as a convincing surrogate for
the grazing effect. The livestock density (LD) for each county was
defined as meat production divided by pasture area. Annual time
series were converted to monthly series based on linear
interpolation. The Gridded Population of the World, Version
4 (Center for International Earth Science Information Network -
CIESIN - Columbia University, 2018) was used to demonstrate
population density of the study area.

The linear regression method was applied for the trend
analysis, with Student’s two-tailed t-test for significance test,
and the Pettitt change point test was used for change point
detection (Pettitt, 1979). Since livestock data were at the
county scale, the gridded climate data and NDVI were
aggregated to county scale after eliminating the non-pasture
area. The assumption for the attribution of grazing effects was
that the climate zone was homogeneous across the TRHR and,
therefore, it was reasonable to calibrate the NHMM for one
county and apply it to another. To meet this assumption, the
climate data and NDVI were further processed with standardized
normalization. The standardized NDVI was denoted as NDVIp.
The period from July 1981 to December 2015 (a total of
414 months) was selected for the model construction, as
GIMMS NDVI3g was available only for this time period.

Model
Viovy and Saint (1994) adopted the Hidden Markov Model
(HMM) for modelling the vegetation dynamics, but it has the
issues of poor representation in the temporal variability and
spatial variability (Holsclaw et al., 2016). In our study, the
NHMM (Hughes and Guttorp, 1994; Hughes et al., 1999) was
applied for modelling the monthly vegetation time series, i.e.
NDVI*. We chose the NHMM for its simplicity; further, it could
not only simulate the complicated temporal variability in the
response using hidden state variables, but also consider climate
variables as the external factors. The model involved an
underlying hidden, or not observed, stochastic process, during
which the hidden state evolved according to a first-order Markov
chain (Supplementary Figure S1). In vegetation modelling, the
hidden state was usually interpreted as a weather state. The
observed process, e.g. vegetation index, was conditional on the
hidden states through the state-dependent emission distribution.
The conditional likelihood for the model can be written as:

P(Vg
∣∣∣∣W ,X, z, ζ , θ) � ∏

T

t�1 P(zt |zt−1,Xt , ζ)f (Vgt |Wt , zt , θ)
(1)

where P(zt|zt−1, Xt, ζ) is the Markov transition probability
modelled by a multinomial logistic link function at time t,
f(Vgt|Wt, zt, θ) is the emission distribution modelled via a
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mixture of Normal distribution, z is the hidden state, Xt are
exogenous variables that regulate the transition of hiddenMarkov
state, Wt are exogenous variables that control the possibility of
emission distribution, and ζ and θ are for the transition
parameters and emission distribution parameters, respectively.

In the NHMM, we introduced two types of exogenous
variables (Holsclaw et al., 2016; Holsclaw et al., 2017). Time
seriesX were the first exogenous covariate series, reflecting large-
scale spatial phenomena and long-range temporal effects. In this
study, the candidate variables for X included four harmonic
terms (sin(π6 t), sin(π3 t), cos(π6 t), and cos(π3 t)), representing
seasonal variability, and five climate oscillation indexes (Pacific
Decadal Oscillation, Arctic Oscillation, North Atlantic
Oscillation, Southern Oscillation Index, and Pacific North
American Oscillation) related to the study area, representing
inter-annual variability. The other exogenous covariate time
series, W, were introduced to allow the underlying
distributional characteristics of vegetation to change for each
hidden state. Here, monthly precipitation and temperature,
2–4 months accumulated precipitation and temperature, and
2–3 months lagged precipitation and temperature were chosen
as the candidate variables for W. In total, we proposed nine
candidate exogenous variables for X and 12 for W. The least
absolute shrinkage and selection operator (LASSO) was
performed to reduce the dimension of the candidate variables
and to avoid overfitting. To ensure that the NHMM functioned
well and was parsimonious (Supplementary Figure S2), five
exogenous variables were retained, i.e. sin(π6 t), sin(π3 t),
monthly precipitation, 2-months accumulated precipitation,
and 2-months accumulated temperature.

The Markov chain Monte Carlo (MCMC) algorithm
(Holsclaw et al., 2017) was applied to estimate the posterior
full conditional distributions for z, ζ , and θ. Two metrics for
quantifying the performance of the NHMM, i.e. Bayesian
Information Criteria (BIC) for model calibration performance
and Predictive Log Score (PLS) for model validation performance
(Holsclaw et al., 2017), were utilized to determine the number of
hidden states (K) and the number of mixed Normal distributions
(nmix) in emission distribution. The model with the minimum
BIC and maximum PLS was the preferable one. The BIC was
estimated from the model calibrated with the first 31 years of data
(372 monthly data), and the PLS was calculated from the model
validated with the remaining 42-months data. That is to say, the
first 372-months data were used for the model calibration, and
the remaining 42-months data were used for the model
validation. For parsimony and interpretability, we chose the
model with seven states and two mixed Normal distributions,
as BIC score and PLS score were found to be the best for this
model (Supplementary Figure S3).

Scenario Setting
For the purpose of attribution of grazing effects, we devised two
scenarios in opposite directions. Scenario 1 (S1) was to calibrate
and verify the model in five counties that had the least grazing
density, to get five sets of model parameters (i.e., five similar
calibrated models), and then apply them to the remaining 17
counties (Supplementary Table S1; Supplementary Figure S4).

For each of the 17 application sites, we got five sets of simulation
results. Scenario 2 (S2) was the opposite of S1, i.e. to calibrate the
models in five counties that had the highest grazing density. For
either of these scenarios, the grazing effects were estimated by
comparison between the five-county and 17-county groups, and
the results were cross-verified by the opposite directions for
confirmation. The NHMMs always explicitly used local climate
forcing as inputs for each county, and then yielded NDVI results
for each county. This way, the results for the application counties
would reflect the grazing impacts, as at the counties where the
model was calibrated, implicitly through parameters. Therefore,
we hypothesized that the difference in the results and model
performance of the NHMMs would reflect the livestock density
that differs between model calibration and application counties.
In S1, the simulated standardized NDVI values (NDVI*ref ) in
model application counties have the least impacts of grazing
(because S1 models were calibrated for the counties that had the
least grazing density), and should have been greater (if grazing
decreased NDVI) than the observed standardized values
(NDVI*obs) for each county, and vice versa in S2.

If we denote NDVI*diff as the difference between NDVI*ref and
NDVI*obs, then the relationship between NDVI*ref and NDVI*obs
for S1 can be written as:

NDVIpobs � NDVIpref + εLD + εr (2)

where εLD is the error induced by livestock impacts, εr is the
model random error, and NDVI*diff � εLD + εr.

For S2, the relationship between NDVI*ref and NDVI*obs was
NDVI*obs � NDVI*ref − εLD + εr. Here, NDVI*diff � εLD − εr.

For both scenarios, we assumed that |εr|≪ |εLD|, thus NDVI*diff
correlated with the difference in livestock density (LD − LD0)
between the model application counties and the model
calibration ones.

Sensitivity Analysis
Consistent with the definition of ecological resilience (Holling,
1973), vegetation sensitivity to grazing was defined as the ratio of
change in vegetation to change in livestock density:

Sn � NDVIpobs −NDVIpref
LD − LD0

(3)

where Sn is sensitivity, NDVI*obs corresponds to the livestock
density at model application county, LD, while NDVI*ref
corresponds to the model calibration county, LD0.

It was assumed that vegetation sensitivity to grazing was a
function of climate forcing. Therefore, vegetation sensitivity to
grazing was evaluated at different temperature-precipitation
ranges.

RESULTS AND DISCUSSION

Attribution of Grazing Effects
Consistent with our hypothesis, the performance metric of the
model used in this study, i.e. root-mean-square deviation
(RMSE), correlated with livestock density. For S1, the
performance of the five model applications became worse
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when they were migrated to counties with increasing livestock
density (Figure 2A). Meanwhile, for the models calibrated in
counties that had the highest grazing density (S2), model
performance became worse in counties that had less grazing
density (Figure 2B). The results suggested that the livestock
density was a strong controlling factor of NDVI. As the results
from the two scenarios yielded reliable cross-verification, we have
general confidence that the model could detect the signal of the
impacts of grazing.

We attributed the difference in standardized NDVI (NDVI*diff )
between the results from the simulations and observations to
grazing effects; a negative value means a grazing-induced
decrease in NDVI. As shown in Figures 2C,D, NDVI*diff was
plotted as the box-plots, and each box-plot stood for one model
application in 1 month representing 17 counties and 34 years. To
our surprise, the direction of NDVI*diff changed with season for
the five sets of applications as well as for the two scenarios. This,
however, was not due to a systematic model error or phenology
difference at different elevations (Supplementary Figures S5 and
S6). For July, August, and September (the middle of the growing
season), the grazing effects were generally negative across the
counties from 1982 to 2015. However, grazing mostly showed

positive effects on NDVI for May, June, and October, i.e., at the
beginning and end of the growing season. In the non-growing
season, grazing did not exhibit any apparent positive or negative
effects, partly because of the small and unreliable NDVI values
(Tucker et al., 2005). The median value of NDVI*diff , which was
integrated from the two scenarios, clearly exhibited the seasonal
pattern (Figure 2E). Therefore, we can construe that grazing
activities can have seasonal, including both negative and positive,
influence on rangelands on the Qinghai-Tibet Plateau.

Since NDVI*diff was induced by the difference in livestock
density between the model application counties and the model
calibration counties, we assumed that the magnitude of NDVI*diff
correlated with the livestock density difference. Therefore, we
examined the linear relationship between NDVI*diff and
(LD − LD0) for each month using data points from all
scenarios, years, and counties. The results (Figure 2F,
Supplementary Figure S7) showed that the slope
(i.e., sensitivity) had a similar seasonal pattern as that of
NDVI*diff , and the relationships were statistically significant for
every month. Therefore, it may be inferred that, even though the
direction of the effects of grazing differed seasonally, themagnitude
of NDVI was sensitive to livestock density for each month.

FIGURE 2 | Attribution of grazing effects. (A) RMSE for S1; (B) RMSE for S2; (C) NDVI*diff for S1; (D) NDVI
*
diff for S2; (E) Median NDVI*diff ; (F) Slope for the linear

relationship between NDVI*diff and (LD − LD0) (Related scatter points are presented in Supplementary Figure S7).
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Seasonal Grazing Effects on Vegetation
With these results, we quantified the seasonal grazing effects on
rangeland NDVI for the TRHR, and only focused on the growing
season. After recovering NDVI*ref to the same scale with the
observation value, we found that, due to negative grazing effects,
the peak value of NDVI decreased by 0.015 from an estimated
0.445 to the observed 0.430 in August (Figure 3A). The NDVI
decrease in July and September was less, with an amplitude of
0.005–0.010, respectively. In the early (May and June) and late
(October) growing season, on the contrary, grazing seemed to
benefit the grassland, as NDVI increased by 0.015 from an
estimated 0.234 to the observed 0.249 in May. This
observation is in agreement, to some extent, with the positive
grazing effects reported by some past studies using controlled
experiment (Klein et al., 2007), and also for other regions, such as
the Inner Mongolian grassland (Ren et al., 2016) and the

Norwegian tundra (Mysterud et al., 2011). For the early
growing season, grazing could contribute to the removal of
snow (Mårell et al., 2006) and dried grass, and stimulate
young and protein-rich regrowth (Mysterud et al., 2011; Ren
et al., 2016). For the late growing season, grazing could also melt
snow, remove aged leaves, and delay the deterioration of plant
biomass by keeping it in young phenological stages (Albon and
Langvatn, 1992; Hebblewhite et al., 2008; Mysterud et al., 2011; Li
et al., 2018b). Therefore, the effects of grazing, at least on NDVI,
can be overall positive.

It is appropriate to note, at this point, that NDVI is an index of
the earth surface’s status of greenness (Nemani et al., 2003;
Tucker et al., 2005). Grazing effects on increasing NDVI
values in the early and late growing season are partly benefited
from the exposure of chlorophyll-rich grass parts. This, however,
does not guarantee the improvement of grassland productivity
and ecology. An effective quantification of grassland productivity
is biomass production. Here, we proposed a conceptual diagram
to illustrate the seasonal processes of biomass production rate,
grazing consumption rate, and residual biomass (Figure 3B).
During the growing season, the mean temperature was above zero
and the amount of precipitation constituted most of a year. The
biomass production rate was estimated from NDVI using the
empirical relationship (Zhao and Running, 2010), and the grazing
consumption rate was assumed to be constant, for the simplicity.
The residual biomass was calculated from the accumulated
difference between the biomass production rate and the
grazing consumption rate. Within an annual cycle, the
production rate of biomass only exceeded the grazing
consumption rate during the middle of the growing season.
Therefore, the residual biomass reached its maximum after
maximum NDVI appeared in July or August without any
coverage.

Implications of Seasonal Grazing Effects
From biomass point of view, the sustainability of rangeland is
determined by considering whether the maximum residual
biomass, reached in the late growing season, is sufficient for
grazing until biomass production surplus occurs in the next
growing season. Both climate and grazing factors influence the
accumulation for the maximum residual biomass. The climate is
related to the biomass production, and the grazing is linked with
the biomass consumption. To represent the maximum residual
biomass by NDVI, as well as the grazing effects on biomass, the
best indicator is the NDVI in August. This is because August is
the closest month before the maximum biomass appears in
September and has the maximum in both NDVI value and
grazing effects on NDVI.

In view of this, we plotted the monthly mean NDVI anomaly
(NDVImon) of TRHR for the period 1982–2015 in Figure 4A,
where August (NDVIaug) and growing season (NDVIgs) were
marked. We also used the monthly values to calculate and
compare their trends. For NDVIgs and NDVImon, the
growing trends were statistically significant; on the other
hand, the trend of NDVIaug was milder and insignificant. We
also calculated the inter-annual trends by using the annual
means of NDVIgs and NDVImon, and found similar results

FIGURE 3 | Seasonal grazing effects on vegetation. (A) Seasonality of
grazing effects on NDVI; (B) Seasonality of grazing effects on biomass. The
reference NDVI (NDVIref ) was estimated by deducting grazing effects using the
NDVI*diff ∼ (LS − LS0) relationship from the observed NDVI (NDVIobs).
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(Supplementary Figure S8). The NDVI trend results not only
provided further evidence for the negative grazing effects in
August, but also cautioned about possible underestimation of
the grazing effects if using whole-year or growing-season NDVI
for analysis.

Underestimation of the grazing effects by using NDVIgs trend,
instead of NDVIaug trend, could also be observed in terms of
spatial distribution. As shown in Figures 4B,C, the blue and red
pixels indicate the greening and browning trends with
significance (p < 0.05), respectively, and the white ones

represent the trend without significance. For NDVIgs, the
percentage of pixels with significant greening and browning
trends were 37.44% and 5.84%, and while for NDVIaug, the
numbers were 23.83% and 9.49%, respectively. The greening
trend estimated from NDVIaug was not as prevailing as that
from NDVIgs. Besides, a large number of pixels with browning
trend were found in the southern parts of the TRHR (Circle I and
Circle II in Figures 4B,C) by using NDVIaug, and the locations of
these pixels matched well with the regions with high population
density (Figure 1C). The results also cautioned about the

FIGURE 4 | Assessment of grazing pressure on vegetation. (A) Inter-annual trends of NDVIaug NDVIgs, and NDVImon for the TRHR during the period 1982–2015; (B)
Spatial distribution of inter-annual trend for NDVIgs during the period 1982–2015; (C) Spatial distribution of inter-annual trend for NDVIaug during the period 1982–2015.
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locations where pressures exerted by livestock grazing and other
human activities were higher.

The positive grazing effects in the beginning and end of the
growing season would offset the negative grazing effects on
NDVI. However, they had little to do with biomass
production and accumulation. Therefore, when the overall
whole-year or growing-season trend was used to investigate
the rangeland sustainability, it might have given an illusion
that the climate change benefit overwhelmed the grazing
impacts. This might not be true, however; the grassland
condition index that represented the yearly biomass surplus
best, i.e., August NDVI, did not have a significant
increasing trend.

The difficulty in assessing the effects of grazing also
emphasizes the need to better understand the climate change
effects on vegetation. Grazing activities regulate the responses of
the grassland to climate change, even if biomass is used instead
of NDVI. Because remotely-sensed biomass is also derived from
NDVI, the underlying relationship between NDVI (for
greenness) and biomass (for production) is widely evaluated
for different vegetation types and seasons (Hansen and
Schjoerring, 2003; Wessels et al., 2006); however, grazing and
other human activities can change the NDVI-biomass
relationship by reducing biomass and shifting the
phenological process (Li et al., 2019b), with inconsistent
change in greenness. Unfortunately, this has seldom been
considered in studies evaluating the large-scale effects of

climate change on vegetation, which requires some
modifications to consider the grazing effects. Particularly,
since the seasonality in grazing effects changes the NDVI-
biomass relationships, modifications to the existing
relationships should be different for different seasons, and
even for different months.

Finally, we examined the historical trend of grazing effects
and also whether the rangeland ecosystem would be sustainable
in the future. For Figure 5A, each boxplot represents August
NDVI*diff of two scenarios and five sets of applications for all
counties in August. The trend of August NDVI*diff was calculated
by linear fitting of the median values in the boxplots. The whole
trend for August NDVI*diff was insignificant from 1981 to 2015,
but a change point was found in 2009. The sudden rise in NDVI
in 2009 and 2010 (Figure 1F), contributing to the change point
to positive August NDVI*diff , was mainly caused by abundant
precipitation (Chen et al., 2020). However, for the divided sub-
periods (i.e. before and after 2009), though the vegetation
growth was under different climatic conditions
(Supplementary Figure S9), the grazing impacts increased
and drew August NDVI*diff back to negative. The results
revealed that even though the degree of grazing pressure
exerted on grassland was influenced by climate, the
increasing trend of grazing impacts still existed. We also
evaluated the response of grazing pressure on climate
variables, using the percentage of negative Sn in different
temperature-precipitation ranges. Figure 5B was calculated
from two scenarios and five sets of applications for all the
counties and all the years, plotted by a 0.5 °C temperature
interval and 10 mm precipitation interval. We observed a
remarkable pattern; the percentage of negative effects was the
highest when both temperature and precipitation were lower
than their historical means (dashed lines in Figure 5B). With
increase in temperature and precipitation, the percentage of
negative effects reduced. However, the overall percentage of
negative effects still exceeded 50%, which revealed that grazing
still exerted pressure on grassland under climatic conditions
within this range.

CONCLUSION

This research revealed the seasonal grazing effects on
rangeland NDVI, biomass, and its sustainability in the
TRHR on the Qinghai-Tibet Plateau. It also revealed the
possible underestimation of grazing effects when the
growing-season or whole-year NDVI values were used in
evaluation, as what has normally been done in most
studies. The seasonality in grazing effects on NDVI also
brought uncertainties in the application of the existing
NDVI-biomass relationships to derive biomass data
products, which have commonly been used for climate
change impact assessment. Although climate change has
been found to provide more favorable conditions for
grassland on the Qinghai-Tibet Plateau, the grazing effects
have been generally negative and their magnitude still
growing. Therefore, the sustainability of the rangeland

FIGURE 5 | Trend and sensitivity of grazing impacts on August NDVI. (A)
Inter-annual trend of August NDVI*diff ; (B) Percentage of negative Sn

distributed in August climate space (with 0.5℃ temperature interval and
10 mm precipitation interval).
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ecosystem might degrade, provided grazing intensity
continues to rise and warming temperature causes droughts
in some regions by increasing the evapotranspiration
demands. While there is a broad consensus among
researchers that climate in the future will continue to
change, evidence shows that the relationship between
temperature and vegetation activity is weakening for the
boreal region (Piao et al., 2014). Therefore, more attention
should be paid to the combined effects of climate change and
human activities on those fragile vegetation ecosystems.
Further experimental and field observations will help to
improve our statistical model and disclose the fundamental
physics of the problem. This would constitute our
future work.
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