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Remote sensing phenology retrieval can remedy the deficiencies in field investigations and
has the advantage of catching the continuous characteristics of phenology on a large
scale. However, there are some discrepancies in the results of remote sensing
phenological metrics derived from different vegetation indices based on different
extraction algorithms, and there are few studies that evaluate the impact of different
vegetation indices on phenological metrics extraction. In this study, three satellite-derived
vegetation indices (enhanced vegetation index, EVI; normalized difference vegetation
index, NDVI; and normalized difference phenology index, NDPI; calculated using
surface reflectance data from MOD09A1) and two algorithms were used to detect the
start and end of growing season (SOS and EOS, respectively) in the Tibetan Plateau (TP).
Then, the retrieved SOS and EOS were evaluated from different aspects. Results showed
that the missing rates of both SOS and EOS based on the Seasonal Trend Decomposition
by LOESS (STL) trendline crossing method were higher than those based on the seasonal
amplitude method (SA), and the missing rate varied using different vegetation indices
among different vegetation types. Also, the temporal and spatial stabilities of phenological
metrics based on SA using EVI or NDPI were more stable than those from others. The
accuracy assessment based on ground observations showed that phenological metrics
based on SA had better agreements with ground observations than those based on STL,
and EVI or NDVI may be more appropriate for monitoring SOS than NDPI in the TP, while
EOS from NDPI had better agreements with ground-observed EOS. Besides, the
phenological metrics over the complex terrain also presented worse performances
than those over the flat terrain. Our findings suggest that previous results of inter-
annual variability of phenology from a single data or method should be treated with caution.
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1 INTRODUCTION

Vegetation phenology can reflect the response of terrestrial
ecosystem to climate change and is critical for understanding
the effects of these changes on the carbon cycle (Zhang et al.,
2004; Xie and Li, 2020a), water cycle (Yu et al., 2018), and energy
exchange (Shen et al., 2014b) of terrestrial ecosystems. Remote
sensing data have been widely used to monitor vegetation
phenology at large scales (Liang et al., 2011; Shen et al., 2013;
Shen et al., 2014a; Wang et al., 2020), because satellite-derived
vegetation indices (VIs) can measure vegetation canopy
greenness and have the advantages of wide coverage, high
revisiting frequency, and relatively low cost (Jin et al., 2013;
Shen et al., 2015; Liu et al., 2017). The normalized difference
vegetation index (NDVI) is one of the most commonly used
vegetation indices for monitoring vegetation phenology.

The Moderate Resolution Imaging Spectroradiometer
(MODIS) remote sensing data provide the possibility to
monitor vegetation phenology and have been increasingly used
for monitoring vegetation phenology (Zhang et al., 2004; Wang
et al., 2015b; Shang et al., 2018). MODIS sensors aboard Terra
and Aqua satellites have been in operation since 1999 and 2002,
respectively, and can provide long-term remote sensing NDVI
and enhanced vegetation index (EVI) records of >10 years (Wang
et al., 2021; Zhu et al., 2021). Generally, the NDVI tends to lose
sensitivity over dense canopies because of saturation (Liu et al.,
2017; Wu et al., 2017), while the EVI has a larger dynamic range
and is more resistant to atmospheric and soil background effects
compared with the NDVI (Zhang G. et al., 2013; Cao et al., 2015).
Many studies have explored other VIs to indicate the growing
season transitions, such as normalized difference phenology
index (NDPI), which is designed to best distinguish vegetation
from the background (i.e., soil and snow) as well as to minimize
the difference among the backgrounds (Wang et al., 2017a).
These parameters provide more precise information on the
phenological changes of vegetation and have been widely used
because of the convenient acquisition of multiple remote sensing
data and its indicative function of physical and biological
processes related to vegetation dynamics at global and regional
scales (Xie et al., 2021b).

Besides, a lot of methods have been proposed and applied to
monitor vegetation phenological parameters using long-term
satellite data, such as threshold based, curve fitting, curve
derivative, delayed moving average, phenological cumulative
frequency, etc. These methods determine vegetation phenology
based on a predefined or relative reference value, autoregressive
moving average model, fitted function, etc. (Wang et al., 2017c;
Shang et al., 2018; Wu et al., 2018). The threshold-based method
considers the growing season begins when the vegetation index
reached a predefined or relative reference value (Shang et al.,
2018; Wu et al., 2018). The curve derivative method defines the
growing season starts when the second derivative value of the
time series curve reaches a maximum (Wang et al., 2017c).

The differences between NDVI and EVI have been evaluated
in some previous studies (Yang et al., 2006; Duveiller et al., 2011;
Wang et al., 2012; Gamon et al., 2013). However, few studies have
conducted a comparative analysis of the performance of EVI,

NDVI, and NDPI in monitoring vegetation phenology. Given
that MODIS data has been extensively used for monitoring
vegetation phenology (Araya et al., 2016; Zeng et al., 2016;
Massey et al., 2017), it is necessary to analyze the difference
between vegetation phenology derived from different VIs and
consequently investigate the uncertainty in monitoring
vegetation phenology due to methods. Since the Terra data is
more affected by the sensor degradation than Aqua data (Han
and Xu, 2013; Tang et al., 2018), this study focused on the Terra
MODIS VI and surface reflectance (SR) products.

Three different vegetation indices based on two methods were
adopted to identify the start and end of growing season (SOS and
EOS) of the vegetation on the Tibetan Plateau (TP). Then, a
comparative analysis of vegetation phenology derived from the
six combined products was conducted for each phenological
extraction. Meanwhile, the performances of vegetation
phenology derived in capturing ground-observed phenology

FIGURE 1 | (A) Location of the Tibetan Plateau; (B) vegetation-typemap
redrawn from 1:1,000,000 China vegetation data sets and location of
phenological observation stations.
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were also evaluated. In addition, the performances of
phenological metrics from the six products at different degrees
of terrain complexity were compared.

This paper aims to assess the differences in phenological
metrics extracted using the EVI, NDVI, and NDPI time series
based on seasonal amplitude (SA) and Seasonal Trend
Decomposition by LOESS (STL) methods and to determine
whether either of them performs well for all vegetation types
over a large scale. To achieve this objective, the missing rates of
SOS and EOS from the six products were counted and compared
firstly. Then, the temporal and spatial stabilities of phenological
metrics from each product were calculated and analyzed in
different vegetation types in the TP. Finally, the differences
between ground observations and satellite-derived phenological
metrics from the three satellite-derived VIs based on different
extraction algorithms are evaluated. Our work lays the
foundation for uniting multisource data and for improving
remote sensing phenological products in the future.

2 DATA AND METHODS

2.1 Study Area
The TP (Figure 1A) is located in western and southwestern
China, covering an area of approximately 2.6 million km2

(26.5–40.0°N, 73.5–105.8°E), accounting for about one quarter
of China’s total land territory. Recognized as the “roof of the
world” and the Third Pole of the Earth, elevation on the TP
increases rapidly from about 2,000 m in the east to more than
8,000 m in the west with an average altitude higher than 4,000 m
above sea level. As the highest and most extensive region in the
world, climate in the TP exhibits a thermal/moisture gradient
varying fromwarm and humid in the southeast to cold and arid in
the northwest as influenced by high elevation, Indian monsoon in
the summer, and westerlies in the winter. Affected by the
mountain plateau climate, a variety of vegetation species is
distributed widely on the TP generally following the moisture
and temperature gradient. Vegetation in the plateau includes
evergreen forests (EF), deciduous forests (DF), shrubs, steppes,
grass, meadows, alpine vegetation (AV), and cultivated vegetation
(CV). Besides, sparse and no vegetation are mainly distributed in
the cold and arid northwestern area (Figure 1B).

2.2 Data
2.2.1 Satellite-Derived Vegetation Index Datasets
The time series NDVI, EVI, and NDPI data were used to extract
the phenological metrics in this paper. The 16-day interval
vegetation index datasets containing NDVI and EVI with a
spatial resolution of 500 m from 2001 to 2017 were derived
from the MODIS/Terra MOD13A1 Version 6 product, which
can be obtained from the Land Processes Distributed Active
Archive Center (LP DAAC) of the National Aeronautics and
Space Administration’s (NASA) Earth Observing System Data
and Information System (EOSDIS) (https://lpdaac.usgs.gov/). A
series of the sophisticated algorithm (constrained view angle-
maximum value composite algorithm, etc.) and strict quality
control (low clouds, low view angle, and the highest NDVI/

EVI value) were performed in the process of data production to
reduce the effect of clouds, solar zenith angles, stratospheric
aerosol, etc.

The time series of SR data fromMOD09A1 Version 6 product
were used to calculate the NDPI, as shown in Eqs. 1, 2, 3. The
MOD09A1 product provided an estimate of the surface spectral
reflectance of Terra MODIS bands 1 through 7 systematically
corrected for atmospheric conditions such as gasses, aerosols, and
Rayleigh scattering. The temporal resolution of MOD09A1 is
8 days, and the spatial resolution is 500 m. These data are also
freely distributed through the LP DAAC. In this study, surface
reflectance in the red (band 1, 620–670 nm), near-infrared (NIR:
841–876 nm, band 2), and short-wave infrared band (SWIR:
1,628–1,652 nm, band 6) during 2001 and 2017 necessary to
calculate NDPI were extracted.

NDPI � ρNIR − ρSWIR
red

ρNIR + ρSWIR
red

(1)

ρSWIR
red � α × ρred + (1 − α) × ρSWIR (2)

NDPI � ρNIR − (α × ρred + (1 − α) × ρSWIR)
ρNIR + (α × ρred + (1 − α) × ρSWIR)

� ρNIR − (0.74 × ρred + 0.26 × ρSWIR)
ρNIR + (0.74 × ρred + 0.26 × ρSWIR)

(3)

2.2.2 Vegetation-Type Data
Information of the vegetation distribution in the plateau was
derived from the digitized vegetation datasets of China with a
scale of 1:1,000,000, published by the Institute of Geography
Science and Natural Sources Research, Chinese Academy of
Sciences in 2001 (http://www.geodata.cn/Portal/), which was
used to identify the vegetation coverage over pixels, as shown
in Figure 1B. Due to the lack of seasonality in vegetation index
signal, EF mostly in the southeast is not included in our study.We
assumed that there were no changes in the vegetation types and
distributions on the plateau during the study period as previous
studies had done.

2.2.3 Ground-Observed Phenological Data
The ground phenological observations provided by the China
Meteorological Administration (CMA, http://cdc.cma.gov.cn)
were taken as the true values to validate the accuracy of the
phenological products. However, the ground-based phenology
was observed in a number of individual plants, while the remote
sensing phenology represented the integrated phenological
characteristics of a plant community in one pixel. Ground
validation of remote sensing measurements with coarse
resolution entails considerable difficulties. To improve the
reliability of the statistical analysis based on ground
observations, ground phenological observations meeting the
following requirements (Wang et al., 2017c) were selected: 1)
Data integrity—the selected ground sites should have
phenological phase continuity and few missing records. 2)
Spatial representation—the vegetation type of dominant
species at one site must be the same with remote sensing data.
The ground phenological observations were selected according to
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the above requirements, and the information and spatial
distribution of phenological sites are shown in Figure 1 and
Table 1.

2.2.4 Topographic Data
The Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) data with a spatial resolution of 90 m distributed
free of charge was acquired from the Consortium for Spatial
Information of the Consultative Group for International
Agricultural Research (CGIAR-CSI, http://www.cgiar-csi.org).
In this work, the SRTM DEM was used to describe the terrain
characteristics. The elevation of each ground phenological site
was obtained from the center pixel based on the geolocation
information of the ground sites. Furthermore, the relief
amplitude and mean slope were extracted from the 3.0 × 3.0-
pixel area centered on the phenological sites.

2.3 Data Pre-Processing
Although the effects of satellite orbit shift; solar zenith angles; and
atmospheric contaminations of clouds, aerosols, etc. had been
systematically corrected from the vegetation index datasets, the
time series VI curves still remained jagged because of the residual
contamination (Ding et al., 2016; Cong et al., 2017; Chu et al.,
2021). The abnormally high and low values existed in the VI
trajectories may result in errors and confound retrievals of
vegetation phenology (Wang et al., 2015b; Chang et al., 2016).
Therefore, the adaptive Savitzky–Golay (S-G) filtering procedure
was performed to reduce residual noises in the time series VI
datasets by smoothing the VI time series curve, and high-quality
NDVI time series datasets were reconstructed (Chang et al.,
2016). The adaptive S-G filtering method has been proven to
be effective in rebuilding time series from which vegetation

phenological metrics can be extracted. The related noise
reduction parameters were selected empirically as described in
previous studies, which were as follows: spike method � 1,
iteration time � 3, adaption strength � 5, and smoothing
window � 3, respectively (Borges et al., 2014).

In order to focus on the areas with vegetation and
seasonality and to further reduce the impacts of soil
variations in bare and sparsely vegetated areas on
vegetation, pixels simultaneously satisfying the following
criteria were selected: 1) The multiyear average NDVI
during growing season (from April to October) should be
greater than 0.1. 2) The annual maximum NDVI should be
higher than 0.15 and occur between July and September (Piao
et al., 2011; Jin et al., 2013; Shen et al., 2014b; Wang et al.,
2018). Pixels with lower NDVI value were often considered
photosynthetically inactive in land surface phenology, and
they could not reveal regular growth cycles along the
trajectories and were usually regarded as bare soil or
sparsely vegetated lands (Wang et al., 2015a; Wang et al.,
2015b). These pixels were masked in the vegetation index
datasets and excluded in the following analysis. Besides,
evergreen forests were removed from this study due to the
lack of seasonality in vegetation index signal relative to those of
the other vegetation types (Zhang et al., 2004; Piao et al., 2011;
Zheng and Zhu, 2017).

2.4 Phenology Retrieval Algorithms
In this paper, vegetation phenological metrics were retrieved from
each of the three vegetation indices (EVI, NDVI, and NDPI) by
adopting each of the two methods, respectively, including SA
method and STL trendline crossing method. In general, those
methods determine the vegetation SOS (EOS) around the time
when VI begins to increase (decrease) in spring or early summer
(autumn or early winter). Details of those two methods are given
as follows.

2.4.1 Seasonal Amplitude Method
In the SA method, SOS is defined as the date (Julian day of the
year, DOY) when the left part of the fitted curve has reached a
certain ratio of the seasonal amplitude during the VI rising
stage, counted from the base level; EOS is defined similarly, as
the DOY for which the right side of the fitted curve has
decreased to a certain fraction of the seasonal amplitude
during the VI decline stage (Jamali et al., 2015; Jönsson and
Eklundh, 2004). The seasonal amplitude is defined as
difference between the maximum VI value and the base
level for each individual season (Eklundh and Jönsson,
2016; Eklundh and Jönsson, 2017). The VI ratio is defined
as follows:

VIratio � VIt − VIbase
VImax − VIbase

(4)

VIbase � 0.5 × (VIminimum left + VIminimum right) (5)

whereVIt is the VI value at time t,VImax is the annual maximum
VI value, and VIbase is given as the average of the left and right
minimum values. In this study, we selected a VI ratio threshold of

TABLE 1 | Summary of ground phenological observation sites in TP.

Station name Code Latitude Longitude

Minle 52656 38.45 100.82
Menyuan 52765 37.38 101.61
Dulan 52836 36.30 98.10
Haiyan 52853 36.92 100.98
Huzhu 52863 36.82 101.95
Guide 52868 36.03 101.43
Linxia 52984 35.58 103.18
Hezheng 52985 35.43 103.35
Rikaze 55578 29.25 88.88
Lasa 55591 29.67 91.13
Yushu 56029 33.02 97.02
Shiqu 56038 32.98 98.10
Gande 56045 33.97 99.90
Henan 56065 34.73 101.60
Maqu 56074 34.00 102.08
Ruoergai 56079 33.58 102.97
Hezuo 56080 35.00 102.90
Lintan 56081 34.70 103.35
Minxian 56093 34.43 104.01
Zhouqu 56094 33.78 104.37
Guanxian 56188 30.98 103.66
Wenxian 56192 32.93 104.75
Pingwu 56193 32.42 104.52
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0.2 to indicate the SOS and a drop of the VI ratio below 0.6 to
show the EOS, as determined by Yu et al. (2010).

Among the various retrieval algorithms, the SA method is
relatively less affected by surface snow cover, can effectively avoid
the mutual interference caused by different hydrothermal
conditions, and has been widely used in the extraction of
vegetation phenology.

2.4.2 STL Trendline Crossing Method
The seasonal-trend decomposition algorithm based on locally
weighted regression (LOESS), widely known as “STL,” is a
filtering procedure for decomposing seasonal time series into
three additive components of variation: non-linear trend line,
seasonal component of time series, and remainder (B Cleveland
et al., 1990; Rojo et al., 2017; Sanchez-Vazquez et al., 2012). The
trend component (Tt) is considered as the low-frequency variation in
the data together with non-stationary, long-term changes in the
levels over the time horizon; the seasonal component (St) is the
variation in the data at or near the seasonal frequency, which is the
repetitive pattern over time; the remainder component (Rt) is
defined as the irregular remaining variation in the data after the
seasonal and trend components have been removed (Aguilera et al.,
2015; Cristina et al., 2016).

The STL method is straightforward to use, and advantages of the
STL decomposition include simplicity and speed of computation,
responsiveness to non-linear trends, flexibility in identifying a
seasonal component that changes over time, and robustness of
results that are not distorted by transient outliers (Sanchez-
Vazquez et al., 2012; Cristina et al., 2016; Rojo et al., 2017). The
STL technique has been widely and successfully applied in many
fields, especially in natural sciences, such as ecology, environmental
science, hydrology, and water resources science, and more details
about the STL method can be found in the literature (Aguilera et al.,
2015; B Cleveland et al., 1990; Cristina et al., 2016; Jamali et al., 2015;
Lafare et al., 2015; Verbesselt et al., 2010).

In this method, the SOS/EOS occurs when the VI time series
curve intersect with the STL trend line.

Based on combination of the above two methods and the three
vegetation indices, six products were generated, and they were as
follows: EVI-based phenological product using SA (E-SA,
SOSE-SA, and EOSE-SA), EVI-based phenological product using
STL (E-STL, SOSE-STL, and EOSE-STL), NDVI-based phenological
product using SA (N-SA, SOSN-SA, and EOSN-SA), NDVI-based
phenological product using STL (N-STL, SOSN-STL, and
EOSN-STL), NDPI-based phenological product using SA (P-SA,
SOSP-SA, and EOSP-SA), and NDPI-based phenological product
using STL (P-STL, SOSP-STL, and EOSP-STL).

2.5 Classification of Terrain Complexity
According to the definition of mountainous regions from the
United Nations Environment World Conservation Monitoring
Centre (UNEP-WCMC) (Kapos, 2000) and relative studies in the
literature (Zhang W. et al., 2013; Xie et al., 2019), the degree of
terrain complexity was defined using the altitude, relief
amplitude, and slope. Then, the topographic conditions were
classified into complex terrain if one of the following three criteria
was satisfied: 1) when the altitude was lower than 500 m and the

relief amplitude exceeds 100 m, 2) when the altitude ranged from
500 to 2,500 m and the relief amplitude exceeds 300 m or slope
exceeds 5°, and 3) when the altitude was higher than 2,500 m and
the relief amplitude exceeds 500 m or slope exceeds 10°.
Otherwise, the topographic conditions were classified into flat
terrain.

2.6Methods for Evaluating the Phenological
Products
The difference of the six products was compared comprehensively
over the same spatial extent and temporal span: first, at validity
containing the missing rate and temporal and spatial stabilities and
second at accuracy validation of the retrievals.

The average phenological metrics for each pixel of each
product were calculated as the spatial pattern of the TP, and
missing rate was calculated as the ratio of all missing pixel counts
to the total pixel counts that should be retrieved (Wang et al.,
2017b; Wang et al., 2017c; Shang et al., 2018).

Temporal stability means that the inter-annual growth
characteristics of vegetation in the same location are similar to
some extent as the climatic factors that affect the growth of
vegetation (such as temperature, precipitation, etc.) do not
change dramatically in the same area (Wang et al., 2017b).
Here, the coefficient of variance (CV) (Eq 6) of phenological
metric was used as an indicator to describe the temporal
stability of each product. The lower the CV was, the more
stable the product was at time scale.

CV � σ

μ
(6)

where σ is the standard deviation of phenological metric within
2001 and 2017, and μ is the average value of phenological metric
within 17 years.

Spatial stability means that the phenological characteristics of
the same vegetation type growing in the same region in 1 year are
supposed to be more similar because the meteorological
conditions are nearly the same, which means the growth of
vegetation should be synchronous in a small window (Tobler,
1970; Wang et al., 2017b; Shang et al., 2018). Here, we use the CV
(Eq 6) of phenological metric within a window (3 × 3) to indicate
the spatial stability of each product. The greater the CV was, the
lower the stability of the product.

CV � σ

μ
(7)

where σ is the standard deviation of phenological metric within
the window, and μ is the average value of phenological metric
within the window.

In addition, the phenological metrics of products through
retrieval algorithms using three satellite-derived VI datasets were
validated against ground-observed phenology, respectively
(Zheng and Zhu, 2017). The average value of a 3 × 3 window
centered at each ground site was extracted as the final result for
comparison with the ground-observed phenology. The mean
absolute error (MAE) and root mean square error (RMSE)
between remote sensing phenological estimations and ground
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observations were adopted as validation indicators (Wang et al.,
2017c; Liu et al., 2017; Guan et al., 2021), as shown in Eqs 8 and 9.

MAE � ∑n
i�1 (

∣∣∣∣P(rs)i − P(site)i
∣∣∣∣

n
(8)

RMSE �
��������������������∑n

i�1 (P(rs)i − P(site)i)2
n

√
(9)

where P(rs)i is the satellite-derived phenological date at year i,
P(site)i is the ground observation at year i, and n is the number
of years.

3 RESULTS AND ANALYSIS

3.1 Comparison of Phenological Products at
Regional Scales
Figure 2 presents the mean SOS for the TP during 2001–2017
derived from the six products. In general, inconsistencies of SOS
derived from different VI datasets using different methods existed

and varied in different areas. The SOS derived from the same VI
using different algorithms had consistent patterns in the west, but
inconsistent patterns were exhibited in the east. The SOS based on
SA (Figure 2A, C, E) in the east was 5–15 days earlier than that
based on STL (Figure 2B, D, F) from the same VI dataset. The
SOS derived from different VI using the same method have
consistent patterns in the east, but inconsistent patterns were
exhibited in the middle and northwest. The SOS from NDVI
(Figure 2C, D) in the middle was 5–10 days earlier than that from
EVI (Figure 2A, B), while the SOS from NDPI (Figure 2E, F) in
the northwest was 10–20 days earlier than that from EVI.

For each product, various degrees of differences among the
multi-year average EOS for the TP from 2001 to 2017 are found in
Supplementary Figure S1. The EOS derived using STL
(Supplementary Figure S1B, D, F) had the same spatial
pattern as those using SA (Supplementary Figure S1A, C, E)
with the same VI, but was 15–30 days later than that using SA
with the same VI in the same area. Also, inconsistencies of EOS
derived from different VI using the same method existed and
varied in different regions. The EOS fromNDVI (Supplementary

FIGURE 2 | Spatial pattern of mean start of season (SOS) between (A) E-SA, (B) E-STL, (C) N-SA, (D) N-STL, (E) P-SA, and (F) P-STL.
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Figure S1C, D) was 10–30 days later than that from EVI
(Supplementary Figure S1A, B) in the south, respectively,
while the EOS from NDPI (Supplementary Figure S1E, F)
was 5–10 days earlier in the south.

3.1.1 Missing Rate
For the six phenological products, the missing data existed
inevitably and varied in different regions. In general, the
missing rates of SOS in E-SA, E-STL, N-SA, N-STL, P-SA,
and P-STL were 7.38%, 10.6%, 4.58%, 8.3%, 7.11%, and 9.25%,
respectively, as shown in and Figures 2 and 3. For the same VI
source, the missing rate of SOS based on STL was higher than that
based on SA; for the same retrieval algorithm, the missing rate of
SOS derived from NDVI was the lowest, then the NDPI, and the
missing rate of SOS derived from EVI was the highest (Figure 3).
Figure 3 presents the missing rates of the six products in different
vegetation types. For SOS (Figure 3), the missing rate was the
lowest or relatively lower in the meadow (E-SA: 5.06%, E-STL:
6.83%, N-SA: 4.08%, N-STL: 7.04%, P-SA: 3.99%, and P-STL:
5.46%), but the relatively higher or the highest missing rates of the
six products existed in different vegetation types; for SOS from
EVI and NDVI, the missing rate was relatively higher in DF
(E-SA: 18.03%, E-STL: 20.49%, N-SA: 7.72%, and N-STL:
16.49%); for SOS from NDPI, the missing rate was the highest
in AV (P-SA: 17.34% and P-STL: 21.84%).

As displayed in Supplementary Figures S1 and S2, the overall
missing rates of EOS in E-SA, E-STL, N-SA, N-STL, P-SA, and
P-STL were 7.82%, 17.53%, 6%, 18.51%, 12.96%, and 29.21%,
respectively. For the same VI source, the missing rate of EOS
based on STL was twice more than that based on SA; for the same
retrieval algorithm, the missing rate of EOS derived from NDVI
was still the lowest, different from SOS; EOS with the highest
missing rate was derived from EVI. Similar to SOS, EOS of the six
products (Supplementary Figure S2) in meadow had the lowest
missing rate (E-SA: 4.73%, E-STL: 6.83%, N-SA: 4.59%, N-STL:
13.43%, P-SA: 6.92%, and P-STL: 20.13%), and the highest
missing rate was in DF from NDVI or EVI (E-SA: 18.54%,
E-STL: 29.59%, N-SA: 13.41%, and N-STL: 37.20%) and in
AV from NDPI (P-SA: 19.49% and P-STL: 45.46%).

In addition, the missing rates of phenological metrics from the
six products at different degrees of terrain complexity were
compared. As shown in Figure 4, the missing rates of SOS
from the six products at the complex terrain were larger than
those at the flat terrain. Over the flat terrain, the missing rates of
SOS in E-SA, E-STL, N-SA, N-STL, P-SA, and P-STL were 4.89%,
9.14%, 4.13%, 7.20%, 4.82%, and 6.39%, respectively; over the
complex terrain, the missing rates of SOS in E-SA, E-STL, N-SA,
N-STL, P-SA, and P-STL were 9.21%, 12.29%, 5.01%, 9.57%,
9.17%, and 11.70%, respectively. In addition, EOS at the complex
terrain also showed higher missing rates than the flat terrain
(Supplementary Figure S3). The missing rates of EOS in E-SA,
E-STL, N-SA, N-STL, P-SA, and P-STL over the flat terrain were
5.31%, 15.20%, 4.48%, 14.20%, 11.61%, and 27.23%, respectively,
and the missing rates of EOS in E-SA, E-STL, N-SA, N-STL,
P-SA, and P-STL over the complex terrain were 9.99%, 20.83%,
7.53%, 23.14%, 14.62%, and 31.44%, respectively.

The high spatial variations in geographic configurations
caused by obvious topographic conditions over the complex
terrain may affect the quality of input VI data for
phenological extractions and then lead to higher missing rates
of phenological metrics compared with the flat terrain.

3.1.2 Temporal Stability
Table 2 shows the temporal stabilities of SOS from 2001 to 2017
using CV as indicator. In general, the SOS derived from EVI or
NDVI had higher temporal stabilities than those from NDPI for
each method, and SOS based on the SA method were a little more
stable than those based on the STL method for each vegetation
index. Specifically, the SOS from E-SA, E-STL, N-SA, and N-STL
product had lower CVs (the means and standard deviations were
0.147 ± 0.112, 0.148 ± 0.103, 0.137 ± 0.098, and 0.141 ± 0.092,
respectively) than those from P-SA and P-STL product (the
means and standard deviations were 0.191 ± 0.146,

FIGURE 3 | Missing rates of SOS over different vegetation types.

FIGURE 4 | Comparison of missing rates of SOS over the flat terrain and
the complex terrain.
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0.192 ± 0.149, respectively). Besides, the temporal stabilities of
SOS varied among different vegetation types, as shown inTable 2.
For DF, shrub, and CV types, the SOS from E-SA were superior to
those from others in the aspect of temporal stability, with the
lowest CVs of 0.160 ± 0.124, 0.130 ± 0.104, and 0.111 ± 0.087,
respectively, followed by the SOS from E-STL, with CVs of
0.162 ± 0.105, 0.138 ± 0.092, and 0.124 ± 0.081, respectively.
For steppes, SOSN-SA and SOSN-STL had better temporal
stabilities compared with others, with CVs of 0.133 ± 0.091
and 0.131 ± 0.095, respectively. However, for grass, SOSE-SA
and SOSE-STL were relatively more stable, with CVs of
0.190 ± 0.117 and 0.190 ± 0.106, respectively. For meadows,
SOSN-SA was the most stable, followed by SOSE-SA and
SOSN-STL, with CVs of 0.122 ± 0.091, 0.127 ± 0.103, and
0.130 ± 0.084, respectively. For AVs, the CV of SOSN-SA was
the lowest, with CV of 0.170 ± 0.094, followed by SOSE-SA and
SOSN-STL, with CVs of 0.187 ± 0.110 and 0.194 ± 0.104,
respectively.

Supplementary Table S1 presents the temporal stabilities of
EOS from 2001 to 2017 using CV as an indicator. In general, the
temporal stabilities of EOS were slightly different from SOS.
Differences existed between EOS based on the SAmethod and the
STL method for each vegetation index in the aspect of temporal
stability; EOS based on STL (EOSE-STL: 0.070 ± 0.042, EOSN-STL:
0.044 ± 0.023, and EOSP-STL: 0.051 ± 0.032) had higher CVs than
those based on SA (EOSE-SA: 0.037 ± 0.018, EOSN-SA:
0.037 ± 0.018, and EOSP-SA: 0.046 ± 0.028). Besides, the
temporal stabilities of EOS varied among different vegetation
types, as shown in Supplementary Table S1. For DF, shrub, grass,
and CV types, EOSE-SA, EOSN-SA, and EOSP-SA had higher
temporal stabilities than others, as their CVs were lower than
others. For steppe, meadow, and AV types, EOSE-SA and EOSN-SA
were more stable than others, with lower CVs.

Table 3 shows temporal stability comparisons of satellite-
derived SOS over the flat terrain and the complex terrain. The
SOS over complex the terrain showed lower stabilities than those

over the flat terrain. Over the flat terrain, the CV values of SOS
from E-SA, E-STL, N-SA, N-STL, P-SA, and P-STL were
0.146 ± 0.111, 0.147 ± 0.100, 0.127 ± 0.092, 0.132 ± 0.092,
0.188 ± 0.153, and 0.192 ± 0.139, respectively. Over the
complex terrain, the CV values of SOS from E-SA, E-STL,
N-SA, N-STL, P-SA, and P-STL were 0.148 ± 0.113,
0.150 ± 0.106, 0.146 ± 0.103, 0.148 ± 0.092, 0.195 ± 0.138, and
0.199 ± 0.156, respectively. Similar to SOS, the CV values of
satellite-derived EOS over the complex terrain were much
higher than those over the flat terrain, as shown in
Supplementary Table S2. Over the flat terrain, the CV values
of SOS from E-SA, E-STL, N-SA, N-STL, P-SA, and P-STL were
0.036 ± 0.017, 0.067 ± 0.040, 0.035 ± 0.016, 0.040 ± 0.019,
0.042 ± 0.026, and 0.051 ± 0.032, respectively. Over the
complex terrain, the CV values of EOS from E-SA, E-STL,
N-SA, N-STL, P-SA, and P-STL were 0.038 ± 0.019,
0.072 ± 0.043, 0.039 ± 0.019, 0.048 ± 0.026, 0.050 ± 0.029, and
0.056 ± 0.032, respectively.

The CV differences of phenological metrics over different
terrains on time scale revealed the fact that the complexity of
topography could affect the temporal stabilities of retrieved
phenological results; the temporal stabilities of retrieved
phenological metrics over the flat terrain were more stable
than those over the complex terrain.

3.1.3 Spatial Stability
To analyze the spatial stability of each product, a 3 × 3 sliding
window was used to search the phenological metrics in the study
area, and the CV value of the central point in the window and the
same vegetation type in the sliding window was calculated.

The spatial stabilities of SOS are displayed in Table 4. In
general, the SOS derived from NDVI had relatively higher spatial
stabilities than those from EVI or NDPI for each method, with
CVs of 0.040 ± 0.033 and 0.040 ± 0.040, respectively, and the
differences of spatial stability were small between SOS based on
the SA method and the STL method for each vegetation index. In

TABLE 2 | The means and standard deviations of SOS CV for different vegetation types from 2001 to 2017.

Methods/vegetation
type

E-SA E-STL N-SA N-STL P-SA P-STL

DF 0.160 ± 0.124 0.162 ± 0.105 0.177 ± 0.120 0.186 ± 0.104 0.188 ± 0.121 0.192 ± 0.132
Shrub 0.130 ± 0.104 0.138 ± 0.092 0.142 ± 0.102 0.150 ± 0.088 0.158 ± 0.128 0.163 ± 0.134
Steppe 0.164 ± 0.113 0.160 ± 0.109 0.133 ± 0.091 0.131 ± 0.095 0.235 ± 0.142 0.231 ± 0.139
Grass 0.190 ± 0.117 0.190 ± 0.106 0.219 ± 0.121 0.220 ± 0.100 0.228 ± 0.108 0.236 ± 0.115
Meadow 0.127 ± 0.103 0.134 ± 0.095 0.122 ± 0.091 0.130 ± 0.084 0.155 ± 0.136 0.157 ± 0.141
AV 0.187 ± 0.110 0.213 ± 0.123 0.170 ± 0.094 0.194 ± 0.104 0.285 ± 0.192 0.293 ± 0.192
CV 0.111 ± 0.087 0.124 ± 0.081 0.130 ± 0.102 0.148 ± 0.100 0.143 ± 0.124 0.140 ± 0.124
All 0.147 ± 0.112 0.148 ± 0.103 0.137 ± 0.098 0.141 ± 0.092 0.191 ± 0.146 0.192 ± 0.149

TABLE 3 | The means and standard deviations of SOS CV for different terrains from 2001 to 2017.

Methods/terrain E-SA E-STL N-SA N-STL P-SA P-STL

Flat 0.146 ± 0.111 0.147 ± 0.100 0.127 ± 0.092 0.132 ± 0.092 0.188 ± 0.153 0.192 ± 0.139
Complex 0.148 ± 0.113 0.150 ± 0.106 0.146 ± 0.103 0.148 ± 0.092 0.195 ± 0.138 0.199 ± 0.156
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addition, N-SA and N-STL also performed better in the
extraction of SOS for each vegetation type than others, as the
CV values of SOSN-SA and SOSN-STL for each vegetation type were
a little lower than those of others. Among the vegetation types, the
spatial stabilities of SOS in meadows, AVs, and CVs were better
than other vegetation types, with lower CV values, and the
greatest CV values occurred in grass. Following behind grass,
the CV values in DFs were relatively larger.

Supplementary Table S3 presents the spatial stabilities of
EOS. Similar to SOS, for all vegetation types, the EOS derived
fromNDVI had relatively better spatial stabilities than those from
EVI or NDPI for each method, with CVs of 0.012 ± 0.009 and
0.013 ± 0.012, respectively, and the differences of spatial stability
were small between SOS based on the SA method and the STL
method for each vegetation index. Besides, EOS from N-SA and
N-STL were relatively stable than those from others for each
vegetation type, as the CV values of EOSN-SA and EOSN-STL for
each vegetation type were a little lower than those of others.
Among the vegetation types, the EOS inmeadows and CVs were a
little more stable than other vegetation types, with lower CV
values, and the CV values in grass and DFs were relatively larger.

Table 5 presents spatial stability comparisons of satellite-
derived SOS over the flat terrain and the complex terrain. The
SOS over the complex terrain showed lower stabilities than those
over the flat terrain. Over the flat terrain, the CV values of SOS
from E-SA, E-STL, N-SA, N-STL, P-SA, and P-STL were
0.032 ± 0.039, 0.032 ± 0.042, 0.024 ± 0.029, 0.025 ± 0.032,
0.039 ± 0.053, and 0.037 ± 0.054, respectively. Over the
complex terrain, the CV values of SOS from E-SA, E-STL,
N-SA, N-STL, P-SA, and P-STL were 0.050 ± 0.054,
0.046 ± 0.053, 0.037 ± 0.036, 0.038 ± 0.045, 0.067 ± 0.088, and
0.067 ± 0.090, respectively. Similarly, the CV values of satellite-
derived EOS over the complex terrain were much higher than
those over the flat terrain, as presented in Supplementary Table
S4. Over the flat terrain, the CV values of EOSE-SA, EOSE-STL,
EOSN-SA, EOSN-STL, EOSP-SA, and EOSP-STL were 0.009 ± 0.010,

0.009 ± 0.010, 0.007 ± 0.007, 0.009 ± 0.009, 0.010 ± 0.013, and
0.012 ± 0.013, respectively. Over the complex terrain, the CV
values of EOSE-SA, EOSE-STL, EOSN-SA, EOSN-STL, EOSP-SA, and
EOSP-STL were 0.015 ± 0.016, 0.013 ± 0.011, 0.011 ± 0.010,
0.012 ± 0.013, 0.016 ± 0.020, and 0.017 ± 0.021, respectively.

The CV differences of phenological metrics over the different
terrains on spatial scale revealed the fact that the complexity of
topography could affect the spatial stabilities of extracted
phenological results, and the spatial stabilities of extracted
phenological metrics over the complex terrain were less stable
than those over the flat terrain.

3.2 Accuracy Assessment of
Satellite-Derived Phenologies Based on
Ground Observations
The difference between ground-observed SOS and satellite-
derived SOS from the three satellite-derived VIs based on
different extraction algorithms is shown in Figure 5. For all
vegetation types, the SA-extracted SOS from EVI and NDVI
(SOSE-SA and SOSN-SA) had better agreements with ground
observations than others, with MAEs of 18.95 and
19.60 days year−1, respectively. The differences were smaller for
SOS based on the SAmethod and larger for that based on the STL
method; the MAEs of SOSE-STL, SOSN-STL, and SOSP-STL were
4 days higher than those of SOSE-SA, SOSN-SA, and SOSP-SA,
respectively. For steppes, the SA-extracted SOS from NDVI
and EVI (SOSN-SA and SOSE-SA) matched better with ground-
observed SOS than others, with MAEs of 23.05 and
25.01 days year−1, respectively. The SA method can extract
information of SOS with higher accuracy than the STL
method, and the MAEs of SOSE-STL, SOSN-STL, and SOSP-STL
were more than 6 days higher than those of SOSE-SA, SOSN-SA,
and SOSP-SA, respectively. Of all the vegetation types, the SOS in
meadows were closer to the 1:1 line than in other vegetation types,
with the lowest MAEs and RMSEs. The correlations between

TABLE 4 | The means and standard deviations of SOS spatial CV for different vegetation types.

Methods/vegetation
type

E-SA E-STL N-SA N-STL P-SA P-STL

DF 0.068 ± 0.067 0.058 ± 0.064 0.053 ± 0.050 0.058 ± 0.067 0.067 ± 0.072 0.069 ± 0.078
Shrub 0.050 ± 0.053 0.042 ± 0.050 0.039 ± 0.037 0.039 ± 0.046 0.057 ± 0.075 0.057 ± 0.077
Steppe 0.050 ± 0.051 0.051 ± 0.052 0.033 ± 0.034 0.035 ± 0.036 0.064 ± 0.075 0.061 ± 0.075
Grass 0.093 ± 0.093 0.077 ± 0.081 0.065 ± 0.064 0.074 ± 0.081 0.089 ± 0.086 0.093 ± 0.090
Meadow 0.039 ± 0.040 0.037 ± 0.042 0.031 ± 0.027 0.031 ± 0.033 0.051 ± 0.069 0.051 ± 0.070
AV 0.042 ± 0.049 0.049 ± 0.056 0.032 ± 0.033 0.038 ± 0.041 0.095 ± 0.180 0.098 ± 0.119
CV 0.041 ± 0.049 0.032 ± 0.044 0.035 ± 0.038 0.033 ± 0.044 0.040 ± 0.053 0.038 ± 0.055
All 0.053 ± 0.049 0.050 ± 0.048 0.040 ± 0.033 0.040 ± 0.040 0.068 ± 0.077 0.067 ± 0.079

TABLE 5 | The means and standard deviations of SOS spatial CV for different terrains.

Methods/terrain E-SA E-STL N-SA N-STL P-SA P-STL

Flat 0.032 ± 0.039 0.032 ± 0.042 0.024 ± 0.029 0.025 ± 0.032 0.039 ± 0.053 0.037 ± 0.054
Complex 0.050 ± 0.054 0.046 ± 0.053 0.037 ± 0.036 0.038 ± 0.045 0.067 ± 0.088 0.067 ± 0.090
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SA-extracted SOS from NDVI and EVI (SOSN-SA and SOSE-SA)
and ground observations were stronger than others, with MAEs
of 10.51 and 12.24 days year−1, respectively. Differences still
existed between SOS based on the SA method and the STL
method and were similar to those in steppes. At CV sites, SOS
based on the SA method matched relatively better with ground-
observed SOS than those based on the STL method, but the
differences of extraction accuracies between SA and STL were
relatively smaller compared with those in other vegetation types.

Supplementary Figure S4 shows comparisons between EOS
from E-SA, E-STL, N-SA, N-STL, P-SA, and P-STL for different
vegetation types based on the ground observations. In general, the
SA method performed much better than the STL method, either
for all vegetation types together or only one of them, as the MAEs
of EOS based on STL were about twice and even much more than
MAEs of EOS based on SA. Besides, the accuracies of EOS from
EVI, NDVI, and NDPI were different for different vegetation
types. For all vegetation types, the SA-extracted SOS from NDPI

FIGURE 5 |Comparison between SOS from E-SA, E-STL, N-SA, N-STL, P-SA, and P-STL for different vegetation types based on the ground observations. (A) All,
(B) steppe, (C) meadow, and (D) cultivated vegetation (CV). Gray lines are the 1:1 line, and black lines are the best linear regression line.
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and EVI had better agreements with ground-observed EOS than
that from NDVI, and the MAEs of EOSP-SA and EOSE-SA were
22.84 and 25.60 days year−1, respectively, while it was
33.72 days year−1 for EOSN-SA. Of all the vegetation types, the
accuracy of EOS in steppes was the highest compared to other
vegetation types, with the lowest MAEs and RMSEs, and the
accuracies of EOSP-SA, EOSN-SA, and EOSE-SA had little difference
in steppes than in others, with MAEs of 8.46, 10.84, and
13.07 days year−1, respectively. For meadows, EOS from P-SA
matched best with ground observations (with MAE of
18.41 days year−1), followed by EOS from E-SA (with MAE of
24.24 days year−1), and the accuracy of EOSN-SA was the lowest
among EOS based on the SA method (with MAE of
27.20 days year−1). At CV sites, the correlations between
EOSP-SA, EOSE-SA, and ground-observed EOS were stronger
than EOSN-SA, with MAEs of 27.16, 27.99, and
36.38 days year−1, respectively.

Figure 6 presents accuracy comparisons of satellite-derived
SOS over the flat terrain and complex terrain. The complex
terrain showed lower accuracy of satellite-derived SOS
(MAE � 31.79 days year−1) than the flat terrain
(MAE � 20.67 days year−1). Over the flat terrain, the MAE
values between SOS from E-SA, E-STL, N-SA, N-STL, P-SA,
and P-STL and ground-observed SOS were 16.23 ±
11.65 days year−1, 22.17 ± 13.52 days year−1, 16.8 ±
12.19 days year−1, 23.21 ± 14.13 days year−1, 20.5 ±
13.49 days year−1, and 25.13 ± 14.22 days year−1, respectively. Over
the complex terrain, the MAE values between SOS from E-SA,
E-STL, N-SA, N-STL, P-SA, and P-STL and ground-observed SOS
were 32.63 ± 28.42 days year−1, 26.48 ± 16.07 days year−1, 33.48 ±
27.65 days year−1, 28.21 ± 13.61 days year−1, 38.14 ±
26.32 days year−1, and 31.80 ± 16.72 days year−1, respectively.
Similarly, the MAE values between satellite-derived EOS and
ground EOS over the complex terrain (mean � 49.97 days year−1)

were much higher than those over the flat terrain
(mean � 39.08 days year−1), as presented in Supplementary
Figure S5. Over the flat terrain, the MAE values between EOS
from E-SA, E-STL, N-SA, N-STL, P-SA, and P-STL and ground-
observed EOS were 24.68 ± 21.09 days year−1,
52.38 ± 22.94 days year−1, 28.44 ± 22.87 days year−1, 59.65 ±
24.32 days year−1, 20.11 ± 20.02 days year−1, and 49.22 ±
24.85 days year−1, respectively. Over the complex terrain, the
MAE values between EOS from E-SA, E-STL, N-SA, N-STL,
P-SA, and P-STL and ground-observed EOS were 28.79 ±
16.01 days year−1, 60.91 ± 19.57 days year−1, 42.94 ±
15.97 days year−1, 72.30 ± 21.13 days year−1, 32.24 ±
14.29 days year−1, and 62.61 ± 20.27 days year−1, respectively.

The larger MAE values between phenological metrics and
ground observations over the complex terrain revealed the fact
that the extraction of phenological metrics over the complex
terrain had larger disagreements with ground observations than
those over the flat terrain, and it can be concluded that the
complex terrain had a larger influence on extraction accuracy
than the flat terrain.

4 DISCUSSION

4.1 Comparison of Different Methods Using
Different VI Datasets in Phenological Metric
Extractions
The time series of satellite-derived VI datasets have made it
possible to study the vegetation phenology and its interactions
with surrounding environment conditions for a long time at large
scale (An et al., 2018; Wang and Wu, 2019). The time series VI
datasets, together with phenological retrieval algorithms, could
affect the vegetation phenological metrics, but few evaluations are
performed. In this study, we employed two methods using three
VI datasets to retrieve the vegetation phenological metrics in the
TP, and the effectiveness of each result was evaluated.

It is shown that the missing rates of phenological metrics
(Figure 3; Supplementary Figure S2) based on SA for each VI
were lower than those based on STL; as the vegetation index value
was relatively lower in the TP, the seasonal trend line may not
cross with part of the vegetation index time series curve and then
lead to missing of phenological metrics. Besides, phenological
metrics derived from NDVI had lower missing rates than other
VIs. However, the missing rates of EOS were higher than those of
SOS, which were mainly because the DOY of EOS were more
likely to be larger than 365 in the process of retrieval and thus
treated as an invalid value.

In general, the phenological metrics based on SA for each VI
were a little more stable than those based on STL in the aspect of
temporal stability, and the phenological metrics derived from
NDVI had higher temporal stabilities than those from EVI or
NDPI (Table 2; Supplementary Table S1). However, for the DFs,
shrubs, grass, and CVs, SOS derived from EVI were superior to
those from others. In addition, EOS based on STL were much
more unstable than those based on SA, and SOS derived from
NDVI or EVI had higher temporal stabilities than those from

FIGURE 6 | Comparison of mean absolute error (MAE) values of SOS
over the flat terrain and the complex terrain.
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NDPI. The higher CV values of SOS for each vegetation type than
those of EOS meant that the SOS varied greater than EOS during
the study period and was more sensitive to environmental factors,
which was almost consistent with the study of Wang et al. (2019).

As for the spatial stability (Table 4; Supplementary Table S3),
phenological metrics derived from NDVI had relatively better
spatial stabilities than those from EVI or NDPI for each method,
and the differences of spatial stability were relatively small
between phenological metrics based on the SA method and
the STL method for each vegetation index. The higher spatial
CV values of SOS than EOS indicated that the differences of SOS
in different regions for each vegetation type were larger than
those of EOS.

The accuracy assessment based on ground observations
(Figure 5; Supplementary Figure S4) in this paper shows that
phenological metrics based on SA had better agreements with
ground observations than those based on STL for each VI, as
MAEs between phenological metrics based on SA and ground
observations were much lower than those between phenological
metrics based on STL and ground observations, implying that the
SA method was more suitable to monitor phenology on the TP.
The same conclusion was also found in previous studies (Yu et al.,
2010; Zheng and Zhu, 2017). Moreover, smaller MAEs and
RMSEs were found between SOSE-SA, as well as SOSN-SA, and
ground-observed SOS, indicating that NDVI or EVI might be
more consistent than NDPI with the ground-observed SOS. EVI
or NDVI may be more appropriate for monitoring SOS than
NDPI in the TP. However, regarding EOS, smaller MAEs and
RMSEs between EOSP-SA and ground-observed EOS were found
for all the vegetation types. However, more ground-observed
phenological records are needed to confirm it due to only fewer
available sites mainly in the east of the TP in our study. When
compared with SOS, EOS is much difficult to be monitored (Liu
et al., 2016; Jeong et al., 2017; Wu et al., 2017; Zheng and Zhu,
2017) as the MAEs were larger between derived EOS and ground-
observed EOS than those between derived SOS and ground-
observed SOS. However, it was opposite for the steppes, which
was probably due to the relatively lower vegetation coverage in
these areas, and it was difficult to capture the greenness change of
vegetation as it was likely to be affected by the background of soil.

4.2 The Topographic Effect on Phenological
Estimations
As the complex terrain usually present high spatial heterogeneity,
the satellite-derived phenology results in complex areas displayed
more uncertainties than those in flat areas. In this study, we have
checked the topographic influence on retrieved phenological
metrics. The results showed that phenological metrics over the
complex terrain had higher missing rates than those over the flat
terrain (Figures 2 and 4; Supplementary Figures S1 and S3). In
addition, the phenological results over the complex terrain were
more unstable at the temporal and spatial scale than those over
the flat terrain (Tables 3 and 5; Supplementary Tables S2 and
S4). Besides, the phenological metrics over the complex terrain
also had larger disagreements with ground observations than
those over the flat terrain (Figure 6; Supplementary Figure S5).

The high spatial variations in geographic configurations caused
by obvious topographic conditions may cause sustainable and
complex uncertainties in the surface reflectance data, then may
affect the quality of input VI data for phenological extractions,
and then lead to higher uncertainties of phenological metrics
compared with the flat terrain (Jin et al., 2017; Xie and Li, 2020b).
As terrain gradients usually result in frequent changes of local
climate, the surface reflectance data over the complex terrain is
more susceptible to external environmental conditions. The
surface reflectance data over the complex terrain is more likely
to be contaminated by clouds, aerosols, snow, etc. (Xie et al.,
2019). The increasing angular variations between the sun and
satellite over the complex terrain may lead to more complicated
solar irradiances than those over the flat terrain (Yan et al., 2018;
Xie et al., 2021a).

Nevertheless, the topographical effects tend to be ignored (Jin
et al., 2017) by most of the current retrieval methods for
phenological extractions and then lead to more uncertainties
into the phenological metrics. In this work, the lower missing
rates, better stabilities on the temporal and spatial scale, and
higher accuracies in phenological metrics were found over the flat
terrain than the complex terrain; thus, the retrieval work of
phenological metrics over the complex terrain is more
challenging than that over the flat terrain (Xie et al., 2018).

4.3 Deficiencies in Ground Observations
Accuracy assessment using ground observations is always an
important concern in any remote sensing-based monitoring and
analysis, especially at a large scale (Wang et al., 2017c; Shen et al.,
2021). However, the limitations of ground-observed validation
data in the TP and the inconsistency and scale effect between
remote sensing results and observations at ground sites make it
difficult to validate large-scale remote sensing monitoring results
by using ground-observed data (Wang et al., 2017b). Due to the
limitations of ground-observed validation data in the TP, the
accuracy assessment of this study only considers the vegetation
types of steppe, CV, and meadow mainly in the east. In the future
research, it is necessary to continue to expand the area and
consider more vegetation types to conduct a more
comprehensive precision evaluation of phenological products.
It is worth noting that retrieved phenological metrics were
derived from 500-m, 16-day composite NDVI/EVI or 8-day
composite NDPI data, while ground observations are daily
point-based observations. The remote sensing phenological
metrics are based upon greenness of a pixel, while ground
observations rely on the morphological changes of individual
plants; thus, inconsistencies exist between them as different
species at the same stage could exhibit different greenness
because of differences in the characteristic area of individual
leaves (Shen et al., 2015;Wang et al., 2017c). Although the studied
sites are the best representation for each station and the
surrounding area, a great number of species that exhibit
diverse phenological stages coexist within a pixel, and the scale
effect of incomplete match between ground site and remote
sensing pixel at the temporal and spatial scales is unavoidable
(Wang et al., 2017c). All these might lead to disagreements
between retrieved phenological metrics and ground observations.

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 79418912

An et al. Assessment of Vegetation Phenology Extractions

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


5 CONCLUSION

In this study, vegetation phenological metrics in the TP were
derived based on different extraction algorithms using three
satellite-derived vegetation indices, and comparative analyses
of the results were conducted in different aspects. We found
that the SA method performed better than STL in the
extraction of phenological metrics, as phenological metrics
based on SA had lower missing rate, better stability on the
temporal and spatial scales, and better agreements with ground
observations. Meanwhile, the EVI, NDVI, and NDPI had
advantages in different aspects. Different retrieving
approaches may produce significantly different estimates of
SOS and EOS, with VI differences also accounting for
differences. Besides, the results also showed that the
complex terrain had larger influence on extraction accuracy
than the flat terrain, and extraction of phenological metrics
over the complex terrain was more challenging than that over
the flat terrain. Furthermore, given present approaches and
datasets, substantial room for improvement exists for using
remote sensing applications to predict ecosystem phenology at
broad spatial scales. It should be considered that uniting
multisource data is an effective way to improve the
accuracy and validity of remote sensing phenological
products. Different combinations of datasets and retrieval
methods may need to be applied for different plant
functional types, and in particular, identifying the specific
best settings to each ecosystem type will be a future
research challenge. These findings are of great value for

improving the spatial resolution of remote sensing
phenological products to promote their application and
development in the future.
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