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Glucocorticoids have been detected in environmental waters, and their biological potency
has raised concerns on their impact on aquatic vertebrates especially fish. Numerous
researches showed that the continuous and direct contact of aquatic vertebrates with
glucocorticoid contaminants in environmental water will cause bone formation inhibition.
The aim of this study is to predict and verify the effect of icaritin (IT), icariin (ICA), and
baohuside-I (BHG-I) in reversing glucocorticoid-induced bone formation inhibition (GIBFI)
by molecular docking and zebrafish model. We contrasted their activity in reversing GIBFI
from their affinity to bone metabolism proteins (OPG, RANKL, BMP-2, BMP-4, Runx-2) by
molecular docking. Subsequently, zebrafish model was adopted to evaluate their reverse
effects on GIBFI. Alizarin red staining coupled with image quantification were performed to
evaluate the effects of ICA, IT, and BHG-I on skeleton stained area (SSA) and cumulative
optical density (COD). Inductively coupled plasma-mass spectrometry was applied to
determine the contents of bone mineral elements (CBME, Mg, K, Ca, Fe, Zn) in zebrafish
bones. Docking results showed the receptors (BMP-2, BMP-4, and Runx2) all combined
well to ICA, while BHG-I bound well to OPG, the affinity between IT and the above targets
were the weakest. Fortunately, IT, ICA, and BHG-I significantly increased the SSA, COD,
and the contents of Ca compared with the model group (p < 0.05) in the order of
IT>ICA>BHG-I. In conclusion, the glycosyl groups increased the H-bond affinity
between flavonoids and target sites, which weakened bone formation. IT, BHG-I, and
ICA all alleviated GIBFI, but their intensity order was IT>ICA>BHG-I.
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INTRODUCTION

Glucocorticoids are garnering research interests in recent years
(Chen et al., 2017; Hidasi et al., 2017; Willi et al., 2018) as their
potential environmental impacts are increasingly being
recognized. They are frequently prescribed in medicine due to
their anti-inflammatory, anti-allergic, and immunosuppressive
properties (Willi et al., 2019). These compounds that originate
from a wide range of medical applications in humans and
domestic animals may pose an ecotoxicological risk for aquatic
organisms in contaminated waters (McNeil et al., 2016; Neale
et al., 2020).

The main source of these compounds entering the aquatic
environment is the excretion of pharmaceutical residues used by
either humans or animals in their free or conjugate forms (Goh
et al., 2016). Existing treatment processes in wastewater treatment
plants (WWTPs) are not entirely effective in removing these
contaminants (Pedrouzo et al., 2009; Zwart et al., 2020). This can
lead to pollutants transferring to the rivers and oceans via effluent
of WWTPs (Cavallin et al., 2021). A previous study reported that
total glucocorticoid levels had been detected at >0.5–52 ng/L in
receiving river waters and up to 390 ng/L at discharged sites in
Beijing region, China. Glucocorticoids and their metabolites
totaling about 47–96 ng/L have been reported in Swiss river
waters. In France, pharmaceutical industrial waste effluent
detected with dexamethasone and prednisone up to 23,000
and 300 ng/L, respectively, have been discharged into a river
where its downstream water was sampled over multiple time-
points and estimated to contain 1–2,900 ng/L of dexamethasone
and 50–1,260 ng/L of 6 α-methylprednisolone (Chen et al., 2017).

The continuous and direct contact of aquatic vertebrates with
glucocorticoid contaminants in environmental water is a valid
concern especially for fish (Leusch et al., 2017; Allijn et al., 2018).
It has been shown that fishes that have long term exposure to
hydrocortisone experience adverse effects in their locomotion,
impeding aggressive behavior, a change in their immune response
and possible modifications to their sexual behavior (Øverli et al.,
2002; DiBattista et al., 2005). Also, it is demonstrated that in
embryos, the glucocorticoid system is active after around 48 h
post fertilization (Wilson et al., 2013). As it plays an important
role in regulating hatching (Nesan et al., 2012), swimming activity
(Castillo-Ramírez et al., 2019), circadian rhythm (Zhao et al.,
2018), musculoskeletal development, growth and stress response
(Apaydin et al., 2020), and exposure to exogenous glucocorticoids
can be especially disruptive during early development. Relevant
research reported prednisone induced decreased bone mineral
density and bone loss (Schmid et al., 2020a; Schmid et al., 2020b).
Furthermore, the long-term use of glucocorticoids will induce
osteoporosis mediated by glucocorticoid receptor-dependent and
-independent pathways (Zhao et al., 2016; Zhao et al., 2018). In
our present study, we focused on the effects of glucocorticoids in
aquatic environment on zebrafish bone formation and tried to
find therapeutic drugs from traditional Chinese medicine.

Epimedii Folium (EF) has been used to repair fractures, bone
and joint damage, and gonad dysfunctions for thousands of years
(Zhang et al., 2018). The major active flavonoids in EF were
icariin (ICA), baohuside-I (BHG-I), BHG-II, and epimedin (A, B,

C) (Li et al., 2015). There is little Icaritin (IT) in Epimedium herbs
and extractions, while EF-flavonoids can be biologically
converted into IT in vivo after hydrolysis of glycosidic bonds.
IT was the structural parent nucleus of ICA and BHG-I, and the
glycosylation number of IT, BHG-I, and ICA were 0, 1, 2,
respectively (Figure 1). Previous studies revealed that higher
concentrations of IT were discovered in rat plasma, urine, and
feces after oral administration of ICA or BHG-I (Sun et al., 2014;
Sun et al., 2016). Pharmacological studies confirmed that ICA
increased bone mass and prevent glucocorticoid-induced
apoptosis in osteocytes (Feng et al., 2013; Wang et al., 2018).
In addition, BHG-I activated EGFR-Akt-Nrf2 signaling and
protected osteoblasts from Dexamethasone (Liu et al., 2017).
Also, relevant studies have reported that IT exerted positive
effects on human osteoblast proliferation and osteogenic
function (Lim et al., 2017). Up to now, there are barely
documents reported the activity difference of IT, BHG-I, and
ICA in anti-bone formation inhibition.

The skeletons were in constant renewal, and this steady state
of bone was mainly maintained by osteoclasts and osteoblasts.
Considerable evidence indicated that the osteoprotegerin
(OPG)/receptor activator of nuclear factor κB ligand
(RANKL)/RANK system (OPG/RANKL/RANK) was relevant
to osteoclast proliferation and differentiation (Liu and Zhang,
2015; Kushlinskii et al., 2017). Bone morphogenic protein
(BMP), a member of the transforming growth factor-beta
(TGF-b) super family (Aslani et al., 2019), was related to the
differentiation of osteoblasts from mesenchymal stem cells or
osteoprogenitor cells in bone marrow (Garg et al., 2017; Liu L.
et al., 2018; Yang et al., 2018). It was demonstrated that
pharmacologic blockade of RANKL in the OPG/RANKL/
RANK system was an effective treatment for osteoporosis.
Similarly, antagonists, such as noggin (Hashimi, 2019),
chordin (Tekari et al., 2017), and gremlin-1, also effectively
restricted the differentiation of osteoblasts through binding to
BMP-2 (Kišonaitė et al., 2016). All these results demonstrated
that binding to bone metabolism-related protein targets was one
important way for drugs to promote or inhibit bone turnover.
The structural difference in the glycosyl groups of IT, BHG-I,
and IT caused their discrepancy in affinity with related targets,
which was one significant factor for their bioactivity in anti-
bone formation inhibition.

In this paper, we primarily contrasted the activity difference of
IT, BHG-I, and ICA on anti-bone formation inhibition and
clarified the underlying mechanism. Molecular docking was
carried out to elaborate the affinity between three flavonoid
homologs (IT, BHG-I, and ICA) and protein targets.
Immediately, the zebrafish models were used to verify the
molecular docking results and evaluates their effects in anti-
bone formation inhibition according to skeleton staining,
quantification of the area of mineralized bones and cumulative
optical density, and determination of bone mineral contents.
Finally, the order of action intensity of these three flavonoids
in anti-bone formation inhibition was obtained, and the
mechanism of this difference was explained from the
perspective of the interaction between chemical structure and
bone metabolic protein targets.
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MATERIALS AND METHODS

Molecular Docking Simulation
The amino acid sequences of OPG (PDB ID: 3URF, CHAIN: Z,
Length: 171 AA, Residues: 22–186), RANKL (PDB ID: 3URF
CHAIN: A Length: 162 AA Residues: 162-317) and BMP-2 (PDB
ID: 2QJB CHAIN: AB Length: 116 AA Residues 283–396) have
structural data of Experimental Analytical proteins. BMP-4 and
Runx2 amino acid sequences have no experimental analytical
protein structure data, and 3D protein structure data was
obtained by homology modeling. Data were calculated using
Molecular Operating Environment 2015.10 software (Chemical
Computing Group Inc., Quebec, Canada). Maestro was carried
out to build the structure of ligands, and then they were
transformed into 3D format. The docking module was used to
dock the ligand, and the protein and docking scores were
evaluated by Glide’s scoring function.

Animals
Zebrafish farming was conducted according to the standard
procedure (Varga et al., 2018). Adult zebrafish mate and
spawn naturally under the condition of 10/14 h dark/light
cycle. The zebrafish embryos and larvae were cultured in six-
hole plates with blank E3 medium solution (5.0 mM NaCl,
0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM MgSO4) in Light
incubator (PGX-150B) at 28.5°C and natural air circulation.
Animal experiments were carried out in accordance with the
Guidelines for Animal Experimentation of Jiangsu University
(Zhenjiang, China), and the protocol was approved by the Animal
Ethics Committee of this institution.

Treatment Regime
The zebrafish model by prednisolone (PNSL, 25 μM) was
established according to our preliminary study (Jiang et al.,
2018). Zebrafish larvae were randomly divided into seven
groups (n = 15 larvae in each well with three replications) as
follows: Control (CK, blank E3 medium), DMSO (DMSO, 0.5%
DMSO), Model group (MX, 25 μM PNSL), Disodium
ethydronate (YTLSN, 15 μM Disodium ethydronate + 25 μM
PNSL), Icaritin (IT, 0.1, 1.0, or 10.0 μM IT + 25 μM PNSL),
Baohuside-I (BHG-I, 0.1, 1.0, or 10.0 μM BHG-I + 25 μM
PNSL), and Icariin (ICA, 0.1, 1.0, or 10.0 μM ICA + 25 μM
PNSL) 3 days after fertilization (DAF). From 6 to 10 DAF,

larvae were fed with paramecia for 1 h every day. Following
each feeding, the remaining paramecia were washed out, and the
medium was replaced with blank E3 medium-containing drugs or
not (Jiang et al., 2018).

Behavior Analysis
After 4 days of drug deliveries, zebrafish locomotor activity was
monitored by EthoVision behavior system. Prior to the start of
tracking, the software needed to be calibrated. The video
sampling rate was 25 frames per second (fps), based on the
design recommendations (Wolter and Svoboda, 2020). First,
under the “Trial List,” one trial was selected. For the “Arena
Settings,” each well/arena was calibrated based on the diameter of
the well. The diameter of the wells within the well plates used in
this manuscript are 96 well plate (6.54 mm). For the “Detection
Settings,” dynamic subtraction was selected and the dark contrast
and subject contour were adjusted to optimize tracking efficiency
(Knafo and Wyart, 2018). Within the “Analysis Profiles,” the
selected dependent variables were distance moved, velocity, and
time spent moving. These endpoints were based on the center-
point activity of the larvae (Martella et al., 2016). The results were
then exported to Excel and statistical analysis software suites.
According to the methods described above, moving distance
(MD), average speed (AS), travel frequency (TF), and hotspot
are selected as the anti-GIBFI drug efficiency evaluation index in
this model.

Whole-Mount Skeletal Staining
Alizarin red staining on zebrafish larvae was performed as
previously described (Bruneel et al., 2015). Briefly, the
zebrafish larvae were collected at 10 DAF, all the zebrafish
were killed by 3-aminobenzoic acid ethyl ester methane
sulfonate (MS-222, 100 mg/L) (Martini et al., 2021). After
removal of MS-222 solution, zebrafish larvae were fixed in
paraformaldehyde solution 4% in PBS (pH 7.4) and stained
with Alizarin red staining (Vimalraj et al., 2020). Fresh
prepared bleach with 1.5% H2O2 and 1% KOH was added
12 h later after the staining solution was removed and
washed., All samples were decolored with glycerol 1 h later,
and the stained zebrafish was placed under a microscope to
observe their stained bones (Lim et al., 2021). Images were
acquired by microscope (Olympus IX71/IX81, Olympus
Corporation, Japan). Digital images were analyzed using

FIGURE 1 | Chemical structures of icaritin (IT), baohuside-I (BHG-I), and icariin (ICA).
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ImageJ software (National Institutes of Health, Bethesda, MD,
USA) to quantify the skeleton stained area (SSA) and cumulative
optical density (COD) (n = 15) (Cheng et al., 2017; Liu S. et al.,
2018).

Sample and Standard Solution Preparation
for Inductively Coupled Plasma-Mass
Spectrometry Detection
The mineral contents in zebrafish larvae were measured by
inductively coupled plasma-mass spectrometry (ICP-MS) as
reported in our previous study. The larvae were collected at
10 DAF (n = 15) and washed five times in double distilled
water and then transferred to centrifuge tubes. Immediately,
samples were digested with 70% HNO3 in a microwave oven
for 4 h. Determination of Ca, K,Mg, Zn, and Fe was carried out by
the 7500cx ICP/MS system (Agilent Technologies, Santa Clara,
CA, USA) equipped with a G3160B I-AS integrated autosampler.

The standard solutions of Mg, K, Ca, Fe, and Zn with mass
concentration at 10 mg/L were diluted into tuning solution (1 μg/
L) with 2% nitric acid. The series concentration of Ca standard
solution was 0, 40, 80, 120, 160, 200 mg/L. The other series
concentration of Mg, K, Zn, and Fe standard solution were 0, 10,
20, 40, 80, 160 μg/L.

Inductively Coupled Plasma-Mass
Spectrometry Conditions
Agilent 7500 ICP-MS system was used for simultaneous
determination of Ca, K, Mg, Zn, and Fe. The pressure of Ar
and He were set to 700 and 40 KPa, respectively. Circulating
water temperature was 20°C. The pressure was 230–400 KPa. The
exhaust air volume was set to 5,000–7,000 L/min. Plasma power
was 1.5 KW. Carrier gas flow rate was 0.9 L/min, and
compensation gas flow rate was 0.25 L/min. Injection depth
was 8 mm. Peristaltic pump speed was set to 0.1 r/s. Premix
chamber temperature was 2°C.

Method Validation of Inductively Coupled
Plasma-Mass Spectrometry
After the instrument was tuned, the series mixed standard
working solution was injected into ICP-MS, and the signal
response value of each element was measured. The mass
concentration was taken as the abscissa, and the response
signal value was taken as the ordinate. The correlation

coefficient (r) of the standard curve were all higher than
0.9990. The detailed calibration curves, linear range, and the
lower limit of quantitation (LLOQ) for mineralized elements are
available in Table 1.

Statistical Analysis
All data were presented as the mean ± SD. Statistical analysis was
performed using GraphPad Prism 5 (GraphPad software, USA).
Differences were analyzed by one-way analysis of variance
(Tukey, compare all pairs of columns). Differences with
p < 0.05 were considered significant.

RESULTS

Molecular Docking Results
The important parameters obtained from molecular docking
included docking scores, interacting residues, bonding energy,
binding position and H-bonds interaction between receptors and
ligands. The ICA-RANKL interaction had 4 H-bond residues as
GLU292 (A), ASP174 (A), SER252 (A), and LYS205 (A) with a
total binding energy of −12.8 kcal/mol. The interaction between
BMP-2 and ICA also had 4 H-bond residues as GLU46 (A),
GLY45 (A), CYS47 (A), and CYS79 (A) with a total binding
energy of −11.5 kcal/mol. ICA bound to BMP-4 via H-bond
interaction at LEU 386(B), pi-H interactions with TRP 325(B),
and TRP 322(B) with a total binding energy of −3.6 kcal/mol. The
ICA-RANK interacted at GLN122, LEU143, and GLN144 with a
total binding energy of −3.7 kcal/mol. Therefore, the docking
results indicated that ICA could bind to multiple protein targets
including RANKL, BMP-2, BMP-4, RANK, and Runx2 with
docking scores at −6.67224169, −6.69499111, −6.68158722,
−6.81634808, and −6.87304401, respectively (Tables 2 and 3;
Figure 2, Supplementary Figure S1).

Although BHG-I could interact with the above six protein
targets, the combination between BHG-I and OPG via pi-H
interactions with interacting residues TYR 71(Z) and VAL
72(Z), H-bond interaction with LYS 87(Z) had the maximum
absolute docking score (−9.64769459, Table 2) and the lowest
binding free energy (−3.5 kcal/mol, Table 3). Similarly, ligand IT
was able to communicate with OPG, BMP-2/-4, and RANK, but
their absolute docking score were relatively smaller than ICA and
BHG-I, which showed that the combination of IT and the above
targets were weak. The IT-OPG interaction had two residues as
TYR71, VAL65 with a total binding energy of −1.5 kcal/mol. The
IT connected with BMP-2 through GLU109 residues with a

TABLE 1 | Regression equations, correlation coefficient, linear range, and LLOD of ICP-MS detection.

Element Regression equation r2 Linear range (μg/L) LLOQ (μg)

Mg Y = 3,086.1369X + 1,838.2667 0.9999 0.1–10.0 0.5
K Y = 7,150.6463X + 183,107.5167 0.9999 0.01–10.0 0.5
Ca Y = 7.6893X + 242.9667 0.9999 0.5–50.0 0.5
Fe Y = 24,740.9960X + 28,669.6067 0.9999 0.01–10.0 0.5
Zn Y = 5,916.4495X + 2,140.5267 0.9999 0.001–10.0 0.5

Note. ICP-MS, inductively coupled plasma-mass spectrometry; LLOQ, lower limit of quantitation.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 9 | Article 7935274

Jiang et al. Environment and Bone Formation Inhibition

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


binding energy of −1.1 kcal/mol. The IT-RANK interaction had
two residues as VAL91 and CYS92 with a total binding energy of
−1.8 kcal/mol. The IT-BMP-4 interaction had four residues as
GLU388, TRP325, TRP322, and TYR385 with a total binding
energy of −7.3 kcal/mol. The IT connected with Runx2 through
LEU168(A) residues with a binding energy of −5.7 kcal/mol.
These results exhibited that the affinity between BHG-I and
OPG was the strongest, and the combination of IT and above
targets were all instability.

Effect of Icariin, Icaritin, and Baohuside-I on
Bone Formation and Bone Mineralization
The skeleton stained area (SSA) and cumulative optical density
(COD) were important indicators of bone mineralization. Alizarin
Red staining was widely used to detect and quantify mineralized
bones because it was capable of binding to calcium salts and showed
red under the microscope (Figure 3). Compared with the DMSO
group, the area of SSA and COD in Zebrafish larvae were decreased
significantly under the treatment of 25 μM PNSL (MX, p < 0.01,
Figure 4). These results indicated that PNSL reduced bone
mineralization and inhibited osteogenic differentiation in
zebrafish larvae. Compared with the MX group, the COD was
significantly increased (p < 0.05, Figure 4A) under the
intervention of IT (0.1, 1.0, and 10.0 μM), BHG-I (10.0 μM), and
ICA (0.1, 1.0, and 10.0 μM). Furthermore, compared with the MX
group, the SSA in ICA, IT, and BHG-I all showed significant increase
from 0.1 to 10.0 μM(p <0.05, Figure 4B). These flavonoids showed a
prospective concentration-dependent in reversing PNSL induced
inhibition of bone formation.

Effect of Icariin, Icaritin and Baohuside on
Zebrafish Behavior
The behavior analyzer—Ethovision—was used to track the
movement of zebrafish. As shown in Figures 5 and 6, the

moving speed (MS), moving distance (MD), and travel
frequency (TF) of PNSL group was significantly lower than
those of the DMSO, while for YTLSN and all three
compounds, these parameters were close to the control. The
results showed that different concentrations of IT, ICA, and
BHG-I increased MD by 131.50%, 124.66%, and 107.38%,
respectively, with partial significant (p-value < 0.001–0.01). TF
for IT, ICA, and BHG-I were 169.39%, 137.66%, and 128.57%,
respectively. Also, the hot plot revealed zebrafish activity degree
(Supplementary Figure S2). These results with significant
differences demonstrated that IT, ICA, and BHG-I could
reverse GIBFI.

Icariin, Icaritin, and Baohuside Promote the
Enrichment of the Elements Required for
Bone Mineralization
Bone was composed of 69–80 wt% calcium phosphate and other
trace elements. To confirm the therapeutic effect of ICA, IT, and
BHG-I on osteogenesis, whole-body Ca, K, Mg, Zn, and Fe
contents of larvae were measured by ICP-MS. Compared with
the DMSO, the treatment of PNSL significantly decreased whole-
body Ca, K, Mg, Zn, and Fe levels by 6.24, 1.67, 1.06, 0.11, and
0.75, respectively (p < 0.05). After the treatment of IT, ICA, and
BHG-I, whole-body Ca, K, Mg, Zn, and Fe levels were
significantly higher than PNSL group (p < 0.05,
Supplementary Figure S3, Figures 5).

DISCUSSION

The OPG/RANKL/RANK signaling pathway plays a crucial role
in regulating the bone remodeling process (Khosla, 2001).
RANKL binds to RANK on osteoclasts to stimulate
differentiation. OPG can also bind to RANKL to block this
process and to control the remodeling process (Tyrovola,

TABLE 2 | Docking scores and interacting residues between receptors and ligands.

Receptor Ligand S Residues

OPG Icariin −8.56518173 TYR71, VAL72, LYS87
Baohuside I −9.64769459
Icaritin −8.96370506 TYR71, VAL65

RANKL Icariin −6.67224169 LYS205, GLU292, SER252, ASP174
Baohuside I −6.09861946 ASP230, LA232, ASN295
Icaritin −5.79909897

BMP-2 Icariin −6.69499111 LYS47, GLY45, GLU46, CYS79
Baohuside I −5.87657118 ARG16, GLU109
Icaritin −5.29828167 GLU109

RANK Icariin −6.68158722 GLN122, LEU143, GLN144
Baohuside I −6.76106215 CYS112, ARG111, ASP93
Icaritin −5.86958647 VAL91, CYS92

BMP-4 Icariin −6.81634808 LEU386, TRP325, TRP322
Baohuside I −6.19196224 GLU388
Icaritin −5.70623016 GLU388, TRP325, TRP322, TYR385

Runx2 Icariin −6.87304401 LEU168
Baohuside I −5.74639988 HIS214, ARG115
Icaritin −5.46986055

Note. OPG, osteoprotegerin.
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2015; Kovács et al., 2019; Li et al., 2019). If ligands bound to OPG,
blocking the binding of OPG to RANKL, which weakened the
inhibitory effect of ligand to osteoclasts. On the other hand, if the
ligands combined with RANKL which also inhibited the
interaction of RANKL-RANK and attenuated the
differentiation of osteoclasts, and finally showed bone
resorption inhibition (Jiang et al., 2018). Antagonists, such as
noggin (Chien et al., 2020), chordin (Huang et al., 2019) and
gremlin-1 (Silvério de Barros et al., 2019), effectively restrict
osteoblast differentiation through binding to BMP-2. Similarly,
the combination between ligand and Runx2 blocked the function
of Runx2 in promoting osteogenic differentiation. In summary,
the ligands bind to BMP-2, BMP-4, or Runx2 inhibited the
differentiation of osteoblasts, the stronger the binding, the
more inhibition on the bone formation.

In molecular docking, the lower bonding energy, the more
stable binding between the ligands and the receptors. In addition,
the larger the absolute value of docking scores, the more stable the
combination. From the docking scores, the binding between

BHG-I and OPG (−9.64769459) was the most stable compared
with that of IT (−8.96370506) and ICA (Table 2). Meanwhile, the
interaction between BHG-I and OPG had the lowest binding
energy (−3.5 kcal/mol, Table 3, Figure 2). According to the
docking results, the position of H-bonds was mostly located in
glycosylation, which indicated that glycosylation affected the
formation of H-bonds. For example, BHG-I bound to OPG
via pi-H interactions with interacting residues TYR 71(Z), and
VAL 72(Z), H-bond interaction with LYS 87(Z), while IT bound
to OPG was pi-H interaction at VAL 65(Z) and H-bond
interaction at TYR 71(Z). The glycosyl groups in BHG-I
promoted the formation of H-bond and the interaction of
ligand-receptor, which ultimately manifested as the weakening
of anti-GIBFI. The formation of more H-bonds between ICA and
multiple bone turnover targets was mainly attributed to the two
glycosyl groups in its structure. Therefore, the binding between
ICA and above protein targets was easier andmore stable than the
other two flavonoids because of the less glycosyl groups in IT and
BHG-I (0 and 1, respectively). Based on molecular docking, the

TABLE 3 | Bonding energy, binding position, H-bond interaction between receptors and ligands.

Receptor Ligand Position Receptor Interaction Distance(Å) E (kcal/mol)

OPG Icaritin O (5) TYR 71(Z) H-acceptor 2.89 −0.9
6-ring VAL65(Z) pi-H 4.37 −0.6

Baohuside I O (7) LYS 87(Z) H-acceptor 3.62 −1
6-ring TYR 71(Z) pi-H 3.79 −0.8
6-ring VAL 72(Z) pi-H 4.32 −1.7

RANKL Icariin O (6) GLU292(A) H-donor 2.86 −1.8
O (9) ASP174(A) H-donor 2.96 −2.9
O (6) SER252(A) H-acceptor 2.85 −1.5
O (11) LYS205(A) H-acceptor 2.94 −6.6

Baohuside I O (4) ASN 295(A) H-donor 3.23 −1.2
O (8) ASP 230(A) H-donor 2.82 −3.6
O (7) ALA 232(A) H-acceptor 3.17 −1.7

BMP-2 Icariin O (6) GLU46 (A) H-donor 2.9 −3.8
O (7) GLY45 (A) H-donor 2.88 −2.5
O (7) CYS47(A) H-donor 3.43 −1.3
O (13) CYS79 (A) H-donor 2.9 −3.9

Baohuside I O (8) GLU109 (A) H-donor 2.86 −3.3
6-ring ARG16 (A) pi-H 4.18 −4.7

Icaritin O (3) GLU 109 (A) H-donor 2.86 −1.1
RANK Icariin O (9) GLN122(A) H-donor 3.02 −0.9

O (11) LEU143(A) H-donor 3.15 −0.7
O (13) GLN144(A) H-donor 3.15 −2.1

Baohuside I O (7) CYS112 (A) H-donor 3.4 −0.4
O (3) ASP93 (A) H-acceptor 3.24 −1.2
6-ring ARG111 (A) pi-H 4.05 −0.9

Icaritin O (2) VAL91 (A) H-donor 2.95 −1.1
6-ring CYS92(A) pi-H 4.59 −0.7

BMP-4 Icariin O (10) LEU386(B) H-donor 3.23 −0.9
C (24) TRP325(B) H-pi 3.59 −0.6
O (13) TRP322(B) H-pi 3.58 −2.1

Baohuside I O (9) GLU388(B) H-donor 2.96 −4.1
Icaritin O (2) GLU388(B) H-donor 2.98 −5.3

C (25) TRP325(B) H-pi 3.7 −0.6
C (27) TRP322(B) H-pi 3.94 −1.4
6-ring TYR385(B) H-pi 3.74 0

Runx2 Baohuside I O (9) HIS214(A) H-donor 3 −1.7
O (3) ARG115(A) H-acceptor 3.1 −2.5

Icaritin O (4) LEU168(A) H-donor 2.74 −4.4
6-ring LEU168(A) pi-H 3.84 −1.3

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 9 | Article 7935276

Jiang et al. Environment and Bone Formation Inhibition

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


receptors (RANKL, BMP-2, BMP-4, and Runx2) all combined
well to ICA, while BHG-I bound well to OPG, the combination of
IT and the above targets was the weakest. It was predicted that the
anti-GIBFI effect of IT was stronger than that of ICA and BHG-I.

Zebrafish was an ideal animal model in vivo for studying bone
deformations for its high skeletal and genetics similarity to
human skeleton (Luo et al., 2016; Zhao et al., 2020). The
zebrafish larvae contained the sufficient and necessary cells for
both bone formation and resorption activity (Luo et al., 2016).

Alizarin red staining is a special stain used for bone staining. This
stain can be used to determine the bone mineralization level
based on the color, and the area of alizarin red staining can be
used to determine efficacy of drugs affecting bone mineralization.
The indicators observed in this study were the COD and SSA
value, which directly reflects the differentiation and number of
osteoblasts. Osteoblast differentiation and bone formation can be
visualized in the zebrafish larvae by monitoring the changes of
dyeing area.

FIGURE 2 | Optimal interaction of the receptors with small molecule ligands. Receptors: OPG, RANKL, RANK, BMP-2, BMP-4, and RUNX-2; Ligands: BHG-I,
ICA, IT.
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Our results indicated that PNSL exposure significantly
inhibited osteogenic differentiation and bone mineralization in
zebrafish larvae (p < 0.05, Figure 4). After the drug intervention,
IT, ICA, and BHG-I all exerted positive effects on reversing
PNSL-induced osteopenia in zebrafish (p < 0.05). According to
the COD and SSA results, the reversal effect of IT and ICA on
bone formation inhibition reached or even exceeded that of

positive drugs, especially at 10 μM (Figure 4). This
phenomenon was reproduced in the results of bone mineral
element contents. As shown in Table 4 and Supplementary
Figure S3, the levels of Mg, K, Ca, Fe, and Zn were achieved
or even exceeded that of YTLSN group. BHG-I was weaker than
IT and ICA in increasing SSA, COD, and bone mineralized
elements.

FIGURE 3 | Ventral view of Alizarin Red stained zebrafish skull at 10 DAF (×100). CK, blank E3 medium; DMSO, 0.5% DMSO; MX, 25 μM PNSL; YTLSN, 15 μM
disodium ethydronate + 25 μM PNSL; ICA, 0.1, 1.0, or 10.0 μM ICA + 25 μM PNSL; BHG-I, 0.1, 1.0, or 10.0 μM BHG-I + 25 μM PNSL; IT, 0.1, 1.0, or 10.0 μM
IT + 25 μM PNSL.
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Behavioral changes of zebrafish have been linked to chemical
exposure (Pitt et al., 2018; Nunes et al., 2020). Behavior
analyzer—Ethovision XT—made it possible to examine
numerous motor events and facilitates quantitative analysis
of behavior (Zheng et al., 2021). The behavioral change in
zebrafish is an important indicator to evaluate the anti-GIBFI
effect of ICA, IT, and BHG-I. The MD and TF in PNSL group
further supported that the construction of osteoporosis model
was successful. MDs for IT, ICA, and BHG-I were
60.32%–131.50%, 71.59%–112.10%, 47.63%–97.38%,

respectively. These results with significant differences
demonstrated that ICA, IT, and BHG-I could improve
dyskinesia of zebrafish to some extent.

According to the above discussion, the docking results
indicated the affinity difference was ICA>BHG-I>IT. The
more stable the binding, the stronger the effect of inhibiting
the formation of osteoblasts and the less the effect of anti-GIBFI.
In consequence, the order of their intensity in reversing GIBFI
should be IT>BHG-I>ICA. Theoretically, anti-GIBFI effect of
BHG-I, a single-glucose-containing flavanone glycoside, should

FIGURE 4 | The effect of ICA, IT, and BHG-I- I on mineralization in zebrafish larvae (n = 15). (A) Calculation of cumulative optical density. (B) Calculation of
mineralized area. CK, blank E3 medium; DMSO, 0.5% DMSO; MX, 25 μM PNSL; YTLSN, 15 μM disodium ethydronate + 25 μM PNSL; ICA, 0.1, 1.0 or 10.0 μM
ICA + 25 μM PNSL; BHG-I, 0.1, 1.0 or 10.0 μM BHG-I + 25 μM PNSL; IT, 0.1, 1.0 or 10.0 μM IT + 25 μM PNSL. #p < 0.05 compared with DMSO, ###p < 0.001
compared with DMSO, *p < 0.05 compared with MX. **p < 0.01 compared with MX, ***p < 0.001 compared with MX.

FIGURE 5 | Effect of ICA, IT, and BHG-I on behavioral analysis (n = 15). CK, blank E3 medium; DMSO, 0.5% DMSO; MX, 25 μM PNSL; YTLSN, 15 μM disodium
ethydronate + 25 μMPNSL; ICA, 0.1, 1.0 or 10.0 μM ICA + 25 μMPNSL; BHG-I, 0.1, 1.0, or 10.0 μMBHG-I + 25 μMPNSL; IT, 0.1, 1.0 or 10.0 μM IT + 25 μMPNSL.
###p < 0.001 compared with DMSO. *p < 0.05 compared with MX. **p < 0.01 compared with MX. ***p < 0.001 compared with MX.
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have been stronger than ICA (the order should be IT>BHG-
I>ICA), but the zebrafish experimental results were contrary to
this (IT>ICA>BHG-I). ICA exhibited a more powerful potency
against GIBFI than BHG-I with AMB values of 513,950.2, COD
values of 171,177.8, and the significant increase in mineral

element content. This was mainly because the combination
between BHG-I and OPG was more stable, the inhibitory
effect was stronger than ICA. Meanwhile, we noticed that the
binding between ICA and RANKL (−6.67224169), BMP-2
(−6.69499111), BMP-4 (−6.81634808), Runx2 (−6.87304401)

FIGURE 6 | Themechanism of affinity/bioactivity of EF-flavonoids and bonemetabolism targets. ICA, icariin; BHG-I, baohuside I; IT, icaritin. In the figure, the orange
square frames are in the symbol of the small molecule ligands ICA, BHG-I, and IT. The blue boxes represent the protein targets in OPG/RANKL/RANK system or BMP
signaling pathway. The numbers in the orange square frames represent the affinity of the compound with bone metabolic protein targets. The number 1 represents the
combination between compound and target is more stable. These three compounds are equivalent to antagonists of bone metabolic targets. The more stable the
binding, the less the effect of anti-GIBFI. This graph clearly shows the combination between receptors and protein targets. EF, Epimedii Folium; GIBFI, glucocorticoid-
induced bone formation inhibition.

TABLE 4 | Effect of ICA, IT, and BHG-I on the mineral contents in zebrafish larvae.

Mg K Ca Fe-56 Zn

CK 1.17 ± 0.054 1.80 ± 0.057 9.91 ± 1.29 0.82 ± 0.056 0.12 ± 0.013
DMSO 1.24 ± 0.083 1.76 ± 0.050 9.85 ± 1.32 0.83 ± 0.026 0.13 ± 0.020
MX 0.18 ± 0.069### 0.089 ± 0.046### 3.61 ± 0.99### 0.084 ± 0.027### 0.014 ± 0.0084###

YTLSN 0.85 ± 0.028*** 1.33 ± 0.10*** 36.79 ± 2.60*** 0.71 ± 0.086*** 0.12 ± 0.0073***
BHG-0.1 0.28 ± 0.033 0.20 ± 0.033 15.62 ± 1.08*** 0.058 ± 0.037 0.0094 ± 0.0062
BHG-1.0 0.39 ± 0.046 0.29 ± 0.076 18.88 ± 1.50*** 0.18 ± 0.037 0.041 ± 0.0032
BHG-10.0 0.47 ± 0.047* 0.53 ± 0.044*** 22.71 ± 1.64*** 0.30 ± 0.088 0.053 ± 0.0062*
ICA-0.1 0.48 ± 0.075* 0.50 ± 0.074** 20.11 ± 1.00*** 0.14 ± 0.053 0.018 ± 0.0035
ICA-1.0 0.80 ± 0.18*** 1.12 ± 0.14*** 25.99 ± 0.94*** 0.28 ± 0.044 0.038 ± 0.0043
ICA-10.0 1.35 ± 0.049*** 1.48 ± 0.12*** 29.27 ± 1.67*** 0.58 ± 0.12*** 0.079 ± 0.0066***
IT-0.1 0.62 ± 0.077*** 0.66 ± 0.036*** 23.53 ± 0.80*** 0.52 ± 0.076*** 0.077 ± 0.011***
IT-1.0 1.21 ± 0.16*** 1.38 ± 0.11*** 30.69 ± 2.99*** 0.76 ± 0.044*** 0.11 ± 0.017***
IT-10.0 1.79 ± 0.067*** 1.87 ± 0.16*** 37.61 ± 2.33*** 1.01 ± 0.16*** 0.18 ± 0.025***

Note. CK, blank E3 medium; DMSO, 0.5% DMSO; MX, 25 μM PNSL; YTLSN, 15 μM disodium ethydronate + 25 μM PNSL; ICA, 0.1, 1.0, or 10.0 + 25 μM PNSL; BHG-I, 0.1, 1.0, or
10.0 μMBHG-I + 25 μMPNSL; IT, 0.1, 1.0, or 10.0 μM IT + 25 μMPNSL. Data are shown asmean ± standard error. ###p < 0.001 comparedwith DMSO. *p < 0.05 comparedwithMX.
**p < 0.01 compared with MX. ***p < 0.001 compared with MX. ICA, icariin; IT, icaritin; BHG-I, baohuside-I.
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was the most stable compared with that of BHG-I and IT
(Table 2). However, the docking scores between BHG-I and
the above protein targets were second only to icariin, with the
value of −6.09861946, −5.87657118, −6.19196224, and
−5.74639988, respectively, which meant BHG-I had good
affinity to these bone metabolism proteins (RANKL, BMP-2,
BMP-4, Runx-2). The more stable the binding, the less the effect
of anti-GIBFI. This accounted for the reason why the anti-GIBFI
effect of BHG-I was lower than ICA.

In conclusion, the ligands that bind to OPG, BMP-2, BMP-4,
or Runx2 inhibited the differentiation of osteoblasts; the
stronger the binding, the more inhibition on the bone
formation. The receptors (BMP-2, BMP-4, and Runx2) all
combined well to ICA, while BHG-I bound well to OPG; the
combination of IT and the above targets was the weakest. IT,
BHG-I, and ICA all alleviated bone formation inhibition
induced by PNSL, but the order of their intensity in
reversing GIBFI was IT>ICA>BHG-I; the most potential
compound was found to be IT.
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