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Near-surface air (Ta) and land surface (Ts) temperatures are essential parameters for
research in the fields of agriculture, hydrology, and ecological changes, which require
accurate datasets with different temporal and spatial resolutions. However, the sparse
spatial distribution of meteorological stations in Northwest China may not effectively
provide high-precision Ta data. And it is not clear whether it is necessary to improve
the accuracy of Ts which has the most influence on Ta. In response to this situation, the
main objective of this study is to estimate Ta for Northwest China using multiple linear
regression models (MLR) and random forest (RF) algorithms, based on Landsat 8 images
and auxiliary data collected from 2014 to 2019. Ts, NDVI (Normalized Difference
Vegetation Index), surface albedo, elevation, wind speed, and Julian day were
variables to be selected, then used to estimate the daily average Ta after analysis and
adjustment. Also, the Radiative Transfer Equation (RTE) method for calculating Ts would
be corrected by NDVI (RTE-NDVI). The results show that: 1) The accuracy of the surface
temperature (Ts) was improved by using RTE-NDVI; 2) Both MLR and RF models are
suitable for estimating Ta in areas with few meteorological stations; 3) Analyzing the
temporal and spatial distribution of errors, it is found that the MLR model performs well in
spring and summer, and is lower in autumn, and the accuracy is higher in plain areas away
from mountains than in mountainous areas and nearby areas. This study shows that
through appropriate selection and combination of variables, the accuracy of estimating the
pixel-scale Ta from satellite remote sensing data can be improved in the area that has less
meteorological data.
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INTRODUCTION

Near-surface air temperature (Ta), usually refers to the air temperature at 2 m above the ground, is an
essential factor affecting ecology, agriculture, and urban areas (Raja Reddy et al., 1997; Krüger and
Emmanuel, 2013; Shamir and Georgakakos, 2014), and is also the basis for climate change studies
(Alkama and Cescatti, 2016; Bathiany et al., 2018). The traditional method of obtaining Ta mainly
relies on the temperature sensor installed at the meteorological station, and the interpolation method
is frequently used to extend to regional-scale applications (Mostovoy et al., 2006). If the
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meteorological stations are sparse and unevenly distributed, the
accuracy of the interpolation method will be greatly restricted due
to the influence of underlying surface heterogeneity and heat
conduction unevenness to air temperature (Chen et al., 2015).
The air temperature has become the primary driving variable of
many land surface models (Nieto et al., 2011), so its spatial fidelity
must be higher than that obtained by interpolation of point
observation data, and even the most complex geostatistical
techniques cannot meet the requirements (Prince et al., 1998).

Satellite data has the characteristics of continuous spatial
coverage (Czajkowski et al., 1997), which can obtain large-
scale atmospheric information and invert surface parameters,
including global surface temperature, vegetation index, elevation,
and other information (Wang et al., 2018; Yoo et al., 2018). Due
to the complexity of atmospheric radiation and its low proportion
in remote sensing signals, Ta cannot be directly reversed (Xu
et al., 2012; Li and Zha, 2018). However, Ta can be obtained by
establishing the regression relationship between Ta and remote
sensing inversion and auxiliary parameters, such as using land
surface temperature (Ts), Normalized Difference Vegetation
Index (NDVI), wind speed, geographic location and elevation,
among which Ts is the most important parameter (Vancutsem
et al., 2010; Hachem et al., 2012; Song and Wu, 2018).

Ts as the direct driving force of long-wave radiation and
turbulent heat flux exchange at the surface-atmosphere interface
is one of the most significant parameters in the physical process of
surface energy and water balance at regional and global scales
(Anderson et al., 2008; Li et al., 2013; Orhan et al., 2014; Folland
et al., 2018). At present, there are three main methods for using
Landsat to retrieve Ts: atmospheric correction method (also known
as Radiative Transfer Equation: RTE), Single Channel Algorithm
(SCA), and Split Window Algorithm (SWA). The SWA does not
require any atmospheric profile information at the time of
collection, which needs to use two thermal infrared channels (Li
et al., 2013). However, the United States Geological Survey has
pointed out that Thermal Infrared Sensor (TIRS) 11th band has
data reception abnormalities and calibration instability problems,
which mainly affects the accuracy of the split window algorithm
applied to Landsat-8 TIRS data to retrieve Ts (Xu, 2015). SCA and
RTE rely on atmospheric transmissivity and upwelling and
downwelling atmospheric radiances (Jimenez-Munoz et al., 2009;
Sekertekin and Bonafoni, 2020). RTE removes the error caused by
the atmosphere’s thermal radiation on the surface and converts the
thermal radiation intensity to the corresponding Ts (Ma and Pu,
2020). When using different data sets, the performance of the RTE
method to retrieve Ts is also different. The Ts calculation result for
Landsat TM 5 data is better than other methods in the same period
with RMSE is 1–3°C (Sobrino et al., 2004; Ndossi and Avdan, 2016;
Windahl and Beurs, 2016); however, the RMSE calculated based on
Landsat 8 TIRS 10th band was 1.5–5°C, and most of them are
inferior to other algorithms (Ndossi and Avdan, 2016; Wang et al.,
2016; Sekertekin and Bonafoni, 2020). Moreover, the
overestimation shown in the TIRS band will increase as the
proportion of vegetation decreases (Xu and Huang, 2016).

Several studies have used surface information to estimate air
temperatures, such as the temperature-vegetation index (TVX),
energy balance, statistics, and machine learning methods (Zakšek

and Schroedter-Homscheidt, 2009; Benali et al., 2012). Nemani
and Running (1989), Goward et al. (1994) proposed the TVX
approach to estimate near surface air temperature with promising
results. The method is based on the assumption that there is a
strong negative correlation between Ts and vegetation index
(Goward et al., 1994; Czajkowski et al., 1997). Assuming that
the Ta for fully covered vegetation is close to Ts, the value of full
coverage NDVI (NDVImax) can be used to obtain an
approximate value of Ta (Stisen et al., 2007; Nieto et al., 2011;
Zhu et al., 2013). However, this assumption does not apply to all
seasons, soil moisture, and ecosystem types, so estimation of Ta
by using TVX method is not feasible in areas or seasons without
high vegetation cover (Vancutsem et al., 2010).

The energy balance method has a physical mechanism, so it
has well portability and versatility (Hou et al., 2013; Shen et al.,
2020). According to the energy balance equation, Ta is related to
surface temperature, and it depends on various environmental
factors such as solar radiation, cloud cover, wind speed, soil
moisture, and surface type (Prince et al., 1998). A large number of
required parameters cannot be completely retrieved by remote
sensing (Mostovoy et al., 2006), so it is difficult to use remote
sensing to perform Ta inversion in the area. The issue of unclosed
surface energy balance also brings additional uncertainty to this
method (Zhang et al., 2015).

Statistical methods need to analyze the relationship between
Ta and Ts and other auxiliary data, and then build an estimation
model based on specific correlation (Cresswell et al., 1999; Park,
2011), which including simple statistical models, multiple linear
regression (MLR) models, geographically weighted regression
(GWR) models, and machine learning methods (Vogt et al.,
1997; Vancutsem et al., 2010; Shen et al., 2020). Studies have
shown that the linear regression models are more accurate in
calculating the average daily temperature with a root mean square
error (RMSE) ranging between 1.29–3.60°C (Chen et al., 2015; Shi
et al., 2016; Yang et al., 2017), which can produce good results in a
specific space and time range, but require a large amount of data
involved in the calculation and training of the algorithms (Stisen
et al., 2007). Geographically weighted statistical and machine
learning methods usually have higher accuracy (Moser et al.,
2015; Wang et al., 2017, 2018). Geographically and temporally
weighted regression (GTWR) is an extension of the general linear
regression model, which embeds changes in location and time
into the regression equation and estimates regression coefficients
for spatio-temporal variation by performing local regressions that
can solve for constant-coefficient limits (Bai et al., 2016; Li et al.,
2018). Machine learning methods can handle non-linear and
highly correlated predictors (James et al., 2013) and estimate the
temperature in areas with complex and heterogeneous underlying
surfaces, mainly including neural networks (Jang et al., 2004), M5
model trees (Emamifar et al., 2013), and random forests (Zhang
et al., 2016), support vector machine (Moser et al., 2015). Random
forests (RF) are widely used and have been verified in various
terrains. Ho et al. (2014) indicated that the RF algorithm is very
useful for mapping the variability of urban internal temperature.
Meyer et al. (2016) have pointed out that compared with linear
regression, generalized augmented regression model (GBM), and
cubic regression, the RF algorithm performs poorly in the
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extremely cold Antarctica. However, Noi et al. (2017) have shown
reliable results in mountainous areas. Therefore, the conclusion
of RF estimation Ta still needs to be discussed.

Most of the current researches for estimating Ta is based on
the MODIS due to its time continuity advantage, but its
resolution cannot meet the demand for farmland or even
smaller scales. The spatial resolution of Landsat 8 imagery is
higher than that of MODIS, and the estimated Ta data have a
more intuitive correspondence with land use. Generally, if the
temperature estimate based on remote sensing data is accurate,
the accuracy should be between 1 and 2°C (Vázquez et al., 1997).
Research suggests that site density is positively correlated with
model accuracy. In other words, the denser the sites, the higher
the accuracy of the model (Shen et al., 2020). If Ta is estimated
jointly in Northwest China, where meteorological stations are
scarce, and in areas where other stations are d ense, the former
regions often do not obtain more accurate Ta data (Chen et al.,
2015; Li and Zha, 2018). Therefore, it is very necessary to
separately model and estimate the area where the data is lacking.

The main objective of this study was to propose a statistical
method based on Landsat 8 and auxiliary data for accurately

estimating Ta, especially in arid northwest China, where
meteorological stations are scarce and unevenly distributed.
The specific objectives of this study were to 1) use the RTE
method to estimate Ts based on the Landsat8 data, and improve
accuracy. 2) Select reasonable independent variables, participate
in the modeling of MLR and RF, and compare the results of Ta
estimation. 3) Evaluate the performance of the optimal Ta
estimation model in time and space scale.

MATERIALS AND METHODOLOGY

Study Region and Meteorological Station
The study area is the Shiyang River basin in the arid region of
Northwest China, which is located in the Hexi Corridor of Gansu
Province and the coordinate range is between 101°40′E-104°20′E
and 36°30′N-39°30′N (Figure 1). It covers an area of 41,600 km2,
and the range of altitude is 1,157m–5012 m. This area is of a
continental temperate arid climate, with the characteristics of
aridity where precipitation is 300 mm per year and average
annual pan evaporation is 2,000 mm.

FIGURE 1 | The location of the study area, the coverage area of Landsat8, distribution of meteorological stations, and land use cover.

TABLE 1 | Type and source of data used.

Data Unit Time scale Type Source

Ta Wind speed °C m/s Daily 2014-2019 Points National Meteorological Information Center (http://data.cma.cn/)
Ts by RTE Albedo °C Instantaneous 2014-2019 Grids with a resolution of 30m × 30m “USGS Landsat 8 Surface Reflectance Tier 1” from the GEE

platform
NDVI - ID: “LANDSAT/LC08/C01/T1_SR”
Elevation m 2014-2019 Grids with a resolution of 30m × 30m NASA SRTM Digital Elevation 30m from the GEE platform

ID: “USGS/SRTMGL1_003”
Surface
temperature

°C Quarter of an hour 2014-
2015

Points SI-111 thermal infrared radiometer
Coordinate: 102.885090, 37.824715 (2014)
102.884864, 37.819561 (2015)
102.876055,37.823513 (2016-2018)

Landcover - One year 2020 Grids with a resolution of 10m × 10m “ESA WorldCover 10 m v100” from the GEE platform
ID: “ESA/WorldCover/v100”
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Meteorological stations in Northwest China are sparse, with only
five stations in and near the study area (Minqin, Wuwei,
Yongchang, Wushaoling, Jintai station), which can be collected
from the China Meteorological Science Data Center (http://data.
cma.cn). The observation station (National Field Scientific
Observation and Research Station on Efficient Water Use of
Oasis Agriculture in Wuwei of Gansu Province) has a
meteorological station to collect Ta data, SI-111 thermal infrared
radiometers to obtain Ts data (the coordinates in Table 1). Google
Earth Pro was used to verify the location of the meteorological
station and ensure that Ta data corresponds totally to the site
location. Then obtain the available satellite images from 2014 to
2019 and calculate and extract the Ts data corresponding to the
location of the meteorological station through the GEE platform.

Satellite Data and Processing
Google Earth Engine (GEE) is a geospatial processing platform
based on cloud computing developed by Google, which promotes
fast analysis by using Google’s computing infrastructure and
providing a convenient platform for applications based on
linking to the cloud computing engine (Becker et al., 2021).
Most of the algorithms built into the GEE cloud computing
platform use pixel-by-pixel calculation functions, so no matter
what the area or proportion of the calculation and analysis is
required, as long as the research area has available data. The
platform is suitable for scientific researchers with a background
in non-professional programming and can quickly realize global-
scale remote sensing data processing and mining. This research
uses the online JavaScript API of the GEE platform (https://
earthengine.google.com/) to access and analyze the data sets
used from the public catalog, without downloading images, only
outputting the processing results, which improves computing
efficiency.

This study uses the Landsat 8 Raw and SR (Surface Reflectance
product) dataset in the GEE platform, screening the images with
cloudiness not exceeding 30% from 2014 to 2019 and perform
cloud removal processing. To cover the entire area of the Shiyang
River basin using images of four Landsat-8 tiles 131/033,131/034
and 132/033,132/034 (Figure 1). By using the GEE platform, the
remote sensing images were spliced efficiently, clipped, and
parameter inversion, also the meteorological data were
interpolated.

Land Surface Temperature
At present, there are three main methods for remote sensing to
retrieve land surface temperature: atmospheric Radiative Transfer
Equation (RTE) method, single-channel algorithm, and split-
window algorithm. This study uses the Landsat 8 SR data set in
the GEE platform, to retrieve the Ts based on the RTE method.

The expression of the radiation transfer equation of the
thermal infrared radiation value (Lλ) received by the satellite
sensor is (Li et al., 2013; Windahl and Beurs, 2016):

Lλ � [εB(Ts) + (1 − ε)L↓]τ + L↑ (1)

where Lλ is the spectral radiance value at the top of the
atmosphere at the band λ (W ·m−2 · μm−1 · sr−1); ε is the

surface specific emissivity; B (Ts) is the blackbody thermal
emissivity brightness (W ·m−2 · μm−1 · sr−1); τ is the
atmospheric thermal infrared band transmittance; L↓ is the
downward radiance of the atmosphere after reflection on the
ground (W ·m−2 · μm−1 · sr−1); L↑ is the upward radiance of the
atmosphere (W ·m−2 · μm−1 · sr−1).

Knowledge of land surface emissivity (LSE) is necessary to
apply the above methods to a Landsat image. Considering
different situations, obtain the emissivity value from NDVI
(Sobrino et al., 2004; Orhan and Yakar, 2016):

ε �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.986 NDVI≤NDVISoil

0.004[ NDVI − NDVISoil
NDVIVeg − NDVISoil

] + 0.986NDVISoil <NDVI<NDVIVeg

0.990 NDVI≥NDVIVeg
(2)

where NDVIVeg � 0.7 and NDVISoil � 0.05 (Ma and Pu, 2020).
When using Landsat8 images, take the 10th band to provide

the thermal infrared radiance value. The calculation formula of
B(Ts) is:

B(Ts) � [Lλ − L↑ − (1 − ε)τL↓]
τε

(3)

The calculation of the surface temperature (Ts) uses the Planck
formula:

Ts � K2

ln( K1

B(Ts) + 1) − 273.15
(4)

where Ts is surface temperature (°C);K1,K2 can be obtained from
the header file of the remote sensing data. For Landsat8 TIRS
Band10, K1 � 774.89W ·m−2 · μm−1 · sr−1, K2 � 1321.08K.

It can be seen that the use of Radiative Transfer Equation
method to retrieve the Ts needs to have the atmospheric profile
parameters, which can be obtained by entering the shadowing
time, latitude, and longitude in the website provided by NASA
(http://atmcorr.gsfc.nasa.gov/).

Auxiliary Data and Processing Flow
The near-surface air temperature (Ta) has a good correlation with
the surface temperature (Ts) (Benali et al., 2012; Ruiz-Álvarez
et al., 2019). Ts is a physical quantity that reflects the degree of
cold and heat on the surface of a ground object because it is
affected by the characteristics of the underlying surface, such as
vegetation coverage and dry and wet conditions. Ta is a physical
quantity reflecting the degree of cold and hot air in the
atmosphere. The atmosphere has strong fluidity, which is
easily affected by the surrounding environment (Xu et al.,
2012; Gholamnia et al., 2017). Therefore, when looking for the
correlation between Ts and Ta, the influence of various factors
such as ground characteristic and environment must be
considered. For the estimation of Ta, Jang et al. (2004)
showed that Julian day is a more significant parameter than
altitude or the solar zenith angle. In addition, we have chosen
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variables that are often selected as predictors in air temperature
modeling literature, such as surface albedo, elevation (DEM),
normalized vegetation index (NDVI), and wind speed
(Riddering and Queen, 2006; Cristóbal et al., 2008; Hou
et al., 2013). The full name of the DEM (WGS84/EGM96)
data source is “NASA SRTM Digital Elevation 30 m,” which
is used directly on the GEE platform and provided by NASA JPL
(Farr et al., 2007).

The broadband albedo (α) of the ground surface is a critical
variable for many scientific applications, which is the ratio of
the total radiant flux reflected by the ground surface to the
incident flux (Liang et al., 2003). The calculation formula of
α is:

α � 0.356α2 + 0.130α4 + 0.373α5 + 0.085α6 + 0.072α7 − 0.0018

(5)

Where α is the surface reflectance, and its value is between 0–1.0;
α2, α4, α5, α6, and α7 are the 2, 4, 5, 6, and 7 bands of Landsat 8
surface reflectance products.

As has been commented in the previous section, the LSE can
be retrieved from NDVI values. The data can be used to construct
NDVI according to the following equation:

NDVI � NIR − R

NIR + R
(6)

Where NIR and R are the reflection values of the near-infrared
and infrared bands, respectively, which are the fifth and fourth
bands of Landsat 8.

This study mainly considers the relationship between Ta
and Ts, NDVI, surface albedo, DEM, wind speed and Julian
day. The flow chart of the models used is shown in Figure 2,
and the process can be summarized as Data preparation,
processing and prediction. Data collection is the basis for
establishing a reliable model, but it is also necessary to filter
the input variables and try to use as few variables as possible
under the condition of high model accuracy. Variables used
in this study are readily available, which are closely related
to the changes of Ta. Previous studies on Ta estimation lack
the verification of Ts and analysis of related results.
Therefore, this research explored whether it is necessary
to improve the precision of Ts to achieve better results in
actual application. After verification and comparison, the
best model is selected from the combined methods to
estimate Ta.

The spatial and temporal matching among the variables is
the main issue for the reliability of the regression
implementation. Table 1 shows the sources and resolutions
of all data sets. On the spatial scale, the resolutions of spatial
variability independent variables such as Ts, Albedo, NDVI,
elevation, wind speed (resampled after interpolation) are all

FIGURE 2 | The flow chart for estimating daily mean air temperature (Ta). Input variables include surface temperature (Ts), normalized vegetation index (NDVI),
surface albedo (Albedo), elevation (DEM), wind speed, and Julian day, and build MLR and RFmodels. Variables are selected by indicators such as variance inflation factor
(VIF), residual sum of squares (RSS), coefficient of determination ( R2), Mallows Cp (Cp) value, and Bayesian Information Criterion (BIC). Finally, compare the simulation
results of the four combined models with the measured values, then obtaining the Ta distribution in the study area.
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30 m × 30 m, which is spatially consistent. On the time scale,
Ts, Albedo, and NDVI are instantaneous data, and only wind
speed is daily data.

Models Adjustment and Validation
Multiple Linear Regression
The regression model aims to establish the corresponding
functional relationship between several independent input
parameters and output targets (Giacomino et al., 2011;
Agha and Alnahhal, 2012; Williams and Ojuri, 2021). MLR
is a linear regression technique and very useful for the best
relationship between predictor variables and several
independent variables, which is different from a simple
linear regression analysis (Akan et al., 2015). R is an
excellent tool for statistical calculation and statistical
mapping. It is free, open-source software that does not
require any license and is simple to operate (Williams and
Ojuri, 2021). Using the “lm” function in R software, an MLR
model of Ta and multiple correlation factors are established
Expanding the MLR equation into the more commonly used
form is:

A � b0 + b1X1 + b2X2 + b3X3 + . . . + bnXn (7)

where A is the regression target variable; b0∼bn are undetermined
coefficients; X1∼Xn are independent variables.

Random Forest
The random forest (RF) is a non-parametric machine learning
algorithm, which is more flexible than classical statistical models
(Genuer et al., 2017; Li et al., 2019). It hardly requires statistical
assumptions and is more tolerant of missing values and outliers.
Due to the Law of Large Numbers, RF does not overfit. Injecting
the correct randomness makes them accurate classifiers and
regressors. RF algorithm can automatically distinguish the
importance of each variable, give out the dependence between
variables, and easily give explanations in combination with
professional knowledge (Breiman, 2001). The RF method has
been widely used for classification and regression in remote
sensing applications (Ke et al., 2016; Park et al., 2016, 2018;
Richardson et al., 2017). RF has begun to be used for Ta
estimation in recent years (Ho et al., 2014; Zhang et al., 2016;
Yoo et al., 2018). Use the default model parameter settings of R
and its contribution packages to develop and apply statistical
models (R Core Development Team, 2008; Ho et al., 2014; Liaw
and Wiener, 2015).

Variable Adjustment
The absence of complete collinearity between any two
independent variables is one of the assumptions of multiple
linear regression. Variance Inflation Factor (VIF) is an index
used to judge whether there is collinearity. If there is no linear
relationship between the independent variables, the VIF value is
1, and a deviation from 1 indicates a trend of collinearity. From
the effect of the multicollinearity test, multicollinearity can be
tolerated when VIF <10. The VIF value of a variable greater than
10 indicates that there may be estimation problems. If there is
multicollinearity, we would simply delete the variable directly, or

use a biased estimate for processing (Shabani and Norouzi, 2015;
Williams and Ojuri, 2021).

The Ta peaks around the 200th day of each year, which is
nonlinear with the increase of Julian Day, so assuming that there
is a quadratic function relationship. Linearize the Julian Day
and adjust it to x7 � (J − 200)2 as the independent variable. The
Ts and the Julian day are independent variables with a strong
correlation. Therefore, adding the relationship of x8 � x7 × Ts
as an interaction term to match the model, assuming that the
slope of Ts depends on the value of Julian day.

Selecting appropriate variables can not only avoid overfitting
but also increase the explanatory degree of the model. The idea
of the optimal subset selection method is to model all the
variable combinations, then select the model with the best
result. The advantage of this method is that all possible
combinations are tested, and the final choice must be the
best result. However, as the number of candidate variables
increases, the amount of calculation will increase
exponentially. Therefore, this method is only suitable for
situations with few independent variables.

Residual Sum of Squares (RSS), adjusted coefficients of
determination (adjusted R2), Mallows’s Cp (Cp) value, and
Bayesian Information Criterion (BIC) value are used to
evaluate model statistics (Cristóbal et al., 2008). The closer
Adjusted R2 is to 1, and the other indicators are smaller, the
better the model fits. The optimal model can be determined by
comparing the indicators of each variable.

Validation Data and Indicators
The verification of Ts used the infrared sensor (SI-111)
observation data in the uniform and widespread farmland
from 2014 to 2018. Ta and wind speed data records for
2014–2019 come from the daily data set of surface climate
data, obtaining from the China Meteorological Data Service
Centre (http://data.cma.cn/). Use Ts and other independent
variables from 2014 to 2017 as a training set to build the
MLR model and use data from 2018 to 2019 to verify the
accuracy. The RF model randomly extracts 70% of all the
data as a training set, using the remaining data to validate
the resulting model. Such a verification method can explore
whether the model constructed by the data from the past years is
also applicable to the future years, which achieve the expansion
of the time scale.

A set of statistical parameters were calculated to assess the
accuracy of the predicted air temperature, including coefficients
of determination (R2), root mean square error (RMSE), and
model efficiency (MEF). Values of R2, RMSE, MEF and can be
estimated using the following equations:

R2 �
∑n
i�1
[(yi − �y)(Oi − �O)]

∑n
i�1
[(yi − �y)2]∑n

i�1
[(Oi − �O)2] (8)

RMSE � ⎡⎣∑n
i�1

(Oi − yi)2
n

⎤⎦1

/

2

(9)
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MEF � 1 −⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑n
i�1

(Oi − yi)2∑n
i�1 (Oi − �O)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

where n is the number of records in validation data sets used in
this study, yi is the estimated variable, and Oi is the observed
variable, �y is the mean value of the predicted for all validation
sites, �O is the mean value of the observed variable for all
validation sites.

R2 always calculated for a significance level of 0.005, was used
as a measure of correlation and proportion of observed variability
accounted by the model (Benali et al., 2012). RMSE is used to

quantify the error (Willmott and Matsuura, 2005). RMSE is an
indicator that shows the mean and spatial variance and is used to
measure the quadratic error at a single level, which is also
particularly sensitive to outliers (Janssen and Heuberger,
1995). The value of MEF is in the range between −1.0 and 1.0.
If the performance of the estimation method is poor, the value
will be lower (Zheng et al., 2013; Yang et al., 2017; Wang and Lu,
2018). Because MEF integrates correlation and error
measurement, it is a robust statistical indicator for model
consistency evaluation and reflects the adjustment of the 1:1
line, so it is used to measure the predictive ability of the model
(Nash and Sutcliffe, 1970). The above parameters compared the

FIGURE 3 | Surface temperature (Ts °C) computed from the Radiative Transfer Equation (RTE) method and observed (Obs) from 2015 and 2014. As reference, the
normalized difference vegetation index (NDVI) is included from Julian Day 100 to 250.

FIGURE 4 | Comparison between observed (Obs) and estimated (Est) surface temperature for 2014-2017 (A), 2018 (B). RTE and NDVI-RTE corresponds to the
estimated values from the original equation and RTE equation adjusted using the normalized difference vegetation index (NDVI), respectively. Also, coefficients of
determination (R2) and root mean square error (RMSE °C) are indicated in the figure.
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observations and predictions values of each meteorological
station and described the fitting performance of each model.
The uncertainty of the predicted Ta in spatiotemporal scale was
also calculated.

RESULTS

Surface Temperature Calibration
SI-111 collected Ts data for the 5 years from 2014 to 2018. Based
on Landsat8, using RTE to invert the Ts, 40 points corresponding
to the position of the ground instrument were extracted. The RTE
method estimates Ts from 2014 to 2017, compared with
observation data and its R2 � 0.77, RMSE � 3.27°C. This study
found that the RTE method overestimated the value of Ts.
Especially when the surface vegetation coverage is low, the
error will be more obvious (Figure 3). To resolve this
uncertainty, a correction method using NDVI is proposed to
improve the accuracy of the RTE method for inversion of Ts.

Correcting RTE with NDVI, the expression is:

TsRTE−NDVI � TsRTE − 0.22
NDVI

− 1.5 (11)

where NDVI is Normalized Difference Vegetation Index;
TsRTE−NDVI is the surface temperature calculated using the
Radiation Transfer Equation corrected by NDVI (°C); TsRTE is
the surface temperature calculated using the original Radiation
Transfer Equation (°C).

The 31 measured data from 2014 to 2017 were used as the
target to revise the RTE (Figure 4A), and the 2018 data were used
as verification (Figure 4B). After correction using NDVI of

FIGURE 5 | Effect of number of variables in the air temperature model on
Residual Sum of Squares (RSS), adjusted coefficients of determination
(adjusted R2), Mallows’s Cp (Cp) value, and Bayesian Information
Criterion (BIC).

FIGURE 6 | Combination of different variables when the value of coefficients of determination (R2), adjusted coefficients of determination (adjusted R2), Mallows's
Cp (Cp) value, and Bayesian Information Criterion (BIC) value were stabilized. The variables included surface temperature (Ts), normalized vegetation index (NDVI),
surface albedo (Albedo), elevation (DEM), wind speed (wind), x7 � (J − 200)2 and x8 � x7 × Ts. The highest color in the figure indicates that the statistical indicators are
gradually stable, and the variable combination is optimal.
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2014–2017, compared with the verified data, the accuracy of
the model is R2 � 0.83, RMSE � 2.09°C. And after the
verification of the data in 2018, it is confirmed that Eq. 11
has improved the accuracy of RTE (before: R2 � 0.63, RMSE �
4.80°C; After: R2 � 0.76, RMSE � 2.41°C). The fitting line is
close to 1:1, indicating that the estimation accuracy of the Ts is
significantly improved.

Variable Importance and Selection
Seven variables were tested for multicollinearity, and there was no
variable with VIF greater than 10, indicating that the regression
model can be established. As shown in Figure 5, RSS

monotonically decreases with the increase of the number of
independent variables, which cannot be directly judged.
Adjusted R2 and Cp values tended to be the largest when the
number of variables was 6 and 7. The adjusted R2 for Ta models
ranged from 0.87 to 0.95, which eventually fixed at 0.95. Further
addition of the independent variable did not improve the adjusted
R2, indicating that 6 independent variables were considered
optimal. The change of BIC with the number of variables also
proves that the model with six variables has the highest accuracy.

The statistical analysis indicated that Ts, Albedo, NDVI,
DEM, x7, and x8 were significant independent variables for
estimating Ta. As shown in Figure 6, R2 was increased with
the increase of the independent variables, so optimal
combination of independent variables was not proposed in
this study. However, in the absence of the wind speed, the
adjusted R2 reached a maximum while Cp and BIC arrived at a
minimum, indicating that wind speed does not improve the
accuracy of the Ta model. Except that the wind speed does not
affect the model construction, the addition of other variables
can improve the fitting accuracy of the model. The date of Ta
estimation is almost always sunny when the average wind
speed is slightly different in space. Therefore, there is no
significant correlation between wind speed and Ta variation.
Moreover, the average wind speed data is interpolated from
the data obtained from meteorological stations, which may be
inaccurate at the regional scale. To sum up, it is sufficient to
use remote sensing data, elevation, and Julian days as the
independent variables for the model.

After determining the independent variables, the formula of
the constructed multiple linear regression equation is as follows:

Ta � b0 + b1Ts + b2α + b3NDVI + b4H + b5x7 + b6x8 (12)

where Ta is the near-surface air temperature; Ts is the surface
temperature; a is the surface albedo; NDVI is Normalized
Difference Vegetation Index; H is the altitude;

FIGURE 7 | Mean of squared residuals and variation in percentage
variance explained by the random forest model with different number of trees
to grow (ntree) and number of variables to be used at each node (mtry). Dotted
lines represent percentage variance explained; solid lines represent
Mean of squared residuals.

FIGURE 8 | Scatter plot between predicted and in-situ near-surface air temperatures (Ta °C) based on multiple linear regression (MLR) model (Figure 8A) and
random forest (RF) algorithm (Figure 8b). The surface temperature (Ts °C) in the models is calculated by radiation transfer equation (RTE). Coefficients of determination
(R2) and root mean square error (RMSE °C) were used to evaluate the accuracy of Ta estimation from the training set.
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x7 � (J − 200)2; x8 � x7 × Ts; J is Julian Day (the number of
the day of the year); b0∼b6 are undetermined coefficients.

The random forest algorithm cannot provide an estimation
form similar to MLR because it cannot be parameterized. Two
parameters are critical to the operation of the random forest
model: the number of trees to grow (ntree) and the number of
variables to be used at each node (mtry). These two parameters
are selected based on the percentage of model interpretation and
mean of squared residuals. The mtry value was tested from 1 to 8,
and the ntree value was tested using the following 6 values: 100,
300, 500, 1,000, 1,500, and 2,000.

Figure 7 shows the changes in Mean of squared residuals and
Percent variance explained after running a random forest with
different ntree and mtry values. The highest Percent variance
explained and the lowest Mean of squared residuals were
obtained when mtry � 3 and ntree � 1,500 or 2,000. Since the
higher the value of ntree, the more cost and time for calculation,

so the value of ntree is set to 1,500, and the value of mtry is set to 3
to run the random forest model.

The amount of Ta-related data from 2014 to 2019 is 397.
Randomly select 70% of the total amount as the training set to
determine the variables and parameters, and the remaining data
as the testing set. Figure 8 is a scatter plot of the simulated and
observed values of the two models constructed from the training
set data. The R2 and RMSE of the MLR model were 0.953 and
1.74°C, respectively. Most of the points of the RF are concentrated
and close to the 1:1 line. The comparison between the results of
the RF model and the MLR model shows that the random forest
has higher estimation accuracy.

Model Validation
To understand the universality of the built model, theMLRmodel
was verified using the 2018–2019 dataset; the RF algorithm was
verified using the reserved test dataset. At the same time, it is

FIGURE 9 | The Ts involved in the Ta estimation were calculated through the radiation transfer equation (RTE, (A)) and the NDVI correction (NDVI-RTE, (B)). The
coefficient of determination (R2) and root mean square error (RMSE °C) were used to evaluate the accuracy of estimation Ta on the validation set for the two models and
the two Ts data.

FIGURE 10 | Relations between the temporal distribution of observed near-surface air temperature (Ta °C) and model performance, using root mean square error
(RMSE °C) to represent the accuracy in the estimation of air temperature (Ta).
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explored whether the improvement of the estimation accuracy of
Ts will affect the estimation accuracy of Ta.

The prediction result of Ta estimated through the validation
data set (Figure 9) cannot reach the accuracy of the initial
training set. When Ta is estimated from the validation data set
of the RF, the prediction could not achieve the accuracy of the
initial training set, respectively. When using NDVI to correct
RTE, the R2 and RMSE of the RF model was 0.943 and 2.12°C,
respectively, indicating that the estimation accuracy of using
RTE-NDVI is reduced. In contrast, the simulation results of
MLR on Ta are relatively stable. The two calculation methods
of Ts have little effect on MLR. Therefore, the accuracy of Ts
inversion will not affect the accuracy of the two methods for
estimating Ta. The estimation results of all models show good
performance, and the fitting line is close to 1:1.

Spatial and Temporal Performance
Through the analysis of the average daily Ta and error estimated by
MLR for 2018–2019, it was found that the temperature and error on
the time scale have spatial variability. As shown in Figure 10, Ta had a
clear trend with Julian day and season, and the estimation accuracy
had an apparent seasonal trend. Sometimes, themeteorological station
is covered by clouds and cannot participate in the calculation or
verification, especially at the high-altitude Wushaoling station. The
amount of remote sensing image data in winter is insufficient.
Although the error is small, it cannot be fully verified. There was
notmuch difference in the accuracy between spring and summer. The
RMSE values in spring and summer were both 1.66°C, which had no
difference in the estimation accuracy. With the increase of
temperature, the error value was relatively stable and had no
apparent change trend. In autumn, the RMSE was 2.35°C. At this

FIGURE 11 | Spatial distribution of the optimal models, model efficiency (MEF): (A) 2018, (B) 2019, root mean square error (RMSE °C): (C) 2018, (D) 2019 for all the
meteorological stations.
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time, the study area is in the rainy season, and the estimate of Ta will
be affected by the increase in rainfall.

In 2018 and 2019, the MEF value of each station was between
0.84 and 0.97, and the overall MEF was 0.946, indicating that
MLR has good performance. Analyze the error distribution of Ta
estimated by the MLR model at each site. Figure 9 shows that Ta
is more accurate at locations far from the mountainous area.

The MEF of the Minqin station for 2 years was close to 1, and
the degree of the fitting was relatively high. The MLR model
behaved differently in different altitude ranges. As the altitude
increases, the performance of the MLR model gradually weakens,
which may be caused by the complexity of the terrain. The RMSE
has the maximum value at the highest altitude site (Wu Shaolin)
(Figures 11C,D). The average RMSE of Minqin and Jintai Station
are below 1.5°C. The accuracy of these two stations is better than

that of other stations, possibly because the terrain and
environmental conditions of the stations are not complicated.
The locations of these two stations are far away from the Qilian
Mountains, which are as high as 5,000 m above sea level. The
estimation model had the highest relevance and accuracy at the
Minqin station, which is located on the north side of the basin,
and the surrounding terrain is flat and less affected by high
mountains. Although Jintai Station is close to the east of Qilian
Mountain, which is far from the mountain range, the estimation
accuracy of Ta is also very high.

Because the data of the two adjacent columns of the Landsat
satellite are of different periods, remote sensing images of the
entire study area cannot be obtained on the same day, so the
basin can only be divided into two parts for comparison. Chosen
four images with fewer clouds, then calculated the difference

FIGURE 12 | Difference between interpolation method and multiple linear regression model estimation result (A-D): (July 31 and August 22, 2018, and May 21 and
May 28, 2019).
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between the spatial interpolation result and the MLR model
estimate. Inverse Distance Weighted (IDW) assumes that the
influence of variables on the surrounding area decreases as the
distance to the sample location increases, which was used to
interpolate Ta data from the meteorological station. The error of
Ta distribution obtained by IDW in the area is related to the
underlying surface. Using meteorological and remote sensing
data from July 31, August 22, 2018, May 21, May 28, 2019, Ta
spatial interpolation and estimation maps were obtained and
compared.

It iswidely believed that Ta is related to altitude. Temperature
decreased with the increase of altitude in most cases. In high altitude
areas, where no meteorological station provides temperature data,
the Ta of the regions was determined by data from nearby stations.
Therefore, Ta in high altitude areas was often overestimated by
interpolation (the red area below Figures 12A,C). Simultaneously,
there are also large desert areas in the study area (the blue area in
Figure 12). Since the temperature in the desert during the day will be
much higher than in other zones, the interpolation method can
underestimate the temperature by up to 15°C. The Ta of farmland is
overestimated during spatial interpolation (the part of the red area
above d in Figure 12B), which is also related to the location of
meteorological stations. Most of the station is established in cities or
border areas. The vegetation coverage of farmland is very high
during the growth period of crops, whichwill affect its Ta. Therefore,
when using interpolation methods such as IDW, more
meteorological stations are needed to ensure the accuracy of the
interpolation results, and at the same time, should pay attention to
the unreliability of interpolation methods in mountains or deserts.

DISCUSSION

Model Selection
In areas with vegetation cover, the temperature value retrieved from
remote sensing data is often a mixed value of Ts and canopy
temperature (Tc). The accurate estimation of Ts still needs to be
analyzed according to the vegetation situation and terrain (Zhang and
Li, 2018). Comparing the Ts calculated by RTE with the measured
values, it was found that RTE overestimated the Ts, especially when
the vegetation coverage was low, consistent with the conclusions
published by USGS in 2015 (Barsi et al., 2014; Xu and Huang, 2016).
However, due to the characteristics of fewer parameters and suitable
for any thermal infrared band, the improved accuracy can also be
widely used. Ts is considered to be the most important independent
variable the many estimated Ta models (Park, 2011; Zhang et al.,
2016; Song and Wu, 2018). In this study, the RMSE of Ts directly
calculated by RTE is 3–5°C, and it is 2–3°C after correction. The
correction equation is proposed based on the local estimation results,
and its universality still needs to be verified. The error is related to the
surface emissivity or atmospheric profile parameters (Li et al., 2013;
Sekertekin and Bonafoni, 2020).

The variables of this study to be selected are closely related to Ta
in many studies (Cristóbal et al., 2008; Gholamnia et al., 2017; Shen
et al., 2020). Although the correlation between time parameters and
Ta was not strong, the adjusted x7 had a significant influence on
model accuracy indicating that the adjustment using the Julian Day

was useful. Studies have suggested that wind speed is significant,
especially when using energy balance methods, which require wind
speed to calculate aerodynamic resistance (Hou et al., 2013; Zhang
et al., 2015). Through indicators comparison, it is found that when
using a statisticalmethod to build themodel, the average wind speed
is not helpful to improve Ta estimation accuracy (Stisen et al., 2007).

The selected variables participate inMLR andRF to estimate Ta,
using the available satellite dataset. The RMSE of the two methods
were both lower than 2.0°C, which indicated that they were both
suitable for northwest China. Previously, Ho et al. (2014) Using the
RF algorithm to estimate the maximum Ta in Vancouver, Canada,
and the RMSE was 2.3°C. The optimal MLR model established by
Yang et al. (2017) estimates the average Ta and the RMSE is 3.6°C.
Therefore, the methods of estimating Ta in this study had relatively
high accuracy. However, due to the 16-days revisit cycle of the
Landsat satellite and the low temporal resolution of the images,
there are limitations in monitoring daily Ta (Yoo et al., 2018).

When performing regression, the random forest cannot make
predictions that exceed the range of the training dataset, which may
lead to overfitting when modeling some data with specific noise. For
many statistical modelers, the random forest is like a black box
(Zheng et al., 2019), almost unable to control the internal operation of
the model, can only try between different parameters and random
allocation. The simulation results of the random forest algorithm for
the existing data are very good, but when it is used in the prediction
and estimation, its accuracy may drop suddenly. It is difficult to
improve it because it cannot control the internal operation of the
model. For this study,multiple linear regression is still recommended.
The simulation accuracy of the MLR model is similar to that of
validation, which is conducive to the evaluation of subsequent
prediction results. From the comparison results of the models, the
MLR and RF models that without improving the accuracy of Ts
performed better, and the actual operation was simpler. The reason
for this phenomenon may be that the NDVI involved in the Ts
correction is also one of the independent variables of the Ta
estimation model, which makes the internal adjustment of the
model during operation can ignore the errors of Ts.

Spatial and Temporal Uncertainties of
Model
The seasonal variation of the average temperature and the
distribution of the station will affect the estimation accuracy of Ta
(Holden et al., 2011; Chen et al., 2015). From the time point of view,
the RMSE in autumn reaches 2.24°C, which is 0.57°C higher than that
in spring and summer. This is consistent with the results of Golkar
et al. (2018), which believe that the estimation of Ta in spring and
summer has higher accuracy, while there are more uncertainties in
autumn. Therefore, the estimation model of daily average
temperature is more suitable for spring and summer days. Yang
et al. (2017) integrated various statistical indicators and believed that
each model performed better in spring, and the estimation accuracy
decreased due to the influence of rainfall and cloudy weather. The
study area is located in the inland of Northwest China, and rainfall is
mainly concentrated in autumn. Benali et al. (2012) believe that the
cloud cover of remote sensing images is inversely proportional to the
model performance, and higher cloud cover harms model

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 79133613

Liu et al. Estimation of Temperatures

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


performance. That is, because cloud cover could reduce the accuracy
of the Ts, which affects the accuracy of estimated values of daily
average temperature. Therefore, the model can be optimized to the
season or month scale, and the process of climate and environmental
impacts can be added to adapt to the impact of climate change and
cloud cover.

The spatial distribution map of RMSE shows that the model in
mountainous and plateau areas generally performs worse than in
plain areas. This conclusion is consistent with the research results of
Yang et al. (2017). Due to the influence of terrain differences,
mountainous terrain has a broader spatial variation range than flat
terrain, so mountain temperature changes are more complicated. On
relatively flat terrain and vegetation, horizontal uniformity leads to
stable atmospheric conditions (Blandford et al., 2008; Lin et al., 2016).
Ta raster data is usually limited by site coverage, especially in
mountainous areas where the density and elevation distribution of
meteorological observations vary greatly (Holden et al., 2011). Shen
et al. (2020) believe that in the case of large-scale use of MLR and RF,
the accuracy of the estimation results is poor due to the scarcity of sites
in Northwest China that can participate in model training. When
MLR is estimated in the Shiyang River Basin, the MEF of the highest
altitude station (3000m) is higher than 0.83, and the RMSE � 2.10°C,
the model also performs well.

The method proposed by the research can obtain high-
precision Ta estimation results when using the Landsat 8 data
set, and improve the spatial resolution. However, the actual
situation of only six meteorological stations limits the accuracy
of Ta inversion in this area. We hope that more reliable
verification data can be obtained in future studies.

CONCLUSION

The purpose of this study is to estimate Ts and Ta in the Shiyang
River Basin. Perform parameter inversion based on Landsat8
images, use RTE to calculate and correct Ts. Using Ts, NDVI,
elevation, and other parameters as variables to construct MLR
and RFmodels for estimating Ta. The results show that: For MLR
and RF, after calibrating Ts and participating in the estimation of
Ta, both methods have accurate estimation results; The accuracy
of RF training results is better than MLR, but the test set results of
the two models are not significantly different; Although the
topography of the study area is complex and the land cover

conditions are different, the MLRmodel applies to the study area.
In addition, compared with the MLR model, the comparison
found that the interpolation method will underestimate the
temperature in areas with low vegetation coverage like deserts,
while the opposite is in the mountains and farmland areas.

This study can be used to accurately understand the
distribution characteristics and changing trends of Ts and Ta
in the study area. Further research can optimize the model in
time to a month to adapt the climate change; make up the
deficiency of Landsat8 and MODIS data by fusing remote
sensing data, then obtaining Ta data with high temporal and
spatial resolution.
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