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We examine market integration across and clean and green investments, crude oil, and
conventional stock indices covering technology stocks, and United States and European
stocks. Using daily data covering the period December 1, 2008—October 8, 2020, we first
apply the dynamic equicorrelation (DECO) model and make inferences regarding the time-
varying level of market integration. Then, we use several regression models and uncover
the driving factors of market integration under lower and upper quantiles of the distribution
of the equicorrelation. The results show that return equicorrelation varies with time and is
shaped by the COVID19 outbreak. Various uncertainty measures are the main drivers of
market integration, especially at high levels of market integration. During the COVID-19
outbreak period, the United States Dollar index, the term spread, and the Chinese stock
market index have significantly increased market integration.
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1 INTRODUCTION

It is often argued that an increase/decrease in the correlation across markets can be considered as
evidence of an increased/decreased market integration, which matters to asset pricing,
asset allocation, and risk management. The related academic literature on market integration
has been grown over the past decades covering various markets and asset classes such as stocks,
bonds, and commodities (e.g., Bekaert and Harvey, 1995; Pukthuanthong and Roll, 2009;
Aladesanmi et al., 2019; Batten et al., 2019; Saji, 2021). However, market integration is an
evolving phenomenon that can be shaped by various macroeconomic events and financial crises,
and the COVID-19 can be relevant in this regard given the unprecedented uncertainty and damage
that it has induced on the economic and financial scenes.

In early 2020, the COVID-19 pandemic abruptly emerged as a global health crisis of a magnitude
not seen before affecting the human life, before transforming into a crisis affecting global economic
conditions and shaping the financial markets worldwide. The COVID-19 outbreak led to severe
health problems and social massive disruption, which imposed intense and unparalleled challenges
for individuals, societies, economies, financial markets, and policymakers. By the second quarter of
2021, the number of infected people reached more than 200 million and the number of deaths
exceeded 5 million. On the economic front, many countries plunged into a deep recession and the
level of unemployment spiked to high levels, in spite of the efforts of governments to neutralize the
economic downturn with fiscal and monetary policy support. On the financial scene, global financial
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markets reacted negatively to the pandemic, especially around its
early period of February-April 2020. Notably, oil demand
collapsed and there was a crash in oil prices and global stock
markets indices. Interestingly, the universe of clean and green
investments showed some resilience to the COVID-19 outbreak,
especially if one considers their price performance relative to that
of dirty energy investments (e.g., crude oil), and conventional
stock investments in the United States and Europe. A lower level
of resilience was shown for investments in the stock of technology
companies that are key to the developments of new technological
innovations for clean energy products and services (See the
figures in the Supplementary Figure S1).

The above discussion motives us to consider the universe of
clean and dirty energy investments, and conventional stock indices
as well as technology stocks. A look into the academic literature
reveals that previous studies have focused on the effect of the
COVID-19 outbreak on economic activities (König and Winkler,
2020; Ozili and Arun, 2020), equity markets in the United States
and Europe (Abuzayed et al., 2021; Bouri et al., 2021), and the price
dynamics of crude oil and clean energy stock indices (Saeed et al.,
2020a; Saeed et al., 2020b; Dutta et al., 2021). Although green bonds
and clean energy investments have attracted a lot of attention from
economic actors over the past 10–15 years, few studies have
considered the effects of the pandemic on these investments.
Notably, there is a lack of studies on market integration in the
universe of green, clean, dirty energy investments, technology
stocks, and conventional stock indices, and it is not clear which
economic and financial variables can determine market integration
and what is the effect of the COVID-19 outbreak.

Against this background, the aim of this study is to examine
the integration in the markets of clean and green investments,
crude oil, technology stocks, and United States and European
stocks. Using daily data covering the period December 1,
2008—October 8, 2020, we apply the dynamic equicorrelation
(DECO) model of Engle and Kelly (2012) and make inferences
regarding the time-varying level of market integration. Then, we
use several regression models and uncover the driving factors of
market integration under lower, middle, and upper quantiles of
the distribution of the equicorrelation. The advantage of the
DECO model resides in its ability and power to process a
large number of return series while overcoming estimation
and numerical problems. In that sense, the DECO is superior
and more convenient than other multivariate GARCH models
such as the DCC or the BEKK models and their variants. This
related to the fact that the DECO model treats the correlation
among indices under study to be contemporaneously equal but
uneven over time, which is suitable to the context of our study
seeking to uncover the time evolution of market integration.

Our current paper contributes to the existing literature on
several fronts. Firstly, it focuses on the market integration among
various types of investments covering green bonds, clean energy
stocks, crude oil, technology stocks and aggregate stock indices
from the United States and Europe. This extends previous studies
on market integration, which limit their analysis to the universe
of equities (Aladesanmi et al., 2019; Saji, 2021) or energy
commodities (e.g., Batten et al., 2019). Secondly, it uncovers
the time-variation in the level of market integration via the

application of the DECO equicorrelation that allows for taking
into account the stylized facts of the return of variables such as
volatility clustering, heteroscedasticity, and fat tails. Third, it
uncovers the drivers of market integration using both standard
and quantile repressions and considering a large set of economic
and financial variables as well as the COVID-19 outbreak.

Our current study is related to a growing literature focusing
the information transmission across clean and dirty energy
investments (Ferrer et al., 2018; Ferreira et al., 2021), crude oil
and stock market indices (Dawar et al., 2021; Geng et al., 2021),
and the factors affecting each of these assets (Batten et al., 2019;
Saeed et al., 2020a). However, our current study is different in its
focus on market integration among the above-mentioned and the
determinants factors under various quantiles as well as the use of
the DECO model that processes a large number of time series
without encountering the problem of dimensionality.

Our empirical analysis indicates that integration in the markets
under study is evolves over time and is affected by the COVID-19
outbreak. This result is relevant to trading strategies, and portfolio
allocation and risk management that involve an investment
combining green bonds, clean stocks, crude oil, technology
stocks and stock indices. Results from regressions analysis show
that main drivers of market integration are various global
uncertainty measures, especially at high levels of market
integration. Further analysis indicates that the United States
Dollar index and term spread have significantly increased the
equicorrelation during the COVID-19 outbreak period.

The rest of the paper is structured in three sections as follows.
The employed data and models are described in Section 2. The
empirical results of the time evolution of equicorrelation and its
drivers are presented in Section 3. Some policy implications and
concluding remarks are provided in Section 4.

2 DATA AND MODELS

2.1 The Dataset
Our dataset is at the daily frequency, covering the indices of green
bonds, clean energy stocks, Arca technology 100, S&P 500, Brent

FIGURE 1 | The return equicorrelation. Notes: This figure shows the time
evolution of the DECO return equicorrelation among the indices under study
(estimated based on the model described in Section 2.2.) for the period
December 1, 2008—October 8, 2020.
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crude oil prices, S&P 500 composite index, and Eurostoxx 50.
Price data are extracted from the DataStream of Refinitiv. The
sample period is December 1, 2008—October 8, 2020, as depicted
by data availability. All series are transformed to log-returns
multiplied by 100, yielding 3,084 daily return observations for
each index. The Appendix Figure 1 plots the time evolution of
levels and log returns of the six indices.

The summary statistics of daily returns are shown in Table 1.
Arca technology 100 index offers the highest average return,
followed by the S&P 500. Crude oil returns exhibit a negative
average return and the highest standard deviation. Conversely,
green bonds have the lowest standard deviation. The returns of all
indices are negatively skewed, except green bonds. There is
evidence of excess kurtosis in all indices. The Jarque-Bera
statistics show a departure from the Gaussian distribution for
all return series. Evidence from the Augmented Dickey-Fuller
(ADF) test (Dickey and Fuller, 1979) points toward the
stationarity of all return series. Conditional heteroscedasticity
is significant as indicated by the results of the ARCH-LM test.
Pairwise correlations across the returns of the six indices
(Table 2) are all positive, ranging between 0.1888 (green
bonds and crude oil), and 0.9458 (Arca technology 100 and
S&P 500). Notably, the correlations between green bonds and
the other indices are the weakest.

2.2 The DECO Model
The dynamic equicorrelation (DECO) model is used to study
market integration among the various indices under study. This
model proposed by Engle and Kelly (2012) is known for its
efficiency in estimating covariance matrices without the
numerical problems often encountered in other multivariate
GARCH models (e.g., DCC and BEKK models).

Assume that rt is a 6 × 1 vector of asset returns such as:

rt|It−1 ∼ N(0, Ht) (1)

The conditional covariance matrix Ht is decomposed in line
with Engle (2002) as:

Ht � DtRtDt (2)

εt � H1/2
t zt (3)

Rt � [diag(Qt)−1/2]Qt[diag(Qt)−1/2] (4)

where the diagonal matrix (Dt) contains the conditional standard
deviations from the univariate GARCH model (See Eq. 5), Rt

denotes the time-varying conditional correlation matrix, εt is a
n × 1 vector of residuals conditional on the information set at
time t-1, zt represents a n × 1 i.i.d. vector of standardized
residuals, and Qt is the conditional correlation matrix of
standardized residuals. We derive the elements of Ht from the
univariate GARCH (1,1) model:

hi,t � ωi + αiε
2
i,t−1 + βihi,t−1 (5)

where hi,t is the conditional variance of the return series, ωi is a
constant term, αi and βi measure the ARCH effect and the
persistence of the volatility process, respectively. To make sure
of the positivity and stability of the process of conditional
variances, we set the following constraints: αi > 0 and αi + βi < 1.

After estimating the univariate GARCH process in Eq. 5, we
use the standardized residuals zt to estimate the conditional
correlation parameters. We express the dynamics of Q in the
DCC process as:

Qt � (1 − θ1 − θ2) �Q + θ1zt−1zt−1′ + θ2Qt−1 (6)

TABLE 1 | Summary statistics of daily returns.

Mean Max Min Std.
Dev

Skewness Kurtosis Jarque-bera ADF ARCH

Green_bond 0.0028 6.8154 −3.7822 0.5321 0.9417 21.9010 46,362 −56.3977*** 696.9791***
Clean_energy 0.0160 13.3993 −16.2390 1.9934 −0.6093 9.9337 6,369 −36.6937*** 746.0920***
ARCA technology 0.0639 9.0649 −12.7364 1.2592 −0.6397 12.5508 11,932 −39.6031*** 998.9348***
Crude oil −0.0068 19.0774 −27.9762 2.3530 −0.7627 20.6171 40,181 −55.4998*** 339.2346***
S&P 500 0.0437 8.9683 −12.7652 1.1779 −0.7558 16.7996 24,764 −39.7238*** 1,041.9791***
EUROSTOXX 50 0.0095 9.8466 −13.2404 1.3692 −0.4196 10.4111 7,148 −56.2195*** 448.2941***

Notes: This table presents summary statistics of daily returns for the six indices. The sample period is December 1, 2008—October 8, 2020, yielding 3,084 observations.*** indicates the
rejection of the null for both normality test (via Jarque-Bera) and unit root test [via Augmented Dickey-Fuller (ADF)]. The ADF test is conducted with an intercept; ARCH-LM, is the test of
heteroscedasticity up to 12 lags.

TABLE 2 | Unconditional correlation of daily returns.

Green bond Clean energy ARCA technology Crude oil SP 500 EUROSTOXX 50

Green bond 1
Clean energy 0.2639 1
ARCA technology 0.2182 0.8157 1
Crude oil 0.1888 0.3889 0.3501 1
S&P 500 0.2519 0.8164 0.9458 0.3888 1
EUROSTOXX 50 0.3446 0.5654 0.6116 0.3440 0.6384 1

Notes: This table provides pairwise Pearson correlation coefficients across the six indices. The sample period is December 1, 2008—October 8, 2020.
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where θ1, θ2 and ϕ are parameter matrices, ηt � I(zt < 0)+zt
represents an indicator function that takes the value of 1 if the
argument is true and 0 otherwise, and }+} denotes the Hadamard
product. �Qj � E[zt, zt′] and �Nj � E[ηt, ηt′] are the unconditional
correlation matrices of zt and ηt, respectively. We express the
time-varying correlation matrix as:

Rt � Qp−1
t QtQ

p−1
t (7)

where Qp
t denotes a diagonal matrix with a square root of the ith

diagonal of Qt in its ith diagonal position.
To estimate the DCC process of Engle (2002), first we fit

univariate GARCH models for each return series. Then, we
compute conditional correlation dynamics. However, as the
number of series under study increases, it becomes difficult to
estimate Eq. 6. Therefore, Engle and Kelly (2012) suggest the
DECO model that assumes that the correlation across all return
series is the same at any given time but varies over time. In fact,
the DECO model simplifies the estimation process by reducing it
to two equicorrelation parameters, α and β. It follows that the
unconditional correlation matrix is:

Rt �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 �ρt / �ρt
�ρt 1 / «
« « 1 �ρt
�ρt / �ρt 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Rt is given by:

Rt � (1 − �ρt)In + �ρtJn (8)

where In denotes the n-dimensional identity matrices, Jn denotes the
n × n matrices of ones, and �ρt denotes the equicorrelation given by:

�ρt �
2

n(n − 1) ∑i≠j ρij,t �
2

n(n − 1) ∑i≠j
qij,t
qii,tqjj,t

√ (9)

We define the scalar DECO model as1:

Qt � (1 − α2 − β2) �Q + α2et−1et−1′ + β2Qt−1 (10)

2.3 Drivers of Return Equicorrelation
In this section, we examine the potential drivers of the DECO
return equicorrelation. Once the return equicorrelation series is
extracted from the DECO model as shown in Section 2.2, its
driving factors are uncovered using OLS and quantile regressions
to make inferences regarding the determinants of market
integration among the six indices under study. The base (OLS)
regression model is specified as:

ΔDECOt � b0 + b1VIXt + b2OVXt + b3EPUt + b4ΔDXYt

+ b5FSIt + b6ΔTERMt + b7ΔEMVt + et

(11)

where VIX, OVX, EPU, DXY, FSI, TERM, and EMV denote
CBOE United States implied volatility index, CBOE oil implied

volatility, United States economic policy uncertainty (Baker et al.,
2016), United States dollar index, OFR financial stress index, term
spread (difference spread between 10-Year and 3-months
Treasury Constant Maturities, a proxy for recession
probabilities), and infectious EMV index (Baker et al., 2019),
respectively. All are extracted from the DataStream of Refnitiv,
except for data on FSI and EMV which are downloaded from
https://www.policyuncertainty.com/infectious_EMV.html and
https://www.financialresearch.gov/financial-stress-index/,
respectively.

The choice of the explanatory variables is motivated by
previous findings (e.g., Batten et al., 2019; Saeed et al., 2020a;
Gupta et al., 2021) and the following rationales. Firstly, we use the
United States VIX because it is a proxy for the United States stock
market uncertainty. High levels of the VIX are often associated
with low levels in the S&P 500 index. Secondly, the OVX is used as
a barometer of uncertainty in the crude oil market. For example,
during the COVID-19 outbreak, the OVX reached unpreceded
levels not seen before, exceeding those reported during the oil
price crash of 2014–2016. Saeed et al. (2020a) has shown that the
connectedness between clean and dirty energy investments is
affected by the OVX. Thirdly, the United States EPU is used
because it represents the only uncertainty metric available at the
daily frequency by Baker et al. (2016). This is suitable as the
United States economy is considered as the locomotive for the
world economy. By using EPU, we add to the scare evidence on
the role of EPU for market integration in general and the
correlation dynamics of clean, dirty energy investments and
stock market indices. Our motivation to use uncertainty
measures (e.g. VIX and EPU) on correlations arises from the
growing literature showing the uncertainty surrounding the
decision and policies of economists during crisis periods such
as the 2008 global financial crisis and the COVID-19 outbreak.
Fourthly, the United States dollar index is used as a potential
explanatory variable for market integration given its effect not
only on crude oil prices and stock market indices, but also on the
relationship between United States and European stock indices.
Fifthly, EMV is a newspaper-based Infectious disease Equity
Market Volatility Tracker, constructed by Baker et al. (2019).
It has the particularity of accounting for infectious diseases
including the recent COVID-19. Several studies have shown
the power of this index in driving financial markets (e.g.,
Gupta et al., 2021). Sixthly, FSI is the OFR financial stress
index that measures the degree of financial stress in financial
markets. Seventhly, the term spread is the difference spread
between 10-Year and 3-months Treasury Constant Maturities,
a proxy for recession probabilities.

To save space, we do not provide the summary statistics and
unit root tests of the explanatory variables in Eq. 11. Instead, we
indicate here that the results of Augmented Dicky Fuller and
Phillips-Perron tests indicate that VIX, OVX, EPU, and FSI are
stationary at levels, therefore we use the level of these variables in
the regression models. In contrast, DXY, term spread, and EMV
are non-stationary and therefore we use the first-difference of
these variables.

Besides applying an OLS model to Eq. 11, we consider a
quantile regression that allows to uncover the drivers of the1The reader can see the log-likelihood function in Engle and Kelly (2012).
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various states (high and low) of the return equicorrelation.
The benefits of using a quantile regression are well
recognized in academia, which includes its ability to move
beyond the mean function into low and high quantile
functions of the conditional distribution of the dependent
variable (Koenker and Bassett, 1978; Koenker, 2005). The
quantile regression has been recently applied in various
papers covering the fields of finance, economics, and
energy (e.g., Bouri et al., 2019; Dawar et al., 2021).

The quantile version of Eq. 11 involving the τth conditional
quantile of the ΔDECO distribution has the following general
form:

QΔDECOt|Xt(τ) � Xtβ(τ) (12)

where DECOt represents the time-varying equicorrelation
extracted from the DECO model; QΔDECOt|Xt(τ) denotes the
τth conditional quantile, Xt represents a (k+1) × 1 vector of
regressors discussed at the beginning of this section, as well as the
constant 1 for the intercept. In Eq. 12, the parameters are
estimated for every quantile τ by minimizing the weighted
absolute deviation:

β(τ) � arg min
β∈Rk

∑T
t�1

ρτ(ΔDECOt −Xtβ(τ)) (13)

where ρτ(u) � u(τ − I(u< 0)), 0< τ < 1, and I( ) denotes the
indication function. To address the minimization problem in
Eq. 13, we follow Koenker and d’Orey (1987). To obtain the
standards errors, we use the pair bootstrap method of Buchinsky
(1995).

Besides applying the baseline regression model in Eq. 11, we
examine the COVID-19 effect on the drivers of equicorrelation.
To this end, we add the COVID-19 interaction terms, by
multiplying the COVID-19 dummy variable with each
regressor. Therefore, we estimate the following augmented
model:

ΔDECOt � b0 + b1VIXt + b2OVXt + b3EPUt + b4ΔDXYt

+ b5FSIt + b6ΔTERMt + b7ΔEMVt

+ b8VIXtDCOVID + b9OVXtDCOVID

+ b10EPUtDCOVID + b11ΔDXYtDCOVID

+ b12SFItDCOVID + b13ΔTERMtDCOVID + et

(14)

where DCOVID is a dummy variable representing the COVID-19
outbreak. It takes the value of 1 from February 2020 till the end of
the sample period (October 8, 2020) and 0 otherwise.

3 EMPIRICAL RESULTS

3.1 Results of the DECO Model
Our first results involve the DECO model (Table 3). The
parameter β (0.9825) is high and significant, suggesting a
persistence in the association among the six indices under
study. The parameter α (0.0134) is significant. Notably, α + β

is near unity, suggesting integrated equicorrelation. Regarding the
ARCH and GARCH parameters estimated in the first stage, they
are both significant at the 1% level for all return series2. Notably,
the GARCH term ranges between 0.8147 for the S&P 500 to
0.9268 for the Green Bond Index.

Moving to the plot of equicorrelation (Figure 1), it shows clear
evidence of variation in its time evolution. Notably, it varies
between 0.25 and 0.66, with an average value of 0.42 shown by the
solid line. The equicorrelation peaked at 0.64 in August 2010 and
December 2011, which corresponds to temporary peaks in the
levels of many indices such as green bonds, clean energy stocks,
and crude oil prices. Conversely, a trough is noticed in late
September 2017 and February 2020 just before the erupt of
the COVID19 after which the level of the equicorrelation
increased to 0.44, suggesting an increase in the level of market
integration around the pandemic. During that period of increased
uncertainty in financial markets, crude oil prices crashed, and
equity indices declined sharply. Therefore, the indices under
study appear to be more subject to contagious effects if one
index such as crude oil experiences a price collapse. However, we
notice various price behaviours in the relationship between the six
indices under study and the average equicorrelation. In fact, from
2015 till late 2019, broad equity indices, the technology index, and
to some extent, the crude oil market, experienced a long uptrend,
whereas the rest of indices entered into a congestion (side-way)
area. Accordingly, the equicorrelation reached its bottoms around
Q3-2017. While all the indices experienced a major decline
during the COVID-19 outbreak period, we notice a major
long spike in the clean energy stock index which led this
index to move to new all-time levels. During that time, the
level of integration increased to 0.44, which generally concords
with previous studies showing that the level of correlation among
financial markets increases during times of stress (Longin and
Solnik, 2001).

TABLE 3 | DECO estimates for cryptocurrencies return.

Second stage DECO α β

Returns 0.0134*** 0.9825***

First stage univariate GARCH ω α1 β1

Green_bond 0.0009*** 0.0697*** 0.9268***
Clean_energy 0.0472*** 0.0738*** 0.9120***
ARCA technology 0.0306*** 0.1333*** 0.8362***
Crude oil 0.0505** 0.0931*** 0.9005***
S&P 500 0.0298*** 0.1630*** 0.8147***
EUROSTOXX 50 0.0306*** 0.1024*** 0.8826***

Log-likelihood −24,390.5

Notes: This table presents coefficients estimates of the DECOmodel, where the GARCH
model (Eq. 5) is estimated in the first stage and equicorrelation model (Eq. 10) is
estimated in the second stage. The sample period is December 1, 2008—October 8,
2020. *** and ** denote the statistical significance at the 1 and 5% levels, respectively,
which are based on T-test.

2These results are available from the authors upon request.
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3.2 Drivers of Return Equicorrelation
In this section, we consider the significance of the potential
drivers of equicorrelation, as specified in Eqs. 11–13.

The estimated results based on the OLS regression specified in
Eq. 11 are reported in Table 4. They show that VIX, EPU, FSI,
and ΔEMV are significant drivers of the mean return
equicorrelation. Specifically, the coefficients of VIX, EPU, and
ΔEMV are positive and significant at the 1, 5, and 10% levels,
respectively, whereas the coefficient of FSI is negative and
significant at the 5% level. In terms of magnitude, the
strongest effect is for VIX and FSI, followed by EMV and
EPU, which indicates the closer relationship in mean between
global market uncertainty measures and market integration
among green, clean, dirty energy investments, technology
stocks, and conventional stock indices.

Next, we move to the drivers of return equicorrelation across
lower and upper quantiles based on a quantile regression (Eq. 12).
The estimated results from Table 4 show some differences between
the determinants of the return equicorrelation at lower and upper
quantiles, which further motivates our decision to employ the
quantile regression. In fact, at low levels of the equicorrelation
(i.e., quantiles 0.10 and 0.20), only OVX is a significant driver of
market integration, with a positive coefficient that is significant at
the 1% level. However, at high levels of the equicorrelation
(i.e., quantiles 0.80), more variables are significant drivers of
market integration, which is highlighted in the increase of the
Pseudo R2 and the probability value of the Quasi-LR stat. Notably,
VIX, OVX, EPU, and FSI are significant drivers of market
integration, with the coefficient of the VIX being positive while
the coefficient of the rest is negative. At quantile 0.90, the coefficient
ofΔEMV becomes significant, and the VIX coefficient intensifies in
magnitude while remaining in positive territories. Therefore, at
higher quantiles (80 and 90%), the positive VIX coefficients
confirm, bolster and support the increase in the level of
correlation among financial markets during times of stress as

showed in previous studies (Longin and Solnik, 2001). This
finding is reinforced by the well-acknowledged negative
correlation between the market fear index and the S&P500.

TABLE 4 | Drivers of return equicorrelation– OLS and quantile regressions.

OLS Quantile 0.10 Quantile 0.20 Quantile 0.80 Quantile 0.90

VIX 0.00018*** −0.00003 −0.00002 0.00028*** 0.00054***
OVX −0.00001 0.00003*** 0.00002*** −0.00001** −0.00003*
EPU 0.00000** 0.00000 0.00000 −0.00001*** −0.00001*
ΔDXY 0.00049 −0.00046 0.00006 −0.0001 −0.00002
FSI −0.00017** −0.00005 −0.00003 −0.00033** −0.00063***
ΔTERM −0.00054 0.00213 −0.00082 −0.00088 −0.00288
ΔEMV 0.00009* −0.00001 −0.00002 0.00003 0.00024**
Constant −0.00264*** −0.00535*** −0.00321*** −0.00205* −0.00293

Adjusted R2 0.01442

Pseudo R2 0.00365 0.00293 0.01553 0.03335

F-statistic 7.23530 (Prob. 0.000)
Prob (Quasi-LR stat) 0.39755 0.13931 0.00000 0.00000

Model diagnosis

Q(10) 10.20750 13.04910 12.11730 13.90210 16.89012
Q2(10) 3.08910 0.68910 0.59230 1.40235 5.8610

Notes: This table reports the estimates of coefficients explaining equicorrelation, based on OLS, regression (Eq. 11) and quantile regression (Eq. 12). Q(10) and Q2(10) are the statistics of
the Ljung-Box-Pierce test for measuring the autocorrelation in the residuals and squared residuals, respectively, up to 10 lags. p-values are corrected for autocorrelation and
heteroscedasticity using the Newey-West estimator. *, **, *** denote the significance at the 10, 5 and 1% levels, which are based on T-test.

TABLE 5 | Drivers of return equicorrelation—OLS regression and COVID-19
interaction terms.

Variable Model 1 Model 2

VIX 0.00019*** 0.00017***
OVX −0.00001 −0.00001
EPU 0.00000 0.00000
ΔDXY 0.00019 0.00008
FSI −0.00020* −0.00014
ΔTERM −0.00258 −0.00076
ΔEMV 0.00010** 0.00011**
China −0.00049***
VIX*DCOVID −0.00006 −0.00001
OVX*DCOVID 0.00002 0.00001
EPU*DCOVID 0.00000 0.00000
ΔDXY*DCOVID 0.00334*** 0.00399**
FSI*DCOVID 0.00006 0.00011
ΔTERM*DCOVID 0.01916** 0.01238*
China*DCOVID 0.00131***
Constant −0.00288*** −0.00236**

Adjusted R2 0.02310 0.03353

Prob (F-statistic) 0.00000 0.00000

Model diagnosis

Q(10) 11.39810 9.19450
Q2(10) 0.71720 0.52980

Notes: This table reports the OLS, estimates of coefficients explaining equicorrelation, while
considering the COVID-19, interaction terms, as reflected by the multiplication of the
COVID-19, dummy variable with each regressor (see Eq. 14). Model (2) is an extension of
Eq. 1where we include the stock market return of theMSCI, China stock index (China) and
its interaction term with the COVID-19, dummy variable (China*DCOVID). Q(10) and Q2(10)
are the statistics of the Ljung-Box-Pierce test for measuring the autocorrelation in the
residuals and squared residuals, respectively, up to 10 lags. p-values are corrected for
autocorrelation and heteroscedasticity using the Newey-West estimator. **, *** denote the
significance at the 5 and 1% levels, which are based on T-test.

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 7865286

Liu et al. Dynamics of Market Integration

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Considering the results of the interactions terms, Table 5
shows that only the coefficients of interaction ΔDXY*DCOVID
and ΔTERM*DCOVID are statistically significant. Both are
positive, which implies that during the COVID-19 outbreak
period the United States Dollar index and Term spread have
significantly increased the equicorrelation of green, clean,
dirty energy investments. The other interaction terms do not
have any statistical significance, suggesting that other
variables do not drive market integration during the
pandemic.

Given that China has been playing an important role in
clean and green investments, crude oil, and conventional
stock indices covering technology stocks as the second largest
economy, we consider the effect of its stock market index
returns on market integration. To this end, we re-run Eq. 14
while adding the returns of the MSCI China stock index3 as
an additional explanatory variable. Furthermore, we also add
an interaction term (China*DCOVID) given that China has
went through pandemic4. The results are reported under the
Model 2 in Table 5. They show that not only the Chinese
stock market returns have a significant effect on the
equicorrelation of green, clean, dirty energy investments
but its interaction term with the COVID-19 dummy
variable is also significant, with a positive value,
suggesting it has significantly increased the market
integration among the indices under study.

Overall5, the above-mentioned results improve our
understanding of the factors affecting market integration in
the universe of green, clean, dirty energy investments,
technology stocks, and conventional stock indices. This adds
to the existing literature such as Dutta et al. (2021) and Saeed
et al. (2020b), which tends to study return spillovers without
considering the time evolution of integration and the financial
and economic factors that can affect it.

4 CONCLUDING REMARKS

To enrich the academic literature on market integration, we
provide in this paper first empirical evidence on the time
evolution of the return equicorrelation in the universe of
green, clean, dirty energy investments, technology stocks,
and conventional stock indices as well as evidence on the
drivers of market integration and the effect of the COVID-19
outbreak. Our main findings are as follows: First, market
integration as measured by the DECO return equicorrelation
is a dynamic phenomenon that evolves with time, and it is
slightly affected by the COVID-19 outbreak. Second, the
factors driving market integration differs between lower and

upper quantiles of the distribution of return equicorrelation.
Thirdly, VIX, OVX, EPU, FSI, and EMV are the main drivers
of market integration at high levels of market integration,
whereas VIX, EPU, and FSI play a significant role when
mean-based estimators are used. Fourthly, the results from
the interaction terms in Table 5 show that the United States
Dollar index, Term spread, and the Chinse stock market
index have significantly increased the equicorrelations
during the COVID-19 outbreak period.

The above findings matter to investors and portfolio
managers keen to understand the dynamics of conditional
correlations among clean, dirty energy investments and stock
market indices, which can affect diversification strategies and
concern asset pricing. This is especially relevant during crisis
periods such as the COVID-19 outbreak which seems to
influence market integration and the identity of its drivers.
They also matter to investors mixing green and non-green
investments in their portfolio and to the policy makers who
often ask for more greener and environmentally friendly
investments. In that sense, future research can consider
return equicorrelation and the activities of speculators and
investors to make more refined inferences on how the
identity of market participant can affect market integration
among green, clean, dirty energy investments, technology
stocks, and conventional stock indices.
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