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Soil organic carbon (SOC) is significant for soil quality and global carbon cycles. SOC was
observed to be related to soil geochemistry, and soils originating from different bedrocks
have different geochemical properties, but the effect of bedrock on SOC is still undefined.
Soils overlying different bedrocks in Zhenxiong County and Weixin County were sampled.
Specifically, soils in themineral horizon, which are less affected by the external environment
than surface soils, are focused on to reveal the effect of bedrock on SOC. Al/Ti, Fe/Ti, and
Al/Fe indicate a soil–rock successive relationship. SOC contents in the mineral horizon are
0.19–2.74% (1.24% on average), and those in the surface horizon are 1.26–4.01% (2.63%
on average). SOC contents in the surface and mineral horizons of the same bedrock are
significantly positively correlated, implying that the bedrock is an important factor affecting
SOC. SOC in the mineral horizon is related to the first transition metal ions. Significantly,
positive correlations of SOC (p < 0.01) with Co, Cu, Ti, V, and Zn, and a positive correlation
(p < 0.05) with Ni were observed in the mineral horizon. Organic transition metal
complexation seems to play an important role in governing SOC in the mineral horizon.
That is, the complexation maintains organic carbon stability, slows down its
decomposition rate, and accumulates organic carbon. The Ca–SOC positive
correlation in the mineral horizon exits because Ca also can complex with organic
carbon. Co, Cu, and V–SOC positive correlations (p < 0.05) were also observed, but
there were no significant positive correlations (p < 0.01) in the surface horizon because
surface SOC had diversified sources. An SOC evolution model influenced by the bedrock
was forwarded. Thus, the different soil geochemistry originating from different bedrocks
should be noticed when SOC and global carbon cycles are discussed.
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INTRODUCTION

Soil organic carbon (SOC) constitutes a large pool within the
global carbon cycle. Soil is the third largest carbon reservoir on
the Earth’s surface, following the ocean and geologic pools (Lal,
2010; Armas-Herrera et al., 2016). Soil organic carbon storage
amounts deeply affect carbon dioxide (CO2) emissions to the
atmosphere, and its slight change may have a significant effect on
the atmospheric CO2 concentration (Schlesinger and Andrews,
2000). Also, SOC is crucial to maintain the soil ecosystem
function and quality (Raiesi, 2021). It not only acts as natural
nutrition necessary for plant uptake but also improves soil water
and fertilization by altering soil’s physical, chemical, and
biological properties (Six et al., 2000). Accordingly, the SOC
content and its driving factor have been regarded as important
processes in determining the soil quality and regulation of the
increasing atmospheric CO2 concentration.

The SOC amount is the result of the equilibrium between gains
from organic supplies and decomposition (Lal, 2010). A series of
factors affecting the equilibrium is widely mentioned when the
SOC mechanisms are discussed, such as land use, environmental
factors (temperature, moisture, rainfall, etc.), soil
physicochemical properties (bulk density, porosity, cation
exchange capacity, etc.), and microbial and human activities
(Buyannovsky and Wagner, 1983; Amundson and Davidson,
1990; Bajracharya et al., 1990; Zhang et al., 2016). Notably,
soil geochemistry is frequently documented to be related to
soil organic carbon. Jiang et al. (2014) argued that more SOC
accumulates in calcareous soil which is rich in Ca content. Fe-
bearing minerals stabilize SOC by Fe-OM compounds, co-
precipitation, and absorption (Mikutta et al., 2014; Wang
et al., 2017). The positive relationships between SOC and
geochemistry (Al, Fe, Ti, Cu, Zn, etc.) were also widely
recorded (Aran et al., 2001; Tonneijck et al., 2010). The soils
originating from different bedrocks are characterized by different
geochemistry, and thus, SOC must be deeply influenced by the
underlying rock. However, there is no detailed information about
the effect of underlying rocks on SOC, and the potential
influencing mechanisms still remain ambiguous.

Universally, the surface soil has been the main focus when the
influential factors of SOC were discussed. However, the surface
soil experiences a complicated history and has multiple sources of
organics. Surface soil organic carbon is profoundly governed by
the external environments, such as climate, vegetation, slope, and
elevation. Specifically, the human input of SOC amounts due to
agricultural and industrial activities occupies a high ratio for the
surface soil. So, it is difficult to clarify the effect of the underlying
rocks on SOC bymerely comparing SOC contents in surface soils.
Contrarily, SOC in the mineral horizon is less affected by the
external environment and can be tentatively used to reveal the
difference of SOC developing from different bedrocks. However,
there is no information detailing SOC in the mineral horizon.

On the basis of the aforementioned details, soils in the mineral
horizon (near the interface with the bedrock, within 10 cm) on
different bedrocks, together with the surface soils (the upper
10 cm) and bedrocks, were gathered, and SOC and geochemistry
were analyzed. The aims of the current article were to 1) evaluate

the difference of SOC contents overlying different bedrocks, with
the emphasis on SOC difference in the mineral horizon, and 2)
discuss the possible influencing mechanism of SOC on different
bedrocks by correlating SOC with soil geochemistry.

STUDY AREA AND METHODS

Study Area
The samples were gathered in Zhenxiong County and Weixin
County, Yunnan Province, an area at the junction of Yunnan,
Guizhou, and Sichuan provinces. The area has typical karst
mountains, dominated by mountainous, semi-mountainous,
and frigid alpine areas. The area has an elevation of
480–2,416 m. The area belongs to a warm monsoon climate,
characterized by cool and rainy weather. The annual temperature
varies between 11 and 20°C, and the annual precipitation is in the
range of 600–1,200 mm (Yang and He, 1999).

Zhenxiong County and Weixin County have a total area of
5,088.7 km2, including 1,562.4 km2 farmland, 43.2 km2

garden land, 2,373.1 km2 forest land, 38 km2 grass land,
34 km2 water area, 202.5 km2 construction land, and
835.5 km2 unused land. The main vegetation types in this
area include coniferous forest, broad-leaved forest, shrub, and
grass (Yang and He, 1999).

The strata in this area mainly include the early and later
Paleozoic, early Mesozoic, and Quaternary strata. The widely
exposed strata from old to new are the Maokou Formation of
early-Permian; the Emeishan, Longtan, and Changxin Formations
of mid-Permian; and the Feixianguan and Yongningzheng
Formations of early-Trias and the Quaternary. The lithology of
the Maokou Formation is bioclastic limestone and chert nodule
limestone. The host rock of the Emeishan Formation is vesicular
amygdaloidal basalt. The lithology of the Longtan Formation
mainly includes shale and sandstone interbedded with coal
seam. The Changxin Formation consists of limestone
interbedded with shale and fine sandstone. The Feixianguan
Formation is characterized by siltite, muddy siltstone, calcareous
siltstone, and mudstone. The Yongningzheng Formation is
dominated by argillaceous limestone, limestone, and sandy
shale. Besides, other strata sporadically occur (Figure 1).

Sampling and Analysis
The samples were gathered for the unit of stratum and bedrock.
Totally, 10 types of bedrocks in different stratum were involved
(Figure 1). These profiles are silty limestone in the Baota
Formation of mid-Ordovician (O2b), argillaceous limestone in
the Wufeng Formation of late-Ordovician (O3w), limestone in
the Qixia Formation of early-Permian (P1q), bioclastic limestone
in the Maokou Formation of early-Permian (P1m), basalt in the
Emeishan Formation of mid-Permian (P2β), shale in the Longtan
Formation of mid-Permian (P2l), limestone interbedded with
shale in the Changxin Formation of mid-Permian (P2c), siltite in
the Feixianguan Formation of early-Trias (T1f), dolomite in the
Guanling Formation of mid-Trias (T2g), and siltite and sandstone
in the Xujiahe Formation of late-Trias (T3x). These profiles cover
the main lithology and strata in this area.
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SOC is governed by multiple factors, and some other factors
affecting SOC were tried to be excluded when sample locations
were selected. The soil profiles were away from pollution sources
such as industry or agriculture. All the samples were from the
shrub land because the shrub land is widely distributed in this

area. Moreover, a successive relationship between the bedrock
and soil was roughly estimated in the field through the grain size,
mineral composition, residual texture, slope, and topography. For
every bedrock unit, soils in the surface and mineral horizons, and
bedrocks were, respectively, sampled (Figure 2); that is, 3 samples
for each bedrock unit were taken. The surface soil was taken in the
upper 10 cm layer, and the soil was taken near the interface with
the bedrock (within 10 cm) in the mineral horizon. The bedrock
should be fresh rock. The samples were taken from 3 to 5
locations in the same horizon and mixed into one. The
samples were kept in canvas sampling bags.

The samples were sent to the laboratory and air-dried at room
temperature. The samples were ground to less than 100 mesh for
analysis. SOC was determined by the wet oxidation method with
K2Cr2O7 following the study proposed by Lu et al. (1999). The
samples were dissolved by HCl–HNO3, and then the analysis of
elements was performed by inductively coupled plasma–atomic
emission spectroscopy (ICP-AES). For quality control, standard
samples and parallel samples were also measured, and the relative

FIGURE 1 | Geological map and sampling location.

FIGURE 2 | Sketch map of soil sampling for every bedrock unit.
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errors were less than 5%. The analytical data are provided in
Supplementary Table S1.

For correlation analysis, software SPSS 13.0 and Excel 2019
were used. p < 0.01 indicated significant correlation at 0.01 level,
and p < 0.05 indicated correlation at 0.05 level.

RESULTS AND DISCUSSION

The Soil–Bedrock Geochemical
Characteristics and Successive
Relationships
The successive relationship and soil origins are key and important
to reveal the SOC characteristics on different bedrocks.
Geochemistry acts as an effective tool to trace soil origin, and
a series of geochemical indexes was discussed. Fe, Al, and Ti are
relatively immobile or weakly mobile during weathering (Hill
et al., 2000). Al/Ti, Fe/Ti, and Al/Fe remain roughly equivalent
between the bedrock and the in situ soil, and thus can be used to
ascertain their succession (Young and Nesbitt, 1998).

The ratios of Al/Ti, Fe/Ti, and Al/Fe are listed in Table 1. The
ratios for limestone in the Qixia Formation of early-Permian
show obvious deviations between the bedrock and the soil, which
indicates that the soil does not originate from the underlying
bedrock although the residual texture, slope, and topography had
been considered in the field. So, this profile was excluded for this
research. For other profiles, the ratios of Al/Ti, Fe/Ti, and Al/Fe
between the soil and the bedrock are not absolutely equivalent
because of the different active coefficients, illuviation, and soil-
forming conditions, but they show roughly equivalent values in
the mineral horizon. Additionally, the reason for some greater
deviations between the surface soil and the bedrock may possibly
be because the surface soil is more affected by the external
environments (Sharma and Rajamani, 2000). Significantly,
positive correlations between these ratios in the bedrock and
in the mineral horizon were observed, with R2

Al/Ti � 0.82, R2
Fe/Ti �

0.69, and R2
Al/Fe � 0.61. The ratios of soils in mineral horizons and

in surface horizons on the same bedrock were also significantly
positively correlated (R2

Al/Ti � 0.66, R2
Fe/Ti � 0.83, and R2

Al/

Fe � 0.56).

Many researchers have discussed the soil origin in this studied
area or its neighborhood using mineralogy, trace element
geochemistry, particle-size characteristics (Sun et al., 2002; Liu
et al., 2004), acid-dissolved extraction experiments (Wang et al.,
1999), REE (Wang et al., 1999; Sun et al., 2002), grain size of
quartz (Feng et al., 2009), and grain size of soil profiles (Feng
et al., 2002). Generally, most researchers confirmed that the soil
was the accumulation of insoluble residue from the underlying
rock (Isphording, 1978; Danin et al., 1982), while only a few
considered that the soil originated from other sources such as
clastic materials transported by water or air, volcanic ash, and
desert dust (Yaalon, 1997; Wang et al., 2019). Our results also
support that the soil is the weathering product of the underlying
rock, and the soil geochemistry is succeeded from the bedrock.

Soil Organic Carbon and Its Correlations
With Soil Geochemistry
The average SOC contents on different bedrocks are summarized
in Table 2. The soils in the mineral horizon had SOC contents of
0.19–2.74% (an average of 1.24%), with the highest of 2.74% on
basalt in the Emeishan Formation of mid-Permian and the lowest
of 0.19% on dolomite in the Guanling Formation of mid-Trias.
The SOC for surface soil showed higher contents of 1.26–4.01% (a
mean of 2.63%), with the highest of 4.01% on shale in the Longtan
Formation of mid-Permian and the lowest on silty limestone on
the Baota Formation of mid-Ordovician. The bedrock organic
contents only range between 0.01 and 1.63%.

SOC in the mineral horizon on different bedrocks differs
greatly, indicating the effect of underlying rocks on SOC in
the mineral horizon. SOC in the mineral horizon is not
correlated with organic carbon in rocks (Figure 3), implying
the SOC contents in the bedrock itself cannot explain the contents
in the mineral horizon. There exists a positive correlation
between SOC contents in the mineral horizon and in the
surface horizon, indicating SOC in the surface and mineral
horizons is affected by similar soil geochemistry since they
originate from the same bedrock. However, the correlation
coefficient (R2 � 0.58) is low (Figure 3), possibly because the
external inputs contribute more to the surface soil than to the soil
in the mineral horizon.

TABLE 1 | Ratios of Al/Ti, Fe/Ti, and Al/Fe in soils and rocks.

Stratum Lithology Mineral horizon Surface horizon Bedrock

Al/Ti Fe/Ti Al/Fe Al/Ti Fe/Ti Al/Fe Al/Ti Fe/Ti Al/Fe

Baota Formation of mid-Ordovician (O2b) Silty limestone 9.91 6.24 1.59 9.89 6.73 1.47 8.68 5.88 1.48
Wufeng Formation of late-Ordovician (O3w) Argillaceous limestone 18.22 9.30 1.96 16.53 10.37 1.59 18.05 8.62 2.09
Qixia Formation of early-Permian (P1q) Limestone 1.32 3.95 0.33 12.0 6.04 1.99 8.96 9.04 0.99
Maokou Formation of early-Permian (P1m) Bioclastic limestone 8.85 7.08 1.25 — — 1.24 5.78 10.17 0.57
Emeishan Formation of mid-Permian (P2β) Basalt 3.43 4.58 0.75 — — 1.21 3.13 3.31 0.95
Longtan Formation of mid-Permian (P2l) Shale 5.17 4.42 1.17 — — 1.48 3.03 3.17 0.96
Changxin Formation of mid-Permian (P2c) Limestone interbedded with shale 8.07 5.71 1.41 6.28 4.64 1.35 5.13 6.35 0.81
Feixianguan Formation of early-Trias (T1f) Siltite 5.03 4.49 1.12 4.99 5.06 0.99 5.35 4.87 1.10
Guanling Formation of mid-Trias (T2g) Dolomite 14.55 7.59 1.92 20.54 9.24 2.22 16.23 9.83 1.65
Xujiahe Formation of late-Trias (T3x) Siltite and sandstone 11.07 6.32 1.75 17.79 8.15 2.18 16.84 7.93 2.12
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The correlations between SOC and soil geochemistry in
the mineral horizon are shown in Figure 4. SOC in the
mineral horizon is significantly positively correlated (p <
0.01) with Co (R2 � 0.674), Cu (R2 � 0.746), Ti (R2 � 0.81), V
(R2 � 0.688), and Zn (R2 � 0.722), and positively correlated
(p < 0.05) with Ni (R2 � 0.595). The elements of Co, Cu, Ti, V,
Zn, and Ni strongly bind to SOC by forming organic metal
complexes because they belong to the first transition metal
ions (Goodman and Cheshire, 1973; Cheshire et al., 1977;
Xing and Zhu, 2003). Moreover, organic metal complexes
have been proven to maintain SOC stability and slow down
the SOC decomposition rate (Clough and Skjemstad, 2000;
Aran et al., 2001; Tonneijck et al., 2010). Therefore, these
elements in the mineral horizon seem to play the most
important role in governing SOC. Ca is also documented
to enhance SOC stability by Ca–SOC complexing actions (Clough
and Skjemstad, 2000; Schmeide and Bernhard, 2009; Saito et al.,
2010). The positive Ca–SOC correlation (p < 0.05) was also observed
in the mineral horizon, with a low correlation coefficient (R2 �
0.457). Additionally, the significantly positive phosphorus–SOC (p <
0.01) correlation (R2 � 0.73) may result from the fact that SOC and
phosphorus are both soil nutrient elements.

The correlations between surface SOC and soil
geochemistry are shown in Figure 5. Only Co (R2 � 0.698),
Cu (R2 � 0.685), V (R2 � 0.687), and Al (R2 � 0.613) have
positive correlations (p < 0.05) with SOC. Compared with the
soils in the mineral horizon, SOC is not positively correlated
(p < 0.05) with Ti, Zn, and Ni in the surface horizon. Moreover,
no significantly positive correlations (p < 0.01) between
surface SOC and soil geochemistry were observed. Surface
SOC is partly affected by Co, Cu, and V in this study area.
Importantly, surface SOC is more affected by the external

inputs and external environments, resulting in the difference
of its correlations with the first transition metal ions from the
SOC in the mineral horizon.

Soil Organic Carbon Evolution Model
Influenced by the Bedrock and Its
Significance for Global Carbon Cycles
The SOC pool is derived from the by-products of microbial
processes and the decomposition of organic matters, and is
estimated to be 1,505 Pg to 1 m depth of the soil. The
atmosphere only has a carbon pool of 820 Pg (Batjes,
1996). CO2 emission from the soil to the atmosphere is a
substantial constituent of greenhouse gas emissions and is a
vital part of the carbon cycle. A small emission from the SOC
pool may largely affect atmospheric CO2 and aggravate
global warming. Also, a small increase in the SOC pool
results in a strong drawdown impact on atmospheric CO2.
Thus, thoroughly understanding and managing the SOC
pool is of a critical importance to limit global warming,
and SOC evolution is an important process for the global
carbon cycle.

However, the SOC content and its influencing mechanisms
on different rocks are difficult to characterize, although a series
of factors related to SOC has been widely discussed. Surface
soils have wide sources of organic carbon and cannot
accurately exemplify the effect of bedrock on SOC.
Contrarily, soils in the mineral horizon, which are less
affected by the external environments, were focused on in
this research.

The variation of SOC content affects the emission amount of
CO2 into atmosphere, and carbon fixation in soils is significant

TABLE 2 | Average SOC contents on different bedrocks (%).

Stratum Lithology Mineral horizon Surface horizon Bedrock

Baota Formation of mid-Ordovician (O2b) Silty limestone 1.01 1.26 1.63
Wufeng Formation of late-Ordovician (O3w) Argillaceous limestone 1.04 2.18 0.19
Maokou Formation of early-Permian (P1m) Bioclastic limestone 0.94 3.43 0.27
Emeishan Formation of mid-Permian (P2β) Basalt 2.74 3.92 0.16
Longtan Formation of mid-Permian (P2l) Shale 2.16 4.01 0.24
Changxin Formation of mid-Permian (P2c) Limestone interbedded with shale 0.68 2.5 0.42
Feixianguan Formation of early-Trias (T1f) Siltite 1.19 2.13 0.03
Guanling Formation of mid-Trias (T2g) Dolomite 0.19 1.59 0.08
Xujiahe Formation of late-Trias (T3x) Siltite and sandstone 1.24 2.65 0.01

FIGURE 3 | Correlations between SOC in the surface horizon and the mineral horizon (A), mineral horizon and bedrock (B), and surface horizon and bedrock (C).
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for global carbon cycles (Schlesinger and Andrews, 2000; Lal,
2010). The SOC content is the result of the equilibrium between
gains from organic supplies and decomposition (Lal, 2010). SOC
in the mineral horizon seems to be largely affected by its
decomposition since the gained organics are markedly less
than those in the surface soil. SOC is rich in oxygen-bearing

functional groups such as COOH, OH, and C�O, which can form
metal–organic complex. Nitrogen-containing groups such as
-NH2 and -N�N- are fewer in SOC, but have a stronger
complexing ability with metal ions than oxygen-bearing
functional groups (Stevenson, 1991). The metal–organic
complexation is also one of the important processes

FIGURE 4 | Correlations of SOC with Co (A), Cu (B), Ti (C), V (D), Zn (E), Ni (F), Ca (G), and P (H) in the mineral horizon.

FIGURE 5 | Correlations of SOC with Co (A), Cu (B), V (C), and Al (D) in the surface horizon.
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controlling SOC contents. Transition metal ions, especially the
first transition metal ions, have priority, high affinity, and strong
ligand ability to complex with SOC because of their free electron
orbits, preferentially forming stable complexes (Xing and Zhu,
2003).

The mechanisms protecting SOC from decomposition are still
the subject of debate (Baldock and Skjemstad, 2000; Tonneijck
et al., 2010; Kida and Fujitake, 2020). The metal–organic complex
has been proven to maintain SOC stability by restraining against
biological decomposition. The formation of metal–organic
complexes, which accounted for 40% of the carbon
accumulation, was observed to be related to SOC
stabilization in Andosols (Tonneijck et al., 2010). Clough and
Skjemstad (2000) found organic complexes could not be
effectively decomposed even though the soil microbial
activity was improved. Complexation with SOC resulted in
functional groups becoming more condensed and less
susceptible to biological attack (Baldock and Nelson, 2000),
and Sollins et al. (2006) stated the average residence time of SOC
increased with increasing density. Aran et al. (2001) performed
disaggregation tests and incubation experiments, and concluded
the complex had strong resistance against disaggregation and
biodegradation. Wang et al. (2013) concluded that Fe-o affected
by sorption and Fe-p by complexation on SOC preservation,
and Fe-p had higher contributions to fix organic carbon than
Fe-o. Olatunji and Osibanjo (2014) found the stability of
metal–organic carbon complexes depended on the organic
carbon type, nature of the complex formed, and the degree
of stearic effect. Organo-metallic complexes were widely
documented to be responsible for the stabilization of SOM
and the high SOC stocks (Blaser et al., 1997; Jiang et al.,
2021). Consequently, the SOC decomposition rate is slowed
down, and more organic carbon is accumulated in soils with a
higher content of transition metal ions.

Also, the relationships between SOC and transition elements
have been widely documented. Goodman and Cheshire (1973)

added Cu into peaty humic acid and gained the Cu–porphyrin
complex compound. Lakato et al (1997) deemed that Cu ligands
with heterocyclic nitrogen atoms, not with porphyrin. Senesi et al.
(1977) detailed humic acid’s complexation with Fe2+. Goodman
and Cheshire (1976) described how VO3− converts into VO2+

when it complexes with SOC. Also, many studies have revealed
that SOC is positively correlated with these transition metal ion
contents, such as with Cu2+ (Ni et al., 2000; Zhu et al., 2006), Ti2+

(Gao et al., 1994), V2+ (Goodman and Cheshire, 1976), Fe2+

(Wang et al., 2005; He et al., 2006), and Co2+ (Fan et al., 2006).
A series of simulated experiments about the interactions

between metal ions and SOC was also recorded. Georg et al.
(1994) confirmed that the SOC respiration, as well as SOC
solubilization, was reduced by metal–organic complexes.
Boudot (1992) concluded that organo-metallic complexes
account for the low SOC mineralization rates. The addition of
Ca2+ to soil has also been shown to reduce SOC mineralization
(Muneer and Oades, 1989). Boudot et al. (1989) observed that the
protective effect exerted bymetallic ions arose from the formation
of metallic hydroxide trapping organic molecules. Cai (2018)
found that organic–metal complexes greatly increased under the
exogenous addition of Cu and Zn. Zhou (2013) observed the high
metal ions decreased the SOC turnover and increased stable
organic carbon because of the low mineralization rates.

The rock–soil geochemistry of the first transition metal ions
was analyzed to discuss their successive relationship. Ca (Mg)
CO3 leaching has been the most important process of soil
forming in the carbonate area because carbonate is largely
composed of Ca (Mg) CO3, which differs greatly from the
non-carbonate area. The trace transition metal ions highly
accumulate in soil when Ca (Mg) CO3 leaches. Moreover, Ca
(Mg) CO3 leaching is related to the conditions such as pH, Eh,
climate, and clay content. Thus, different carbonates have
different concentration coefficients of these transition metal
ions since they have different Ca (Mg) CO3 contents and Ca
(Mg) CO3 leaching abilities. Therefore, no significant

FIGURE 6 | Correlations of Co (A), Cu (B), Ti (C), V (D), and Zn (E) between the bedrock and soil in the horizon in the non-carbonate area.
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correlations of transition metal ions between the bedrock and
soil were observed in the carbonate areas. But in the non-
carbonate area, Co, Cu, Ti, and V elements have significant
positive correlations (p < 0.01), and Zn has positive correlation
(p < 0.05) between the bedrock and soil in the mineral horizon
(Figure 6). Co, Cu, Ti, and V elements have significant positive
correlations (p < 0.01), and Ni has a positive correlation (p <
0.05) between the bedrock and the surface soil (Figure 7). The
content of the first transition metal ion in the non-carbonate
area largely governs its content in soil.

To summarize, the higher first transition metal ions in the
bedrock result in their higher contents in soil during weathering.
The SOC stability increases, and its decomposition rate decreases
with the increasing of SOC–the first transition metal ion
complexes. Consequently, more SOC accumulates in soil with
higher first transition metal ions, resulting in higher SOC
contents (Figure 8).

CONCLUSIONS

The effect of bedrock on SOC was discussed, with emphasis on
the soil in the mineral horizon. The followings were gained:

1. The ratios of Al/Ti, Fe/Ti, and Al/Fe show roughly equivalent
values between the bedrock and the soil. There exist significant
positive correlations between these ratios in the bedrock and in
the soil. The soil geochemistry is succeeded from the bedrock
in this area.

2. The soils in the mineral horizon have SOC contents of
0.19–2.74%, with an average of 1.24%. SOC for the surface
soil shows a higher content range of 1.26–4.01%, with a
mean of 2.63%. The bedrock organic content ranges
only between 0.01 and 1.63%. The SOC in the mineral
horizon on different bedrocks differs greatly. SOC in the
surface and mineral horizons are significantly positively
correlated because they originate from the same bedrock,

implying that the bedrock is an important factor
influencing SOC.

3. SOC in the mineral horizon is significantly positively correlated
with the first transition metal ions of Co, Cu, Ti, V, and Zn, and
positively correlated with Ni. Positive correlations between SOC
and Co, Cu, and V in the surface soil also exist. Surface SOC is
not positively correlated (P < 0.05) with Ti, Zn, and Ni, and no
significant positive correlations (P< 0.01) between SOC and soil
geochemistry were observed because surface SOC is more
affected by external inputs and external environments. The
contents of the first transition metal ions in soil are largely
governed by the underlying bedrock.

4. The first transition metal ions can complex with SOC,
maintain its stability, slow down the SOC decomposition
rate, and result in SOC accumulation. Thus, the first
transition metal ion content in soil developing from
different bedrocks seems to significantly affect SOC. A
SOC evolution model influenced by the bedrock was

FIGURE 7 | Correlations of Co (A), Cu (B), Ti (C), V (D), and Ni (E) between the bedrock and the surface soil in the non-carbonate area.

FIGURE 8 | SOC evolution model influenced by the bedrock.
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forwarded, which is significant for the soil quality and
global carbon cycle.
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