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Scrub typhus (ST) is expanding its geographical distribution in China and in many regions
worldwide raising significant public health concerns. Accurate ST time-series modeling
including uncovering the role of environmental determinants is of great importance to guide
disease control purposes. This study evaluated the performance of three competing time-
series modeling approaches at forecasting ST cases during 2012–2020 in eight high-risk
counties in China. We evaluated the performance of a seasonal autoregressive-integrated
moving average (SARIMA) model, a SARIMA model with exogenous variables (SARIMAX),
and the long–short term memory (LSTM) model to depict temporal variations in ST cases.
In our investigation, we considered eight environmental variables known to be associated
with ST landscape epidemiology, including the normalized difference vegetation index
(NDVI), temperature, precipitation, atmospheric pressure, sunshine duration, relative
humidity, wind speed, and multivariate El Niño/Southern Oscillation index (MEI). The
first 8-year data and the last year data were used to fit the models and forecast ST
cases, respectively. Our results showed that the inclusion of exogenous variables in the
SARIMAX model generally outperformed the SARIMAmodel. Our results also indicate that
the role of exogenous variables with various temporal lags varies between counties,
suggesting that ST cases are temporally non-stationary. In conclusion, our study
demonstrates that the approach to forecast ST cases needed to take into
consideration local conditions in that time-series model performance differed between
high-risk areas under investigation. Furthermore, the introduction of time-series models,
especially LSTM, has enriched the ability of local public health authorities in ST high-risk
areas to anticipate and respond to ST outbreaks, such as setting up an early warning
system and forecasting ST precisely.
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INTRODUCTION

Scrub typhus (ST) is a mite-borne disease caused by the Orientia
tsutsugamushi (O. tsutsugamushi). A number of rodent species
have been identified to carry O. tsutsugamushi including
Apodemus agrarius, Micromys minutus, Mus musculus, Rattus
norvegicus,Microtus fortis, and Tscherskia triton (Kim et al., 2010;
O’Guinn et al., 2010; Sames et al., 2010).Once infected, patients
will have typical clinical symptoms, such as fever, headache,
fatigue, myalgia, chills, eschar, facial flushing, rash, acute
hearing loss, and pneumonitis (Premaratna et al., 2006; Zhang
et al., 2010). Delays in diagnosis of scrub typhus can lead to acute
respiratory distress syndrome, septic shock, and multi-organ
failure, leading to death (Chrispal et al., 2010). Currently, ST
attracts considerable public health concerns in China, South
Korea, India, and Thailand (Park, 2016; Rodkvamtook et al.,
2018; Zheng et al., 2019). In China, not only the incidence of
reported ST cases has significantly increased from 0.09 to 1.6 per
100,000 population in 2006 and 2016, respectively, but also ST
cases are reported in the entire country within rural and urban
communities (Li et al., 2020).

ST epidemiology has been extensively studied in China, such
as identification of zoonotic sources of ST infection (Kuo et al.,
2015), the clinical manifestations of ST infection (Zhang et al.,
2010; 2012), the local spatial or spatio-temporal distributions of
ST notifications (Kuo et al., 2011; Ding et al., 2012b), and the
associations between the environmental factors and ST
notifications (Tsai and Yeh, 2013; Wardrop et al., 2013; Li
et al., 2014; Yang et al., 2014). Although the spatial variation
of ST cases in China has been comprehensively studied, to date
there are relatively few studies aiming to validate epidemiological
time-series models to forecast ST cases. Precise forecasting of the
ST cases can help local health administrative departments release
an early warning of the increased risk of ST incidence and
distribute reasonable medical resources in a timely manner for
preventing and controlling the ST spread. Machine learning
techniques have been developing rapidly during the past
decade; random forest, support vector machine, or gradient
boost machine techniques are used to determine the
relationship between the studied natural attribute and the
related environmental variable in the field of public health
(Carvajal et al., 2018; He et al., 2018a). However, these
methodologies have certain limitations on forecasting the
disease in the future. The available literature indicates that
several time-series modeling approaches have been applied to
infectious diseases in China including the autoregressive-
integrated moving average (ARIMA) model and the seasonal
ARIMA (SARIMA) model (Ding et al., 2012a; Yang et al.,
2015).While the ARIMA and SARIMA modeling approaches
cannot account for the effect of disease-related environmental
factors (e.g., the meteorological and land cover factors), the
SARIMAX model allows time-variant exogenous variables to
be considered along with the temporal autocorrelation in
disease counts. The SARIMAX models have previously been
utilized to model the time series of hemorrhagic fever with
renal syndrome in China (He et al., 2018b). Recently, a new
time-series modeling approach based on recurrent neural

networks (RNNs) has been developed (Yu et al., 2019;
Sherstinsky, 2020). This modeling approach known as the
long–short term memory (LSTM) model, a machine learning
method, has shown strong ability for COVID-19 time-series
forecasting (Chimmula and Zhang, 2020). The memory
capability of LSTM to retain information from previous time
instants is suitable for time-series forecasting, especially in the
case of time-series with temporal correlations. The LSTM model
inherits all features from RNN and the basic artificial neural
network (ANN), such as self-learning, self-adaption, and self-
organization; moreover, the structure of LSTM can to some
extent solve the issue of vanishing and/or exploding temporal
gradients that occur in RNN modeling (Gonzalez and Yu, 2018;
DiPietro and Hager, 2020). However, to date the relative
performance of these time-series modeling approaches at
forecasting the time series of ST cases in high-risk areas in
China has not been explored. Therefore, such a study will
benefit the public health managers on providing precise ST
forecasting models, especially in the high-risk ST counties.

In this study, we aimed to evaluate the performance of three
competing time-series modeling approaches at uncovering the
temporal variability of ST cases in eight high-risk counties of
China and quantifying the role of ST-related environmental
factors at explaining the temporal variation in ST incidence.

MATERIALS AND METHODS

Data Collection and Pre-Processing
Monthly ST cases were collected for the top eight high-risk ST
counties of China for the 2012–2020 period from the China
Information System for Disease Control and Prevention,
including Yingshang County (Anhui province), Guangning
County (Guangdong province), Huaiji County (Guangdong
province), Yingde City (Guangdong province), Longling
County (Yunnan province), Gengma County (Yunnan
province), Mang city (Yunnan province), and Yingjiang
County (Yunnan province), as shown in Figure 1. The total
cases of the eight counties over the time period of analysis were
2,177, 2,832, 3,395, 2,688, 4,052, 1,936, 1,952, and 2,073,
respectively. The criteria for a confirmed ST case included
epidemiological exposure patient histories (travel to an
epidemic area and contact with chiggers or rodents within
3 weeks before the onset of illness), clinical manifestations (for
example, skin rash, lymphadenopathy, high fever, and eschar
or ulcers), and also positivity for at least one of the laboratory
diagnostic criteria/tests: isolation of O. tsutsugamushi from
clinical specimens, or detection of O. tsutsugamushi by
polymerase chain reaction (PCR) in clinical specimens, or a
4-fold or greater rise in serum IgG antibody titers between
acute and convalescent sera by using indirect
immunofluorescence antibody assay (IFA) (Zhang et al.,
2013; Li et al., 2020).

Environmental data used in this study included raster maps of
the normalized difference vegetation index (NDVI) representing
the amount of vegetation at specific locations which was collected
from theMODIS-Terra products (MOD13A2, https://modis.gsfc.
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nasa.gov/data/dataprod/mod13.php) with spatial resolution
1 km. We also used meteorological data from weather
monitoring stations in China from the China Meteorological
Administration (http://www.cma.gov.cn/), including
precipitation, pressure, relative humidity, sunshine duration,
daily mean temperature, daily minimum temperature, daily
maximum temperature, and mean wind speed. The
multivariate El Niño/Southern Oscillation Index (MEI),
regarded as global climate change proxy, was collected from
the physical sciences laboratory of National Oceanic and
Atmospheric Administration (https://psl.noaa.gov/enso/mei/).

The inverse distance weighted method was employed for
mapping the six meteorological data with the same spatial
resolution of the NDVI. Then, the NDVI and the six
meteorological data were extracted by the administrative
boundaries of the eight counties, and the mean values of each
variable were calculated each month during the study period for
further analysis.

SARIMAX Modeling
Based on the standard ARIMA model, the SARIMAX model
considers simultaneously the seasonal variation in ST cases and
accounts for the effects of exogenous risk factors for better
understanding and fitting the considered time series. The basic
equations of SARIMAX are as follows:

Yt � ∑ βiXi,t + Zt, (1)

ΦP(BS)ϕp(B)∇D
S ∇

dZt � ΘQ(BS)θq(B)εt, (2)

where Yt represents the ST cases at time instant t, while Xi,t

represents the ith exogenous variables (i � 1, 2, . . . , 8) at time
instant t , and βi represent the coefficients of the exogenous
variables; Zt representing the main trend of the ST time series
satisfies the SARIMA equation (Eq. 2) based on the model
structure (p, d, q) × (P,D,Q)S. In Eq. 2, S represents the
periodicity, and εt denotes the white noise; B represents the
backshift operator, e.g., BiZt � Zt−i, while ∇ represents the
differencing process, e.g., ∇d � (1 − B)d, ∇D

S � (1 − BS)D with
the non-seasonal and seasonal differencing orders d and D,
respectively; ϕp(B) � 1 − ∑p

i�1ϕiB
i and ΦP(BS) � 1 − ∑P

i�1ΦiBiS

represent the non-seasonal and seasonal autoregressive process
with the orders p and P, respectively; θq(B) � 1 −∑q

i�1θiBi and
ΘQ(BS) � 1 −∑Q

i�1ΘiBiS represent the non-seasonal and seasonal
moving average processes with the orders q and Q, respectively.
In the current study, the periodicity parameter S was set to 12
months. The main procedure of defining the structure of
SARIMAX is briefly described as follows: 1) SARIMA models
with the parameters p, P, q, andQ ranged from 0, 1, and 2, and the
parameters d and D ranged from 0 and 1 were constructed to fit
the time series of ST cases in each of the eight studied counties.
The model with the lowest Akaike information criterion (AIC)
value was regarded as the best SARIMA model. 2)
Multicollinearity was investigated before entering the
exogenous variables into the SARIMAX model. We found a
very high level of correlation (0.9834 and 0.9912, respectively)
between mean temperature and daily minimum temperature (or
daily maximum temperature), and therefore, the daily mean
temperature was selected for modeling in the current study. In

FIGURE 1 | Locations of the eight study counties.
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our study, eight exogenous variables with a 0–5 month lag were
prepared in an exogenous variable pool. Based on the SARIMA
model, a forward stepwise variable selection procedure was
implemented to build the SARIMAX model. During each of
the variable selection loops, multicollinearity was tested before
adding the exogenous variable into the model, and only the one
with a variance inflation factor (VIF) smaller than 3 was regarded
as a candidate. Furthermore, the variable candidates were added
into the model separately, and only the one with the lowest AIC in
each loop was added into the model. Finally, a t-test was used to
exclude the exogenous variables with largest p-values (larger than
0.05). More detailed information can be found in the literature
(He et al., 2018b). The first eight-year ST cases were employed to
fit the SARIMAX model, and the last year data were used to test
the performance of the built model. To evaluate the goodness of
the fit of the model, we considered the R2, mean absolute error
(MAE), and root mean square error (RMSE).

LSTM Modeling
In order to test the possibility of applying LSTM in ST modeling
and forecasting, the exogenous variables included in the final
SARIMAXmodel together with the ST time series were chosen as
the LSTM input. LSTM is constructed by a number of connected
cells (the basic unit of the network), while each cell consists of
three gates, i.e., the forget gate, input gate, and output gate; see
Figure 2. Specifically, the hidden state from the previous cell ht−1
and the current series Yt at time instant t are combined and flow
through the forget gate, leading to useless information of loss by
ft � σ(Wf · [ht−1, Yt] + bf); in other words, the forget gate can
retain the useful information in series modeling. The input gate
gathers the hidden state and current series to update the cell
situation Ct of LSTM, and two preparation workflows are
designed, i.e., it � σ(Wi · [ht−1, Yt] + bi) and
~Ct � tanh(WC · [ht−1, Yt] + bC), and the cell situation can be
calculated by Ct � ftpCt−1 + itp~Ct; in other words, the input
gate collects and updates the information flow into the model.
The output gate uses the hidden state and current series to update
the hidden state as the input of the next cell of LSTM,
i.e., ot � σ(Wo · [ht−1, Yt] + bo) and ht � optanh(Ct); in other
words, the output gate integrates the information and generates

the output information for the next time instant. In these
equations, σ represents the sigmoid activate function, W and b
represent the weights and bias in different parts of LSTM,
respectively. Other than some other advanced LSTM models,
such as forward and backward variate sensitive LSTM,
convolutional LSTM, and convolutional neural network LSTM
(Kim and Cho, 2019; Wan et al., 2019; Fouladgar and Främling,
2020), the current study used the basic LSTM as described above
to forecast the ST series. To define the best structure of the LSTM
model, the values of the hidden layers were considered to vary
from 2 to 3, while the hidden dimension varies from 54 to 68 with
interval 4, the batch size varies from 45 to 55 with interval 5, and
the number of previous months used to forecast the current
month ranges from 3 to 12. The optimal model was selected with
the largest R2 and smallest MAE and RMSE.

RESULTS

The Performance of SARIMA and SARIMAX
Models on ST Forecasting
Various SARIMA and SARIMAX models were established with
different model structures, and temporal lagged exogenous
variables at the eight considered counties and the optimal
model structure with the corresponding performance are
presented in Supplementary Appendix Table A1. According
to the optimal model structures, all models have the same
seasonal difference order, i.e., D � 1. Specifically, the models
of the four counties in the Yunnan province have very similar
seasonal characteristics, i.e., P, D, and Q are exactly the same,
except the Q value for Yingjiang County. Regarding the SARIMA
model, it showed good performance in modeling ST variations in
the model fitting stage in Guangning County, Longling County,
and Yingjiang County with R2 larger than 0.8, while the SARIMA
model showed better performance (in terms of R2) at the model
forecasting stage in Longling County, Gengma County, and the
Mang city of the Yunnan province (Table 1).

Through exogenous variable selection processes, the
SARIMAX models absorb the strength of one or several
exogenous variables with temporal lags for ST variation
modeling. Atmospheric pressure with a 4-month temporal lag
was found to be the sole exogenous variable for SARIMAX
modeling in Huaiji County. As shown in Supplementary
Appendix Table A1, the significant ST-associated exogenous
variables vary between the eight counties under investigation.
Atmospheric pressure, sunshine duration, wind speed, and MEI
with various temporal lags were found to be correlated with the
ST temporal variation in Yingyang County and Guangning
County; however, precipitation and relative humidity were also
included in ST forecasting at Yingyang County, while NDVI was
included in the model at Guangning County. At Gengma County
and Yingjiang County, relative humidity and sunshine duration
were significant variables associated with ST; specifically, mean
temperature was also found to be associated with ST at Yingjiang
County. In addition, mean temperature and wind speed were two
important impact factors of ST at Yingde city and Mang city, but
precipitation andMEI were considered as other important factors

FIGURE 2 | Workflow of each cell of LSTM. The three light yellow
rectangles represent the forget gate, input gate, and output gate, respectively.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7838644

He et al. Forecasting Scrub Typhus Cases

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


for the two cities, respectively. Finally, the ST variation at
Longling County was closely correlated with precipitation,
relative humidity, and mean temperature with various
temporal lags. Compared to the SARIMA model, the results of
the SARIMAX model showed that more accuracy performance
(in terms of R2) can be achieved at the model fitting stage in all of
the eight counties; meanwhile, at the model forecasting stage, only
the SARIMAX models in Yingshang County and Yingjiang
County showed better forecasting accuracy than the SARIMA
models in terms of RMSE and MAE.

ST Cases Forecast Performance of LSTM
Models
By inputting the ST series and the corresponding significantly
related exogenous variables shown in Supplementary Appendix
Table A1 to the LSTM model, the optimal model structure was
obtained according to the smallest R2 in the model fitting stage.
The results showed that better performance can be yielded by
setting the length of input series as 12 months at Huaiji County,
Yingde city, Longling County, Gengma County, and Yingjiang
County, while the optimal length of input series at Yingshang
County, Guangning County, and Mang city were 10, 3, and 11,
respectively. The hidden dimension, batch size, and number of
layers varied between counties. At the model fitting process, the

LSTM model showed better performance than SARIMA at
Yingshang County and Longling County in terms of R2; at the
model forecasting stage, LSTM showed more accuracy in
forecasting ST cases than SARIMA and SARIMAX at
Yingshang County and Yingde County, while only than
SARIMAX at Guangning County and Longling County (Table 1).

The Comparisons of SARIMA, SARIMAX,
and LSTM Estimations
The model fitting and forecasting results were separated by a
vertical dash line, as shown in Figure 3. The gray line, yellow line,
red line, and green line represent the real ST notification series,
SARIMA estimation, SARIMAX estimation, and LSTM
estimation, respectively. It can be concluded as follows: 1) the
LSTM model used a smaller length of input data for ST fitting
than SARIMA and SARIMAX because the green line begins
much earlier than the yellow and red lines; for example, most
of the green lines at the eight counties begins during 2013 except
the Guangning County, while the yellow and red lines begin
during 2014 for Yingshang County, Huaiji County, Yingde
County, and Yingjiang County, and for the other four
counties, the model estimations begin during 2015. 2)
Compared to the SARIMA and SARIMAX, LSTM showed
smoother estimation values and less local fluctuations.3)

TABLE 1 | Performance of SARIMA, SARIMAX, and LSTM on forecasting ST cases at eighty counties of China.

County Model Model fitting Model forecasting

R2 AIC R2 RMSE MAE

Yingshang County SARIMA 0.614 133.457 −0.009 22.568 6.973
SARIMAX 0.860 92.181 0.647 13.343 4.870
LSTM 0.773 - 0.780 10.525 7.901

Guangning County SARIMA 0.801 99.555 0.670 11.571 10.043
SARIMAX 0.835 71.355 0.031 19.818 16.613
LSTM 0.793 - 0.561 13.343 11.908

Huaiji County SARIMA 0.794 138.789 0.638 35.676 19.997
SARIMAX 0.802 120.790 0.596 37.690 21.142
LSTM 0.698 - 0.475 42.941 24.302

Yingde city SARIMA 0.692 115.595 0.409 30.612 19.369
SARIMAX 0.705 91.884 0.272 33.950 22.172
LSTM 0.533 - 0.411 30.538 22.013

Longling County SARIMA 0.874 124.253 0.899 18.809 12.804
SARIMAX 0.898 112.597 0.807 26.034 15.422
LSTM 0.888 - 0.863 21.900 14.776

Gengma County SARIMA 0.773 134.443 0.910 4.773 3.692
SARIMAX 0.837 124.531 0.552 10.674 8.051
LSTM 0.630 - 0.750 7.976 5.750

Mang city SARIMA 0.734 149.046 0.968 6.229 4.4919
SARIMAX 0.816 134.120 0.941 8.461 6.840
LSTM 0.593 - 0.831 14.254 9.506

Yingjiang County SARIMA 0.816 119.549 0.616 19.247 11.895
SARIMAX 0.846 110.471 0.630 18.891 11.853
LSTM 0.864 - 0.553 20.754 13.695
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Through comparing the real ST time series in the eight counties,
four kinds of temporal patterns of ST variations can be concluded
as follows: the ST series peaks in October and August in
Yingshang County and Longling County, respectively; two
peaks can be found in June and October in Guangning
County, Huaiji County, and Yingde city, while in Gengma
County, Mang city, and Yingjiang County, bio-peak
phenomena can also be found in summer and winter during
multiple years of the study period.

DISCUSSION

Methodological Considerations for
Modeling Temporal Variation in ST
Notifications
Although the performance of the three time-series forecasting
methods varied between counties at both the model fitting stage
and the model forecasting stage, the methodological comparisons
among SARIMA, SARIMAX, and LSTM should be discussed as
follows: 1) continuous series modeling was the core concept of the
three methods, i.e., the previous conditions can be used to forecast
the current or future conditions; furthermore, the SARIMA and
SARIMAX models took a step ahead that included seasonal or
cyclic parts in modeling, i.e., the seasonal auto regression part and
seasonal moving average part with the cycle of 12 months.
Similarly, the similar SARIMA model was employed for

modeling the ST series at Laiwu city and Shandong province,
China (Ding et al., 2012a; Yang et al., 2015). On the other hand,
LSTM also borrows the continuous characteristics of ST series for
forecasting. Compared to the standard artificial neural network
(ANN), the forget gate was utilized to remove the information
with larger lags, which is similar to the memory of humans that
one can remember the recent things but will forget some of the
things that occurred long time ago (Yu et al., 2019). In the current
work, we have demonstrated that the length of the time-series
data used to forecast ST varies between high-risk counties being
12months in five counties, 11, 10, and 3 months in the other three
counties. These results indicate that ST has predominantly an
annual cycle, which is in line with the literature that 8–12 months
is the general cycle of ST in Guangzhou city, China (Wei et al.,
2017). 2) Previous studies have used a number of regression
techniques to unravel the ST temporal variation in incidence, and
its associations with environmental factors using the spatial
Poisson regression model, negative binomial regression model,
MaxEnt, random forest, and ANN models (Wardrop et al., 2013;
Li et al., 2014; Yang et al., 2014; Kwak et al., 2015; Seto et al., 2017;
Yu et al., 2018; Acharya et al., 2019). However, these models
cannot capture the seasonal characteristics of ST incidence, which
can be overcome by the SARIMAX model that can
simultaneously depict the seasonal characteristics and the
effects of exogenous factors. Given the complex and often
nonlinear interplay between ST factors and ST infection
(Elliott et al., 2019), the linear regression component of the
SARIMAX model may not be sufficient for modeling and

FIGURE 3 | ST fitting and forecasting results by SARIMA, SARIMAX, and LSTM at eight counties of China. The vertical dash line separated the model fitting and
forecasting parts.
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forecasting ST incidence. The LSTM model offers a self-
organizing, self-learning, and highly nonlinearity system from
the ANN, and thus, it is rather suitable for modeling the
ecological system of ST. In view of its model structure, the
LSTM was initially postulated as the optimal model among
the three methods. However, our results indicate that LSTM
not always outperforms SARIMA or SARIMAX indicating that
the selection of methods for ST series modeling and forecasting
should be carefully considered through model comparison and
validation to local conditions.

Environmental Factors Associated With the
Temporal Variation in ST Notifications
Another outcome of the current work is the determination of
environmental factors in each of the considered eight counties
associated with ST cases using SARIMAX models. Including
these factors (i.e., exogenous variables mentioned above), the
SARIMAX showed better performance than SARIMA at the
modeling fitting stage (Table 1), demonstrating that the
considered factors were significantly associated with ST
variations. Temperature with various temporal lags was
found to be positively related to ST variations at Yingde
city, Longling County, Mang city, and Yingjiang County,
which is in line with the ecological niche modeling of ST
in the literature that temperature was found to be the key
factor in determining ST occurrence (Yu et al., 2018). A
previous study found that the sunshine duration was
negatively and positively associated with ST with
1–3 month lags and 4–6 month lags, respectively (Yang
et al., 2014). Similar findings can be found in the current
study, i.e., sunshine duration with 3-, 2-, and 1-month lags
were negatively associated with the ST variations at Yingshang
County, Guangning County, and Gengma County,
respectively, but the sunshine duration with 0-month lag
showed positive relationship with ST at Yingjiang County.
Warming the environment promotes the growth of vector
larvae and rodents and increased exposure opportunities due
to people wearing shorter clothes (Yao et al., 2019). The other
study found that the ST case was positively correlated with the
duration of sunshine, suggesting an occupational exposure
where people possibly have longer time for agricultural field
work, leading to an increased probability of exposure (Li et al.,
2014). Besides, relative humidity and pressure were supposed
to be key factors that influenced the regeneration of the
rodents, i.e., a 1–2 month lag effects of relative humidity
and pressure were closely related to the ST variation (Sun
et al., 2017), which is similar to the findings of the results at
Yingshang County, Guangning County, Huaiji County,
Longling County, and Gengma County. In our study, we
considered the wind speed in our SARIMAX models with
1-, 2-, 3-, 5-month lag since it can be a factor associated with
the spawning conditions of mites (Kwak et al., 2015). Indeed,
we found that wind speed was a contributor to ST variation at
four counties of the current study, especially in Yingde city.
Finally, our results indicate a significant effect of the
multivariate ENSO index on the time series of ST cases in

three of the eight counties investigated (i.e., Yingshang
County, Guangning County, and Mang city). This is in line
with other studies that found an association between ST
incidence and the ENSO Index which is regarded as a
global pattern of climatic oscillation affecting the local
environment and thus human population behaviors (Wei
et al., 2017).

Contribution to Public Health
Machine learning techniques have become popular in
modeling nonlinear systems, including in the field of public
health (dos Santos et al., 2019; Panch et al., 2018), by providing
precise predictive models (Passos et al., 2016). Introduction of
LSTM has enriched the ability of local public health authorities
in ST high-risk areas to anticipate and respond to ST
outbreaks. The proposed models, such as SARIMAX and
LSTM, can be used locally in high-risk ST counties for ST
early warning and precise ST forecasting programs; it can also
enable local public health managers to monitor the variation of
the environmental factors and deploy public health measures,
such as health promotion alerts to the communities to prevent
large ST outbreaks.

Limitations and Future Work
Certain limitations of the current work should be mentioned.
First, due to lack of a longer time series of ST series data, this
study only utilized a 96-month time series for model fitting,
which may have hindered the performance of LSTM models; it
may be the reason why LSTM showed low accuracy in ST
estimation. Second, this study explored the basic LSTM model
in structure and did not explore modeling combinations that
considered SARIMAX + LSTM, which can also give accuracy
predictions (Sheng and Jia, 2020); hence, future studies should
explore the possibility of this combination for ST forecasting.
Third, our SARIMAX models did not consider socioeconomic
factors (including the gross domestic product, income,
urbanization, population density, educational institutions,
land use and land change, and medical institution), which
may also play a role in the variations of ST (Ranjan and
Prakash, 2018). Finally, although it is reported the warming
condition might favor the reproduction of mites and increase
the probability of human infection, the mechanism between
the global climate change and ST outbreaks is still unclear
(Jeung et al., 2016; Kuo et al., 2015); given the short-term
impact of temperature mentioned in previous subsection, the
long-term impact of global climate change (such as the
warming condition) on ST outbreaks and its feasibility in
forecasting ST outbreaks are worthy to explore in the future
(Zhou et al., 2021); furthermore, the hydrology impact of
climate change on ST variations will be another topic for
consideration (Zhou et al., 2018).

CONCLUSION

In the current study, SARIMA, SARIMAX, and LSTM models
were employed to model the temporal variation of ST cases in
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high-risk communities in China. The results indicated that
annual dynamics of ST vary significantly between the eight
studied counties; with exogenous variables, the SARIMAX and
LSTM models showed better performance than SARIMA
models. Specifically, precipitation, atmospheric pressure,
relative humidity, mean temperature, sunshine duration,
wind speed, NDVI, and MEI were found to be partly
associated with the time series of ST cases. The models and
findings of the current study will support the development of
local early warning systems for ST in the high-risk areas in
China.
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