AUTHOR=Zhong Ming , Liu Shanxia , Li Kun , Jiang Huabo , Jiang Tao , Tang Guoping TITLE=Modeling Spatial Patterns of Dissolved Oxygen and the Impact Mechanisms in a Cascade River JOURNAL=Frontiers in Environmental Science VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2021.781646 DOI=10.3389/fenvs.2021.781646 ISSN=2296-665X ABSTRACT=

Dissolved oxygen (DO) concentration is an essential indicator for assessment of river ecosystems. A hydrodynamic and water quality mathematical model coupling one-dimensional and two-dimensional models is developed in this study. The characteristics of study area, flow velocity, temperature, and organic contamination are taken as consideration in the scenario setting. The changing processes of DO concentration are simulated in different scenarios, and the effects on DO concentration are discussed. Results indicate that: 1) A negative relation was present between DO concentration in Yongjiang River and releasing discharge of the Laokou hydro-project, since reoxygenation is greater than oxygen consumption along the river, DO concentration increases from upstream to downstream. 2) DO concentration increases with the releasing of DO in the water, which also varies along with the releasing of biochemical oxygen demand (BOD) concentration. Laokou exhibits the greatest increase of BOD, which ranges from 0.1 mg/L to 0.75 mg/L 3) The increasing of water temperature results in increased reoxygenation and a decrease in oxygen consumption. Our study shows that the water temperature increased from 19°C to 29 °C, and correspondingly saturated DO decreased from 9.25 mg/L to 7.54 mg/L. The study provides scientific support for ecology operation in the cascade river, and is expected to improve the water environment by reservoir regulation.