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Accurate estimation of water table depth dynamics is essential for water resource
management, especially in areas where groundwater is overexploited. In recent years,
as a data-driven model, artificial neural networks (NNs) have been widely used in
hydrological modeling. However, due to the non-stationarity of water table depth data,
the performance of NNs in areas of over-exploitation is challenging. Therefore, reducing
data noise is an essential step before simulating the water table depth. This research
proposed a novel method tomodel the non-stationary time series data of water table depth
through combing the advantages of wavelet analysis and Long Short-Term Memory
(LSTM) neural network (NN). A typical groundwater over-exploitation area, Baoding, North
China Plain (NCP), was selected as a study area. To reflect the impact of anthropogenic
activities, the variables harnessed to develop the model includes temperature,
precipitation, evaporation, and some socio-economic data. The results show that
decomposing the time series of the water table depth into three sub-temporal
components by Meyer wavelets can significantly improve the simulation effect of LSTM
on the water table depth. The average NSE (Nash-Sutcliffe efficiency coefficient) value of all
the sites increased from 0.432 to 0.819. Additionally, a feedforward neural network (FNN)
is used to compare forecasts over 12-months. As expected, wavelet-LSTM outperforms
wavelet-FNN. As the prediction time increases, the advantages of wavelet-LSTM become
more evident. The wavelet-LSTM is satisfactory for forecasting the water table depth at
most in 6 months. Furthermore, the importance of input variables of wavelet-LSTM is
analysed by the weights of the model. The results indicate that anthropogenic activities
influence the water table depth significantly, especially in the sites close to the Baiyangdian
Lake, the largest lake in the North China Plain. This study demonstrates that the wavelet-
LSTM model provides an option for water table depth simulation and predicting areas of
over-exploitation of groundwater.
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1 INTRODUCTION

Groundwater, an important water resource, is being over-
exploited due to the rapid population growth and economy,
especially in arid and semi-arid areas. Excessive exploitation of
aquifers has caused severe land subsidence, increased
groundwater recharge area, and led to pollution and
salinization of groundwater (Li et al., 2020). The NCP, one of
the most heavily influenced regions through anthropogenic
activities, has emerged as the largest groundwater depression
cone in the world (Tang et al., 2013; Chen et al., 2020). Previous
studies have shown that the water table in the NCP exhibited a
long-term decline rate of −17.8 ± 0.1 mm/yr from 1971–2015
(Gong et al., 2018).

At present, physical models, such as MODFLOW (Modular
Ground-Water Flow Model) (Xu et al., 2012; Lachaal et al., 2012;
Xiang et al., 2020), HYDRUS (Huang et al., 2016), GMS
(Groundwater Modeling System) (Roy et al., 2015), have been
widely used in groundwater resources evaluation and
management. For example, Xu et al. (2012) integrated the
SWAP (Soil–Water–Atmosphere–Plant) package into
MODFLOW to simulate the regional groundwater flow
system. Xiang et al. (2020) evaluated the balance between
groundwater protection with crop production based on the
results of MODFLOW combined with DSSAT (Decision
Support System for Agrotechnology Transfer). Maihemuti
et al. (2021) employed HYDRUS to evaluate the effects of
groundwater on plant distribution. However, these physical
models usually require boundary conditions and a large
number of hydraulic parameters for calibration. When
hydrogeological data is lacking, the data-driven model based
on NNs shows advantages.

Over the past decades, many studies have applied NN
methods, such as FNN, ANFIS (Adaptive-network-based fuzzy
inference system) to predict water table or water table depth
(Coppola et al., 2003; Daliakopoulos et al., 2005; Nayak et al.,
2006; Altunkaynak, 2007; Chen et al., 2010; Taormina et al., 2012;
Nourani and Mousavi, 2016). Compared to physics models, the
data required by NNs is easier to collect and quantify (Mohanty
et al., 2013). In addition, some studies have shown that the
simulation effect of NN is better than that of numerical model
in certain scenarios (Altunkaynak, 2007; Mohanty et al., 2013).
For example, Zealand et al. (1999) employed FNN to predict
short-term streamflow. In their study, the WIFFS model
(Winnipeg Flow Forecasting System) was used as a
conventional numerical model for a contrastive study. They
found that the average RMSE (root mean square error) of
about 52.8 m3/s was obtained via FNN, which was better than
obtained via WIFFS (64.5 m3/s). Mohanty et al. (2013) evaluated
the performance of MODFLOW and FNN in the short-term
prediction of water table. Their study show that the NSE value
obtained by NN varied in the range of 0.90 − 0.96, up from 0.55 −
0.95 by MODFLOW.

Nevertheless, these traditional NNmethods may not deal with
time series data effectively because they cannot preserve previous
information (Zhang et al., 2018). To deal with time series data in
groundwater modelling, some researchers employed Recurrent
Neural Network (RNN), as its output can be associated with
previous state of the network (Coulibaly et al., 2001; Chang et al.,
2014). However, due to the disappearance of the gradient, the
performance of RNN in long-term backpropagation is limited.
Therefore, a special RNN, LSTM, is widely used to solve long-
term sequence prediction problems, including some hydrological
domains. For example, Zhang et al. (2018) used the LSTM to
predict the water table depth in Hetao Irrigation District, and
compared the results with traditional FNN. They found that
LSTM’s prediction is muchmore accurate than that of FNN. They
also pointed out that the single hidden layer is better than the
double hidden layer. Hewage et al. (2021) found that LSTM
performs better than numerical models in weather forecasting,
but numerical models have obvious advantages in long-term
prediction. Kratzert et al. (2018) used the LSTM network to
simulate precipitation in multiple watersheds. They found that in
the case of insufficient data, previous training parameters can be
recorded and used to simulate the precipitation in other
watersheds to achieve satisfactory results.

Although NNs have received a lot of attention in hydrological
modeling, NN may not adequately handle nonlinear and non-
stationary data (Ebrahimi and Rajaee, 2017). Due to the high
autocorrelation of the time series data, NNs tend to produce a
forecast that is very similar to the last observed data (de Vos and
Rientjes, 2005). The prediction results of NNs are always
continuations of historical trends and do not accurately reflect
high-frequency and irregular changes for multi-step predictions
(Zhang et al., 2021). In addition, most of the measured and
observed hydrological time series contain noise. Therefore,
eliminating data noise to manage non-stationary data better is
essential in hydrological modeling (Nourani and Mousavi, 2016).

As an effective data preprocessing method, wavelet analysis
provides a time-frequency representation of signals with many
different periods in the time domain. It can decompose time
series data into approximate and detailed parts to extract
potential information from noisy data (Daubechies, 1990). The
combination of wavelet transform analysis, and NN has been
used in various fields of hydrology, including streamflow
prediction (Tiwari and Chatterjee, 2010; Adamowski and Sun,
2010; Nanda et al., 2016), precipitation prediction (Nourani et al.,
2009) and drought forecasting (Kim and Valdés, 2003).
Furthermore, wavelet transform combined with an NN also
has important applications in groundwater modeling. For
example, Gorgij et al. (2017) used an NN based on wavelet
analysis and a genetic program model to predict the water
table in the eastern plain of Iran. Ebrahimi and Rajaee (2017)
used NNs, multiple linear regression and support vector
regression combined with wavelet analysis to predict the
monthly water table of the Qom plain in Iran and have found
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that the wavelet transform analysis improved the prediction effect
of these models. Therefore, considering the periodicity and
randomness of the water table time series events, the wavelet-
based NN model can be used as an efficient method to deal with
nonlinear and non-stationary water table time series.

This study focuses on combing wavelet analysis with NNs to
establish a novel data-driven model for non-stationary time series
data of water tables in areas of over-exploitation. Furthermore,
the influence of various factors on water table is discussed
through analysing the importance of input variables, which
provides a reference for local groundwater resource
management. The city of Baoding in the NCP was chosen as
the study area. The specific objectives of this study are: 1)
evaluating the simulation effect of wavelet-LSTM model, 2)
forecasting water table over the 12 months using the wavelet-
LSTMmodel, 3) analysing the contribution of each variable to the
changes in water table based on the weight of the NN and the land
use distribution.

2 DATA AND METHODOLOGY

2.1 Study Area and Data Sources
The study area is located in Baoding City, Hebei Province, in the
middle of the NCP, between 113°40′—116°20′E, 38°10′—40°00′N,
This region belongs to a temperate continental monsoon climate
zone. The average annual precipitation is about 500 mm, and the

annual evaporation is about 1,430 mm. Over the past 40 years, the
coldest month (average temperature −2.7°C), and the lowest
monthly average precipitation (2.4 mm) occurred in January.
The hottest month (average temperature 27.1°C), and the
highest monthly average precipitation (155.5 mm) occurred in
July. We obtained monthly water table depth data from 20
observation wells from 2000 to 2016 from the local
hydrological bureau. The locations are shown in Figure 1.

The study areamainly includes alluvial fans and alluvial plains,
and the lithology is composed of gravels, sands, silts, and silty
clays etc. Due to the scarcity of surface water resources in the
study area, groundwater is the leading water resource. Agriculture
and industries as a major grain producer and steel producer,
respectively, in China, accounts for the most significant
proportion of water consumption. Studies have shown that
groundwater is almost the only source of irrigation water
(Xiao et al., 2017). In addition, Hebei Province has historically
been the largest steel-producing province in China, with a steel
output of 2.184 billion tons in the past decade, accounting for 23%
of the country’s total production. As a high water consumption
industry, the development of the steel industries has contributed
significantly to the depletion of groundwater in the region.

As shown in Figure 2, steel prices and API (Agricultural Price
Index) negatively affect the depth of the water table. The three peaks
appeared in 2005, 2009, and 2011, respectively, corresponding to the
three valleys of the water table. Generally, the periods of high prices
correspond to the periods of strong demand. In other words, during

FIGURE 1 | Location of all sites in the study area.
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high prices, the production activities of steel and agriculture
increased significantly, resulting in a large consumption of water,
which in turn causes the water table to fall.

2.2 The LSTM Model
NN is a model that simulates the biological brain to achieve the
artificial intelligence effect. The basic NN consists of an input
layer, an output layer and a hidden layer. Each neuron is
connected to the other by weights, and the training process is
the process of updating weights. The NN activation function
requires a nonlinear function that maps the input to a finite
interval that determines whether the neuron is activated.

FNN is a simple NN that is widely used. All layers of the FNN
are dense layers, and the parameters are propagated

unidirectional from the input layer to the output layer and are
updated by the error backpropagation algorithm. The NN
parameters are the weights on each connection, and these
weights are obtained by learning processes. Backpropagation
algorithms based on the gradient descent method are often
used to train NNs. In a NN, if we associate the hidden-layer
state with each instant, we call it RNN. RNN is generally used for
processing time series data because it uses information from the
previous moment in each step. In this paper, the activation
function we adopted between hidden layers is “tanh.”
However, the calculations of the gradient of networks weight
is essentially a continuous product operation. The gradients tend
to zero or infinity exponentially with the length of the sequence
increasing. It is the vanishing and exploding gradient problems.

FIGURE 2 | Comparison of the average water table depth and precipitation, steel price and API.

FIGURE 3 | Correlation heatmap of all sites.
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In this case, the model will ignore the previous state information.
To solve this problem, the LSTM NN has been proposed
(Hochreiter and Schmidhuber, 1997). A forget gate is added to
the LSTM to manage the network’s “memory” to remember the
model’s state for a long time. The following equation describes the
computational procedure of LSTM:

ft � σ(bf + Ufst + Vfht−1) (1)

it � σ(bi + Uist + Viht−1) (2)

ot � σ(bo + Uost + Voht−1) (3)

ct � tanh(bc + Ucst + Vcht−1) (4)

mt � ft ⊗ mt−1 + it ⊗ ct (5)

where, ct is calculated by st and ht−1, forget gate and input gate are
employed to controlmt. In RNN, ht is the state of its hidden layer,
while in LSTM,mt (memory) is added to remember its long-term
state and ct to represent its cell state of the current input. In this
study, “sigmoid” is employed as activation function of its
forget gate.

2.3 Discrete Wavelet Transform
The idea of wavelet transform is to decompose the original
sequence into different subsequences to provide detailed
information about the multi-scale properties of time series.
The superior function of wavelet transforms to reflect
information on the time, location and frequency of a signal
simultaneously (Cohen and Kovacevic, 1996). Wavelet
transform is generally divided into continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). Due
to information redundancy, DWT is usually recommended in
hydrological forecasting (Quilty and Adamowski, 2018; Rajaee

et al., 2019). Unlike CWT, DWT uses a specific subset of all zoom
and translation values. In DWT, the original sequence is
decomposed by a scale function for approximating the original
sequence, and the wavelet function is used to describe the details
of the original sequence. The scale function and wavelet function
of the DWT decomposition can be defined as follows:

ϕj,k(t) � 2j/2ϕ(2jt − k) (6)

ψj,k(t) � 2j/2ψ(2jt − k) (7)

where ϕ(t) is scale function, ψ(t) is wavelet function, j and k are
dilation factor and translation factor respectively.

Meanwhile, let Vj, Wj is a space spanned by ϕj,k(t), ψj,k(t)
respectively, Wj is a orthogonal complement space of Vj:

V0 � V1 ⊂ V2 ⊂ V3/ ⊂ Vj−1 ⊂ Vj ⊂ / � Wj−1 ⊕ Vj−1 (8)

Thus, each Vj can be decompose to Wj−1 and Vj−1:

Vj � Wj−1 ⊕ Wj−2 ⊕ Wj−3 ⊕/⊕ W0 ⊕ V0 (9)

In this study, DWT is applied to decompose the water table
time series. The processed sub-time series are input to the LSTM
model with meteorological data, socio-economic data as
variables.

2.4 Data Processing
The input format of the LSTM or FNN is a multidimensional
tensor. The input data is typically preprocessed in a three-
dimensional tensor format like (samples, timesteps, features)
for time series data. In this study, air temperature (K),
precipitation (mm), evapotranspiration (mm) data,
normalized difference vegetation index (NDVI) data,

FIGURE 4 | Clustering of all sites.
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agricultural price index (API) and steel price data are
harnessed as input variables of LSTM of FNN models. Air
temperature, precipitation and evapotranspiration data in
NetCDF (Network Common Data Form) format are
resampled to monthly data. Monthly API and steel pricing
data were collected from the website of the National Bureau of
Statistics of China (http://www.stats.gov.cn/tjsj/), while
Moderate Resolution Imaging Spectroradiometer (MODIS)
provided NDVI data. Also, because the variables are
different in order of magnitude, to make their scales
uniform, the data has been normalised through the
following equation to be a dimensionless value between 0
and 1:

xscaled � (x − xmin)(max −min)
(xmax − xmin) +min (10)

where xscaled is normalized data, xmin and xmax represent
minimum and maximum value of the data respectively.

2.5 Model Evaluation
The NSE, RMSE (the root mean square error) and R (correlation
coefficient) are harnessed to evaluate the performance of the
model:

NSE � 1 − ∑n
i�1 (Oi − Pi)2∑n
i�1 (Oi − �O)2 (11)

RMSE �
������������∑n

i�1 (Oi − Pi)2
n

√
(12)

R � ∑n
i�1(Oi − �O)(Pi − �P)��������������������������∑n

i�1 (Oi − �O)2[ ] ∑n
i�1 (Pi − �P)2[ ]√ (13)

TABLE 1 | Comparison of performance between LSTM model and wavelet-LSTM model.

Site NSE R RMSE(m)

Training Testing Training Testing Training Testing

A LSTM 0.978 0.575 0.989 0.931 0.514 0.647
wavelet-LSTM 0.995 0.887 0.998 0.949 0.241 0.335

B LSTM 0.987 0.763 0.994 0.971 0.345 0.323
wavelet-LSTM 0.996 0.894 0.998 0.952 0.202 0.217

C LSTM 0.956 0.542 0.986 0.908 0.630 0.590
wavelet-LSTM 0.989 0.797 0.995 0.932 0.321 0.392

D LSTM 0.957 0.411 0.982 0.900 0.549 1.079
wavelet-LSTM 0.989 0.901 0.995 0.953 0.277 0.443

E LSTM 0.974 0.921 0.992 0.972 0.482 0.201
wavelet-LSTM 0.997 0.943 0.998 0.973 0.173 0.170

F LSTM 0.934 0.668 0.976 0.855 1.076 0.919
wavelet-LSTM 0.983 0.828 0.992 0.919 0.551 0.660

G LSTM 0.950 0.685 0.977 0.908 0.568 0.503
wavelet-LSTM 0.980 0.954 0.990 0.978 0.361 0.192

H LSTM 0.943 0.424 0.972 0.773 0.727 1.122
wavelet-LSTM 0.960 0.732 0.980 0.906 0.613 0.765

I LSTM 0.938 0.441 0.970 0.814 1.836 1.638
wavelet-LSTM 0.975 0.866 0.989 0.952 1.163 0.802

J LSTM 0.837 −0.440 0.918 0.766 0.622 0.808
wavelet-LSTM 0.930 0.773 0.965 0.919 0.406 0.321

K LSTM 0.946 0.168 0.972 0.714 0.678 0.710
wavelet-LSTM 0.979 0.831 0.990 0.912 0.421 0.319

L LSTM 0.818 0.593 0.905 0.881 0.518 0.678
wavelet-LSTM 0.931 0.939 0.965 0.969 0.318 0.263

N LSTM 0.912 0.430 0.965 0.741 0.700 0.626
wavelet-LSTM 0.985 0.784 0.993 0.890 0.293 0.385

O LSTM 0.936 0.583 0.967 0.766 0.699 0.735
wavelet-LSTM 0.969 0.800 0.985 0.897 0.488 0.509

P LSTM 0.860 0.554 0.941 0.758 0.987 0.697
wavelet-LSTM 0.957 0.859 0.979 0.928 0.544 0.392

Q LSTM 0.870 0.487 0.939 0.881 0.675 0.691
wavelet-LSTM 0.932 0.747 0.966 0.893 0.490 0.485

R LSTM 0.440 −0.417 0.664 0.226 1.057 1.981
wavelet-LSTM 0.711 0.523 0.844 0.730 0.760 1.149

S LSTM 0.904 0.143 0.958 0.755 0.816 1.464
wavelet-LSTM 0.961 0.816 0.981 0.906 0.518 0.679

T LSTM 0.876 0.516 0.940 0.735 1.163 1.831
wavelet-LSTM 0.962 0.749 0.982 0.869 0.639 1.319

U LSTM 0.942 0.602 0.977 0.788 0.347 0.518
wavelet-LSTM 0.978 0.763 0.990 0.889 0.214 0.399
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where Oi is observed value at time i, Pi is predicted value at time i,
�O is the mean value ofOi, �P is the mean value of Pi. The NSE value
range from negative infinity to 1 while the correlation coefficient
R from −1 to 1. The prediction is ideal if NSE and correlation
coefficient are close to 1 or RMSE to 0.

3 RESULTS AND DISCUSSIONS

3.1 The LSTM Model
The correlation between the two sites was examined to reduce the
noise influence of the water table data as much as possible.
According to the correlated heat map of the water table depth
at each site (Figure 3), the 20 sites are divided into four clusters
(Figure 4). Data from the first 14 years is used for training
purposes, and the data from the next 3 years is used for
testing purposes. As each cluster, model’s output represents
the water table depth prediction of all sites included in this cluster.

Table 1 shows the NSE, RMSE, and correlation coefficients of
all sites during the training and testing periods using the LSTM
model and wavelet-LSTM model. It is evident that the NSE of all
sites during the training period is greater than 0.8, and the
correlation coefficients are greater than 0.9. During the testing
period, the NSE at all sites was significantly lower than the NSE
during the training period and was even negative at sites J, K, R,
and S. The results indicate that quite a significant overfitting
phenomenon occurs. From a spatial point of view, the simulation
performance of the densely distributed area (cluster 1) is better,
while the sparsely distributed area (cluster 4) has poor simulation
performance. In addition, the closer to the lake, the weaker the
results are. It may be due to the fact that the water table depth
near the lake is strongly affected by the lake. However,
hydrological data for the lake is lacking.

FIGURE 5 | NSE value of three models using db2, db4, and meyer
wavelet respectively.

FIGURE 6 | Decomposition of the time series of site A.
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3.2 The Wavelet-LSTM Model
The processed sub-time series decomposed using wavelets is used
as the input of the LSTM model to improve the output. On the
selection of wavelet function, Daubechies family wavelet (dbN, N

refers to the number of vanishing moments) (Khan et al., 2020)
and Meyer wavelet (Freire et al., 2019)are commonly used; Haar
wavelet are also often used for comparative studies (Liu et al.,
2012; Ebrahimi and Rajaee, 2017).

FIGURE 7 | Comparison of observed, simulated and forecast water table depth applied the single LSTM model and the wavelet-LSTM model at each site.
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Maheswaran and Khosa (2012) proposed that a wavelet
with a compact support is suitable for processing time series
with short memory with short-duration transient features
while wavelets with wider support for time series with long
term features. Nourani et al. (2009) used db4 and Meyer
wavelet to decompose the time series with two
decomposition levels to simulate monthly precipitation

data. Gorgij et al. (2017) used a db4 wavelet to decompose
the monthly water table data with two levels. Nanda et al.
(2019) used a db2 wavelet to decompose the daily time series
with five levels to simulate the daily streamflow data.
Therefore, the wavelet function and levels of decomposition
should be carefully determined according to different
conditions.

FIGURE 8 | Spatial distribution of R values using LSTM model and wavelet-LSTM model during the testing period: (A) LSTM (B) wavelet-LSTM.
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In this study, db2, db4, and Meyer wavelet are used for
comparison. The NSE value of the three wavelets used by the
model in the testing phase are shown in Figure 5. It can be
seen that although db2 and db4 wavelets may be close or even
slightly better than Meyer wavelet at some sites, the
advantages of Meyer wavelets are evident on most sites. It
should be noted that, as wavelet components are input into the
model as variables, the decomposition level could not be

unduly high. Because it is not practical to apply the
network effectively when the number of training samples is
limited while the dimension of the feature space is large (Liu
et al., 2017). The sub-time series of the data of site A
decomposed by Meyer wavelets are shown in Figure 6. The
component d3 (three decomposition levels) can be seen to
have a significant periodic variation feature. As a result, three
levels of decomposition were used.

FIGURE 9 | Comparison of RMSE values of water table depth using wavelet-LSTM and wavelet-FNN models with 1–12 months delays.
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As shown in Table 1, the performance of the wavelet-LSTM
model is significantly better than that of the single LSTM model.
The simulation results of both models during training and testing
periods are shown in Figure 7. During the training period, the
LSTM model without wavelet transform does not accurately
simulate the water table under extreme conditions (peaks and
troughs) and is subject to overfitting during the testing process.
For example, when a single LSTM model is used, the NSE value
for sites J, K, and S are 0.837, 0.946, and 0.904, respectively, while
in the testing phase, the NSE value are −0.440, 0.168, and 0.143,
respectively. After using the wavelet-LSTMmodel, the NSE value
reached 0.773, 0.831, and 0.816, respectively for sites J, K, and S. It
should be noted that site R is close to Baiyangdian Lake, the study
area’s primary surface water body. Despite the lacking of
hydrological data for Baiyangdian Lake, utilizing the wavelet-
LSTM model enhanced the simulation effect of the R site from
−0.417 to 0.523. The results indicate that the phenomenon of
overfitting was significantly improved. From the comparison of
Figures 8A,B, it can be seen that compared to a single LSTM, the
simulation effect of each site has been considerably improved
under the LSTM model coupled by wavelets. The delayed
response of water table depth data to weather conditions and
our inability to obtain socio-economic data with higher spatial
resolution makes it impossible to use a single LSTM model to
capture the exact characteristics of the water table series
accurately. However, the wavelet transform is very suitable for
dealing with the non-stationary and stochastic nature of
groundwater variability.

As described in Section 2.2, unlike LSTM-NNs, FNN has no
memory and cannot record the state of individual inputs. Therefore,
the wavelet transform is combined with FNN (wavelet-FNN) and
compared with wavelet-LSTM on the water table forecasting effect.
Figure 9 shows the RMSE comparison of the combined wavelet
transform with FNN and LSTM-NN over the next 1–12months.
As expected, FNN is not as efficient as the LSTMmodel for time series
data. Although the RMSE increases with prediction time increases,
wavelet-LSTM still performs better than wavelet-FNN simulation for

almost all sites. This phenomenon is more evident as the prediction
time increases, reflecting the features of the wavelet-LSTM, which can
memorise information for a long time.

It should be noted that the underground funnels are mainly
distributed in the southwest of the study area, namely sites A,
B, C, D, E, and G. For these sites, the advantages of wavelet-
LSTM are particularly evident, and the RMSE of wavelet-
LSTM is even less than half of wavelet-FNN in individual
sites, illustrating the applicability of wavelet-LSTM in
overexploited areas. Therefore, it can be concluded that
LSTM-NN is better than FNN in long-term prediction in
areas where anthropogenic activities strongly influence
groundwater. It further shows that the wavelet-LSTM model
can effectively simulate the non-stationary water table
variation in the overexploited area.

3.3 Forecast of the Future Water Table
Depth
Given that meteorological data, socio-economic data are unknown,
we need to use the present value of these parameters at this time to
forecast the water table depth for the unknown future. To predict the
value of weather data, socio-economic and other variable data for the
unknown future, we need to use the present value of these
parameters at this time. To ensure as much precision as possible,
we respectively use the wavelet-LSTM model with a delay of
1–12months to predict the water table depth in the next
1–12months. The green dotted line indicates the results of the
future predictions (Figure 7). Figure 10 compares correlation
coefficient R values between the LSTM model and wavelet-LSTM
model during the delayed testing period for 1–12months. Although
the R values decrease as the prediction delay increases, the
performance of wavelet-LSTM is remarkably better than the
single LSTM model in 6months’ prediction, as expected.
Wavelet-LSTM also shows higher stability.

Furthermore, the results show that for a single LSTM
model, the 6-months forecast is sometimes more reliable

FIGURE 10 | Comparison of R values between LSTMmodel and wavelet-LSTMmodel during the testing period for 1–12 months forecast: (A) LSTM (B)wavelet-LSTM.
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FIGURE 11 | Recursive prediction using wavelet-LSTM model for 1–12 months.
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than the 4 or 5-months forecast. However, the former has a
longer time frame; the 12-months forecast shows better than 9,
10 or 11 months of superior performance. Nevertheless, for
wavelet-LSTM, the advantages in the 6 and 12 months
forecasts are not obvious. In other words, wavelet transform
increases the model’s dependence on the autocorrelation of
the data.

In addition, to evaluate the response of groundwater to
changes in various variables (such as climate change,
economic development, etc.) in the future, future simulated
values of these variables are entered into the model. Then the
recursive method is used to predict the water table depth in
the future gradually. Figure 11 shows the 12-months recursive
forecast using the January 2016 forecast values. In this
method, the meteorological and socio-economic data are
real values, and the wavelet decomposition data will beFIGURE 12 | Importance percentage of each variable.

FIGURE 13 | Impact of dominant variables on water table depth at each site.
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predicted and produced simultaneously with the water table
depth data. It can be seen that the losses of most sites have not
increased significantly over time. Mainly at sites B, E, and L,
the RMSE values reached 0.090, 0.059, and 0.218 m,
respectively. The prediction curve and the observation
curve can be matched precisely. The results show the

effectiveness of this method for predicting and evaluating
the water table.

3.4 Importance Evaluation of Each Variable
To evaluate the impact of each variable on the simulation effect, we
calculate the contribution of each node in the following equation:

FIGURE 14 | The relationship between land use and importance of variables: (A) Dominant variables at each site (B) The ratio of meteorological factors to
production activity factors.
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C1 . . . Cj . . . Cn( ) � R1 . . . Rj . . . Rm( )
w11 . . . w1j . . . w1n

. . . . . .

wi1 . . . w1j . . . win

. . . . . .

wm1 . . . wmj . . . wmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

where Cj represents the contribution of the j node to the results; Ri
represents the correlation coefficient of prediction value and the
measured value at i-th site (Table 1);wij represents the input layer
weight of the i-th site, the j-th node.

As shown in Figure 12, a3, d1, d2, d3 represent wavelet
decomposition sequence; Lt−1 represents the past water table;
temp represents temperature; et0 represents evapotranspiration;
prec represents precipitation. The approximate component (a3)
of the wavelet has the greatest impact, accounting for 18.4% of
the total contribution; then, the past water level (Lt−1) can
explain 13.4% of the result. Among the external variables,
precipitation and evapotranspiration have the greatest impact
on the results through recharge, vegetation and soil
evapotranspiration. The steel price contribution rate is 7.3%,
slightly higher than NDVI and API. It fully shows that
agricultural irrigation and climate change will affect
groundwater, but the steel industry, the mainstay industry in
the study area, also has a big impact on groundwater. The prices
of agricultural products are also affected by meteorological
conditions. For example, precipitation can increase the yield
of crops such as corn, but it is harmful to cotton (Eck et al.,
2020). However, increased agricultural production can also lead
to a drop in the water table due to increased irrigation.
Consequently, the contribution rate of agriculture is lower
than that of industry.

Since the wavelet components and past water table depth data
accounted for more than 50% percent of the weights. If the
remaining variables are considered “external variables,” the
weights of the socio-economic factors (price of steel, API and
NDVI) represent almost half of the external variables. Figure 13
shows the impact of the temperature, precipitation, evaporation,
API, steel price and NDVI on the water table in 20 sites,
respectively. For most sites, precipitation and evaporation
contribute to changes in the water table, and evaporation at
site E and precipitation at site D was even more than half. While
the weight of the price of steel and API is not as great as
precipitation and evaporation, it is still considerable. Site D
has the lowest socio-economic impact, and the weight is less
than 1/3. However, the socio-economic ratio of most sites is in the
range of 1/2–1/3.

It should be noted that it is unavoidable for socio-economic
data to exhibit extreme price swings caused by emotional
investment decisions. For example, due to the impact of the
2008 financial crisis, the steel price index fell sharply. In this
case, water table fluctuation cannot accurately reflect the
relationship between supply and demand. As a result, we
strive to reflect the degree of influence of each element
using the model.

In addition, this study also analysed the dominant factors
affecting the water table by land use distribution. Most of the
study area is occupied by agricultural land, forest and pastures.
A large portion of industrial land is distributed northwest of
Baoding city, close to the forest. According to surveys, the
leading industry in northwest Baoding is papermaking, which
consumes a lot of water and wood. Since the variables are not
independent, we also used anthropogenic activities and
meteorological ratios as much as possible to describe the
relationship of each variable. The lower the ratio, the
greater the impact of anthropogenic activities (Figure 14).
It can be seen that except for P, Q, and R, the ratio of all sites
are greater than 1. Since the R is close to Baiyangdian Lake, its
water table is heavily influenced by human activities, fluctuates
erratically and the simulation impact is weak. This outcome is
also consistent with the study of Gorgij et al. (2017). They
found that the sites located on the river may be affected by the
fluctuations in the river water and that the simulation effect of
these sites is not as good as that of other sites. In addition, the
water table depth of P and Q are strongly affected by
anthropogenic activities. Site A, B, C, D, E, and G in the
southwest of the study region are the central over mining areas.
Except for the points near C and D, fewer industries and the
proportion of agricultural land is relatively large. The water
table of these sites have trended downward and are greatly
affected by anthropogenic activities. In this regard, Dong et al.
(2019) concluded that the water table dropped most
significantly in the place with the highest proportion of
agricultural land.

The water table in the study area shows a downward trend
from A, B, C, D, E, G, H, K, N, and O, located in the southwestern
part of the study region, while this is where the groundwater
funnel area is located. It may be because the southwest of the
study area is dominated by agricultural land and far away from
industrial areas and lakes. As the main crop in this region, the
price of wheat per unit of yield is relatively stable, and the water
table trend has not changed significantly. At these sites, the ratio
of meteorological to human activity weights for A, B, E, G, N, and
O is 1–1.5, and D is 3. Other sites (F, I, J, K, l, P, Q, R, S, T, U)
showed a decrease then and increase, or complicated fluctuations.
These sites are mainly distributed in the north of the study area.
Among these sites, the ratio of meteorological to human activity
weights for sites I, P, Q, and R are relatively low, while F, K, J, L, S,
T, and U sites show high ratios. Since the effects of various
variables on groundwater are not independent, agricultural
production is also affected by meteorological changes.
Therefore, these two regions consist of sites with higher
meteorological weights and sites with lower meteorological
weights. However, in general, the sites with lower
meteorological weight are mainly distributed in the
groundwater funnel area.

4 CONCLUSION

This study evaluated the predictive performance of the LSTM
combined with wavelet transform in the groundwater over-
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exploitation region. The results show that the NN can be used as
an efficient model for prediction. Moreover, due to
anthropogenic activities, the data is rich in noise and non-
stationary in the groundwater over-exploitation area. The
original sequence is decomposed into three levels by Meyer
wavelet, which can significantly improve the simulation effect
of LSTM. Using the wavelet transform combined with LSTM and
FNN to predict the water table depth over the next 1–12 months,
it can be concluded that the long-term prediction effect of LSTM-
NN in areas of over-exploitation of groundwater is better than
FNN, indicating that LSTM canmemorise long-term information
and effectively understand bit trend changes in water table.
Furthermore, by using meteorological and socio-economic
data, the proposed model can forecast future changes in the
water table through a recursive method, providing a benchmark
for rational utilisation planning of groundwater.

In addition, the contribution of various variables on the water
table can be analysed through the LSTM-NN. The results show that
Baoding’s steel industry has a greater impact on water table changes.
Moreover, the contribution of anthropogenic activities is higher in
the sites close to the surface water. It shows that agricultural
irrigation water can affect the water table. However, industrial
production contributes to lowering the water table, especially in
the study area where secondary industry represents a relatively large
proportion. The simulation results can provide scientific guidance
for the rational development and utilisation of groundwater
resources in the study area.

However, we can still find that our interpretation of the variables is
vague due to the nature of the NN black-box model. Therefore, more

parameters, such as groundwater pumping data, should be
considered in future research. If possible, in the subsequent
application of the model, the amount of data should be further
increased.Data that directly affects thewater table should be collected,
such as water pumping, crop yields, etc.
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