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Green infrastructure (GI), such as green roofs, is now widely used in sustainable urban
development. An accurate mapping of GI is important to provide surface parameterization
for model development. However, the accuracy and precision of mapping GI is still a
challenge in identifying GI at the small catchment scale. We proposed a framework for
blue-green-gray infrastructure classification using machine learning algorithms and
unmanned aerial vehicle (UAV) images that contained digital surface model (DSM)
information. We used the campus of the Southern University of Science and
Technology in Shenzhen, China, as a study case for our classification method. The
UAV was a DJI Phantom 4 Multispectral, which measures the blue, green, red, red-edge,
and near-infrared bands and DSM information. Six machine learning algorithms, i.e., fuzzy
classifier, k-nearest neighbor classifier, Bayes classifier, classification and regression tree,
support vector machine (SVM), and random forest (RF), were used to classify blue
(including water), green (including green roofs, grass, trees (shrubs), bare land), and
gray (including buildings, roads) infrastructure. The highest kappa coefficient was
observed for RF and the lowest was observed for SVM, with coefficients of 0.807 and
0.381, respectively. We optimized the sampling method based on a chessboard grid and
got the optimal sampling interval of 11.6 m to increase the classification efficiency. We also
analyzed the effects of weather conditions, seasons, and different image layers, and found
that images in overcast days or winter days could improve the classification accuracy. In
particular, the DSM layer was crucial for distinguishing green roofs and grass, and buildings
and roads. Our study demonstrates the feasibility of using UAV images in urban blue-
green-gray infrastructure classification, and our infrastructure classification framework
based on machine learning algorithms is effective. Our results could provide the basis for
the future urban stormwater management model development and aid sustainable urban
planning.
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1 INTRODUCTION

Green infrastructure (GI) is a collection of areas that function as
natural ecosystems and open spaces (Benedict and McMahon,
2006; Palmer et al., 2015), and it can maintain and improve the
quality of air and water and provide multiple benefits for people
and wildlife (Palmer et al., 2015; Benedict and McMahon, 2006;
Environmental Protection Agency, 2015; Hashad et al., 2021). As
an important part of urban ecosystems (Hu et al., 2021), GI
provides green spaces for cities, and benefit people’s physical and
mental health (Venkataramanan et al., 2019; Zhang et al., 2021).
In addition, GI can alleviate urban flooding and urban heat island
effect (Venkataramanan et al., 2019; Dai et al., 2021; Ouyang
et al., 2021; Bartesaghi-Koc et al., 2020), and accelerate
sustainable development (Hu et al., 2021).

GI and other infrastructures are important land types that
have different runoff coefficients, which are essential for
stormwater management models and urban energy balance
models (Cui and Chui, 2021; Yang et al., 2021). Nitoslawski
et al. (2021) pointed out that it is valuable to use emerging
technologies to study urban green infrastructure mapping.
However, the current related studies only carry out
classification and mapping for part of infrastructure. For
example, Narziev et al. (2021) mapped irrigation system, while
Man et al. (2020) and Furberg et al. (2020) mapped urban grass
and trees. There is a need to perform a more comprehensive
classification and mapping of infrastructures.

Generally, infrastructures are the facilities needed by the
society, while the land covers are divided based on their
natural and physical characteristics (Environmental Protection
Agency, 2019; Gregorio and Jansen, 2000). For example, green
roofs can be used to reduce the runoff and increase the aesthetic
of buildings, which is one kind of GI. But it cannot be regarded as
the land cover. To our best knowledge, there are no specific
methods for the classification of GI. Boonpook et al. (2021)
pointed out that the distinction between green roofs and
ground grass is difficult because their spectral information is
similar. Moreover, GI is usually scattered over urban areas and
has different forms with a fine spatial scale. The mapping of GI
based on remote sensing images with insufficient spatial
resolution or fewer data features has a large uncertainty
(Bartesaghi-Koc et al., 2020).

In recent decades, using remote sensing for automatic
classification and mapping of infrastructure is valuable for
avoiding manual identification, which is time-consuming and
laborious (Shao et al., 2021). Satellites, airborne vehicles, and
unmanned aerial vehicles (UAVs) have usually been used to
obtain images as inputs for automatic classification and mapping.
Satellites can collect data and make repeated observations at regular
intervals, even in difficult-to-reach locations (Gašparović and
Dobrinić, 2021). Satellite images have been widely used for GI
identification. For example, Gašparović and Dobrinić (2021) used
satellite synthetic aperture radar images to identify water, bare soil,
forest, and low vegetation, and Furberg et al. (2020) used satellite
images to analyze the changes in urban grassland and forest.
However, the acquisition of satellite images is strongly affected by
the atmospheric cloud conditions (Gašparović and Dobrinić, 2021;

Wang et al., 2019), and the accuracy and precision are limited by the
spatial resolution (Bartesaghi-Koc et al., 2020; Wang et al., 2019),
especially in urban areas with complex features (Furberg et al., 2020).

Airborne vehicles provide high-resolution images and can adjust
the angles, positions, and instruments as required (Alakian and
Achard, 2020). For example, Man et al. (2020) extracted grass and
trees in urban areas based on airborne hyperspectral and LiDARdata.
However, the costs of airborne vehicles are prohibitive and they
require logistics management (Bartesaghi-Koc et al., 2020).
Nowadays, the cost of UAVs is decreasing (Wang et al., 2019)
and UAVs can carry a variety of sensors (e.g., multispectral
cameras, LiDAR, and thermal infrared cameras) that can obtain
targeted high-resolution data on a centimeter scale (Jiang et al., 2021).
The amount of research on GI using UAV data has been increasing;
for example, urban GI thermal effects (Khalaim et al., 2021), GI
vegetation health (Dimitrov et al., 2018), and the classification of
plant species (Fan and Lu, 2021; Jiang et al., 2021; Miura et al., 2021)
have been investigated. Therefore, UAV data is more suitable for
small catchment studies.

Machine learning algorithms, such as fuzzy classifier (FC)
(Trimble Germany GmbH, 2014a; Cai and Kwan, 1998), k-nearest
neighbor classifier (KNN) (Bai et al., 2021; Li et al., 2016), Bayes
classifier (Bayes) (Han et al., 2012; Brunner et al., 2021), classification
and regression tree (CART) (Li et al., 2016; Zhang and Yang, 2020),
support vector machine (SVM) (He et al., 2007; Ismail et al., 2021),
and random forest (RF) (Li et al., 2016; Dobrinić et al., 2021)
algorithms, have been widely used in land surface automatic
classification, especially in land use/cover classification. For
example, Zhang and Yang (2020) improved land cover
classification based on the CART method; Dobrinić et al. (2021)
built an accurate vegetation map using a RF algorithm. However,
these algorithms have still not been effectively applied in the
infrastructure classification in small urban catchments, and the
optimal algorithm is still not clear.

At present, although UAVs have advantages in vegetation
identification, such as the classification of crops, trees, and grass
species (Garzon-Lopez and Lasso, 2020; Fan and Lu, 2021; Jiang et al.,
2021; Miura et al., 2021; Sudarshan Rao et al., 2021; Wicaksono and
Hernina, 2021), the application of UAVs for infrastructure
classification is still rare. Machine learning algorithms have not
been widely used for infrastructure classification. In the present
study, we take green infrastructure (all different green open
spaces), blue infrastructure (surface water bodies), and gray
infrastructure (artificial structures without vegetation) as the study
objects, and classify the blue-green-gray infrastructure using an UAV
at a small catchment scale (i.e., 0.1–10 km2), and develop a high-
resolution object-based method using machine learning algorithms.
In addition, we optimize the sampling method and discuss the effects
of weather conditions, seasons, and different image layers on
classification.

2 MATERIALS AND METHODS

2.1 Study Area and Data Acquisition
The Southern University of Science and Technology (SUSTech) is
located in Shenzhen, China (Figure 1), which has a subtropical
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monsoon climate with annual mean precipitation of
1935.8 mm (Meteorological Bureau of Shenzhen
Municipality, 2021; Hu et al., 2008). The whole area of the
campus is about 2 km2. There are hills in the northern and
central parts of the campus, and a river runs through the
southern part (Figure 1). The combination of terrain and
campus walls creates a small catchment. The vegetation is
mainly plantation community, including lemon eucalyptus
(Eucalyptus citriodora Hook. f.) community, acacia mangium
(Acacia mangium Willd.) community, and lychee (Litchi
chinensis Sonn.) forest (Hu et al., 2008). The buildings with
various forms of roofs, asphalt roads and permeable
pavements are mosaic in the campus. There are also lakes,
streams and a river, and so on. Although they were built in
different periods but all of them were constructed within
10 years. Their pictures could be found in Supplementary
Figure S1.

There are several types of GI (e.g., green roofs, trees, grass,
and bare land), blue infrastructure (e.g., water), and gray
infrastructure (e.g., buildings and roads) distributed across
the campus (Figure 1). To test the application of UAV images
and the method of classifying different types of infrastructure,
the SUSTech campus was chosen as the study area.

A DJI Phantom 4 Multispectral (DJI P4M) (DJI, https://
www.drdrone.ca/pages/p4-multispectral) UAV was used in
this study to obtain the images. The UAV has a built-in
stabilizing imaging system, integrating one RGB camera
and five multispectral cameras, covering blue (B; 450 ±
16 nm), green (G; 560 ± 16 nm), red (R; 650 ± 16 nm), red-
edge (RE; 730 ± 16 nm), and near-infrared (NIR; 840 ±
26 nm), all at two megapixels with a global shutter and on
a three-axis gimbal.

Flying missions were performed when the weather
conditions were feasible (generally sunny) and the wind
was below force 4 (wind speed <6 m/s), at regular intervals
of 2–4 weeks. Due to the battery capacity of the UAV, we
divided the study area into nine subareas to perform the flying
missions. Each mission was carried out between 11:00 and 13:
30 in adjacent 2 days and we acquired a total of about 24,600
images from 4,100 photo locations. The UAV can record the
precision position information, which could be used for post
processed kinematics (PPK) to synthesize the images (https://
www.drdrone.ca/pages/p4-multispectral). We used DJI Terra
(version 3.0) with orthophoto image correction algorithm to
synthesize the images and generate the RGB orthophoto
image, the spectral images for the five bands, the digital

FIGURE 1 | The orthophoto map of study area. The numbers 1–5 show the locations of typical infrastructure in the campus, which corresponding pictures are
displayed on the right.
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TABLE 1 | Six machine learning algorithms adopted in this study.

Algorithm and
abbreviation

Algorithm theory Advantages Disadvantages References

Fuzzy classifier (FC) Establishes the membership function of a
class based on a variety of features and
predicts an object’s class by its
membership value

General and accurate; Difficult to interpret Trimble Germany GmbH, (2014a); Trimble
Germany GmbH, (2014b); Cai and Kwan,
(1998)

Stable accuracy Heavy calculation burden

k-Nearest
neighbor (KNN)

Classifies an object based on the majority
of its k-nearest training examples in the
feature space

Fast training speed; High computer memory
requirements

Trimble Germany GmbH, (2014b); Bai et al.
(2021); Mohammadpoor and Eshghizadeh,
(2021); Li et al. (2016)

Generalizes better with a
large training set Slow prediction stage
Not sensitive to outliers

Bayes (Bayes) Applies Bayes’ theorem with strong
independence assumptions to predict an
object’s class

Stable classification
efficiency;

Assumes distribution
independence

Trimble Germany GmbH, (2014b); Han
et al. (2012); Brunner et al. (2021); Li et al.
(2016)Needs a small amount of

training data
Need to calculate the prior
probability

Classification and
regression tree
(CART)

Segments data into homogeneous
subgroups by a series of decisions

White box: is easy to
interpret;

Easy to overfit Trimble Germany GmbH, (2014b); Li et al.
(2016); Zhang and Yang, (2020)

More features can be
processed

Unstable

Support vector
machine (SVM)

Maps samples to points in feature space,
uses decision planes to segment the
space, and then classifies new objects
according to the same spatial attributes

Can solve small sample
problems;

Difficult to train large
samples

Trimble Germany GmbH, (2014b); Bai et al.
(2021); Mohammadpoor and Eshghizadeh,
(2021); Ismail et al. (2021); He et al. (2007)Can solve high-

dimensional and complex
problems

Difficult to solve multi-class
problems

Random forest (RF) Builds decision trees with each tree
generated by randomly selecting subsets
of training samples or feature spaces

Can deal with noise and
high-dimensional and
unbalanced datasets

Not suitable for small
amounts of data or low-
dimensional data

Trimble Germany GmbH, (2014b); Bai et al.
(2021); Li et al. (2016); Dobrinić et al. (2021)

High parallel processing
capability

Easy to overfit

FIGURE 2 | Methodology for blue-green-gray infrastructure classification from UAV data.
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surface model (DSM), and the normalized difference
vegetation index (NDVI) maps (Supplementary Figure
S2). The DSM had a resolution of 0.114 m and the other
images had a resolution of 0.057 m.

2.2 Classification Algorithms
In this study, six widely used machine learning algorithms were
compared. Descriptions, advantages, and disadvantages of the
algorithms are shown in Table 1. Detailed explanations and the
hyperparameter settings associated with the algorithms are given
in Supplementary material S1.

2.3 Methodology
Figure 2 shows the steps for extracting and classifying the
blue-green-gray infrastructure based on the UAV images.
Firstly, the input images and RGB orthophoto image were
retrieved from the UAV images. Secondly, with the RGB
orthophoto image and field survey, we created the training
and validation samples for different kinds of infrastructure.
Thirdly, based on input images and training samples, we
trained the algorithms and got the trained results. Finally,
the validation accuracy and classification results were made
based on the validation samples and trained results.

2.3.1 Sample Creation
Based on the classification categories of the European Commission
(Maes et al., 2016), we classified blue-green-gray infrastructure in the
SUSTech campus as water, trees (shrubs), grass, green roofs, bare
land, buildings (no vegetation), and roads.

The seven types of samples were made for model training and
validation of the machine learning algorithms. ArcMap (version 10.6,
included in ArcGIS for Desktop, Esri) was used to pre-process input
images (Supplementary Figure S2) and make the sample shapefiles
for training and validation (Figure 3A). To ensure that the samples
were random and the process could be repeated, we applied an
equidistant sampling method (chessboard grid sampling method,
Figure 3A), which made the samples uniformly distributed (Zhao
et al., 2017). To avoid the overlap of samplings, the grids for the
validation was obtained by shifting the grids for training, as shown in
Figure 3A.

To achieve a better trade-off between classification
accuracy and efficiency, we compared the results derived
from samples with different sampling intervals (i.e., 2.9,
5.8, 8.7, 11.6, 14.5, and 17.4 m) in the central part of the
campus (referred to as the core area, which is subarea No. 10
in Supplementary Figure S3). The classification accuracies
were evaluated at different sampling intervals, and the optimal
sampling interval was determined.

2.3.2 Algorithm Training and Validation
Different machine learning algorithms were assessed with Trimble
eCognition Developer (eCognition) (version 9.0.2) based on the
object-based image analysis method (Trimble Germany GmbH,
2014a). Multiresolution segmentation was used to divide the UAV
images into small objects (Figure 3B). The classes were assigned to
the objects corresponding to the training samples, and the features of
the image layers were extracted to the objects. Each machine learning
algorithm was used for training and classification (Figure 4). The
accuracy was assessed by the error matrix based on the validation
samples and trained results.

We used five widely used indices, producer’s accuracy, user’s
accuracy, mean accuracy of different classes, kappa coefficient, and
overall accuracy (OA), to evaluate the classification accuracy (Talebi
et al., 2014; Dobrinić et al., 2021;Wang et al., 2019;Man et al., 2020).
The producer’s accuracy is the ratio of the number of correctly
classified objects to validation objects for a class, and the user’s
accuracy is the ratio of the number of correctly classified objects to
classified objects for a class (Talebi et al., 2014; Dobrinić et al., 2021).
The mean accuracy is the average of the producer’s accuracy and
user’s accuracy. The kappa coefficient uses information about the
entire error matrix to evaluate the classification accuracy and is
calculated as (Wang et al., 2019; Man et al., 2020)

κ � N × Σk
i�1nii − Σk

i�1(ni+ × n+i)
N2 − Σk

i�1(ni+ × n+i) (1)

where N is the total number of objects, k is the number of classes
of the classification, nii is the number of correctly classified objects
in class i, ni+ is the objects number classified as class i, and n+i is
the number of validation objects of class i.

FIGURE 3 | (A) Chessboard grid sampling method for making samples.
The dots are sample points at the grid intersections. (B) Objects created by
multiresolution segmentation, shown as blue polygons.
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The OA is the proportion of all sample objects that are
correctly classified (Man et al., 2020) and a larger OA value
means a better classification result. OA is calculated as (Wang
et al., 2019)

OA � Σk
i�1nii

N
(2)

The optimal algorithm was obtained by comparing the kappa
coefficients and OAs. To test the stability of the best algorithm, we
selected the core area and five subareas for accuracy comparison
from the total 17 subareas of the study area using a random
number generator (Supplementary Figure S3). According to the
trial-and-error accuracy assessment, we optimized the selected
image layers further by increasing or decreasing the number of
layers (see Section 3.6 for details).

3 RESULTS AND DISCUSSION

3.1 Optimization of Sampling Method
Our sampling method was first implemented with RF algorithm
in the core area, which covered an area of 126,857 m2 and
contained seven types of infrastructure. The accuracies of

different sampling interval scenarios for various infrastructure
types are shown in Table 2. For all infrastructure types, a finer
sampling interval corresponded to a higher classification
accuracy. A kappa coefficient between 0.80 and 1.00 indicates
almost perfect classification, whereas a coefficient between 0.60
and 0.80 indicates substantial classification (Landis and Koch,
1977). The number of samples represents the manual sampling
load, and a smaller number indicates higher efficiency.
Considering the trade-off between accuracy and sampling
efficiency, an optimal sampling interval of 11.6 m was used in
this study.

Common methods for creating sample data include manual
selection of the region of interest (Wang et al., 2019), simple
random sampling, and equidistant sampling (Zhao et al., 2017).
Manual selection is subjective and arbitrary, and thus the results
depend on the operator. Simple random sampling is easy to
perform, but it may cause polarization and give poor training
results (Zhao et al., 2017). The equidistant sampling method,
chessboard grid sampling, is objectively random and repeatable.
The method produces uniformly distributed samples and
mitigates polarization (Zhao et al., 2017), so it can be widely
used in other areas. The optimal sampling interval may vary due
to the differences in infrastructure type in the target area (e.g.,

FIGURE 4 | Training and classification steps for machine learning algorithms.

TABLE 2 | Accuracy assessment of classification at different sampling intervals.

Sampling interval
(m)

Number of
samples

Mean accuracy Kappa OA

Roads Buildings Grass Trees (shrubs) Bare land Water Green roofs

2.9 16,162 0.952 0.953 0.843 0.932 0.967 0.992 0.842 0.897 0.922
5.8 4,088 0.923 0.931 0.787 0.909 0.939 0.980 0.753 0.855 0.890
8.7 1,812 0.877 0.901 0.788 0.911 0.898 0.956 0.697 0.836 0.875
11.6 1,061 0.857 0.883 0.749 0.891 0.875 0.954 0.667 0.804 0.851
14.5 702 0.861 0.900 0.717 0.886 0.886 0.909 0.646 0.793 0.843
17.4 477 0.820 0.856 0.720 0.890 0.846 0.960 0.669 0.783 0.836
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college communities and typical urban areas) and the scale of the
infrastructure. Similarly, prioritizing efficiency or accuracy
requires different optimal sampling intervals. However, in the
areas of the same type (e.g., different college communities), the
optimal sampling interval is representative.

3.2 Comparison of Classification Algorithms
Figure 5 shows the classification results of six algorithms in the
core area, with a sampling interval of 11.6 m for both training
samples and validation samples. The kappa coefficient and OA
had the same ranking result, so we took kappa as a representative
index for our analysis.

The RF algorithm exhibited the best performance in the core
area, with a kappa coefficient of 0.807, demonstrating the
advantages of this algorithm in processing high-dimensional
data. The following two best classification methods were FC
and Bayes, which had similar kappa coefficients of 0.772 and
0.761, respectively. The results calculated with the CART and
KNN algorithms showed slightly worse performance. However,
the classification results for the SVM algorithm were the worst,
with a low kappa coefficient of 0.381. The main reason for this
poor performance may be that the SVM algorithm has difficulty
in handling large samples and multi-class problems (Bai et al.,
2021; He et al., 2007).

3.3 Validation in Other Subareas
The subareas selected for the stability test with RF algorithm were
Nos. 3, 5, 13, 14, 17, and 10 (the core area) (Supplementary
Figure S3). The classification results, kappa coefficients, and OAs
are shown in Figure 6 and Table 3. The kappa coefficients of the
five subareas and OAs of the six subareas were greater than 0.8,
which reflected an almost perfect performance (Landis and Koch,

1977). The kappa coefficient of subarea No. 3 was 0.592, which
was moderate (0.4–0.6) (Landis and Koch, 1977), but the OA was
as high as 0.867. This was because the proportion of trees in the
training sample set reached about 75% (692/930), which reduced
the relative consistency in the calculation (Eq. 1). The mean
accuracies of bare land and roads in subarea No. 3 and bare land
in subarea No. 13 were below 0.6 (Table 3), which could be
associated with the insufficient number of training samples for
the related infrastructures. The training samples of them are less
than 20. Meanwhile, the classification results were better based on
training samples more than 30. From this perspective, to achieve a
good result of mapping infrastructure, the training samples
should be more than 30.

3.4 Effect of Weather Conditions on
Classification
In the images taken between August 24, 2020 and December 26,
2020, there were eleven sunny days, three partly cloudy days, and
one overcast day. The classification results with RF algorithm
were better for the images taken on the overcast day than those
taken on the sunny days. We discuss the results from the images
taken on December 17, 2020 (overcast) and December 21, 2020
(sunny) as an example. The kappa coefficient and OA for the
images taken on the overcast day were greater than those for the
sunny day (Table 4). For each type of infrastructure, the mean
accuracies of the results derived from the overcast day were
higher than those from the sunny day for grass, buildings, and
roads. However, for green roofs, better results were obtained from
the sunny day.

The spectral similarity of grass, trees and green roofs is high
(Boonpook et al., 2021). Therefore, we used DSM elevation to

FIGURE 5 | Results for the classification algorithms and their kappa coefficients and OAs.
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increase the difference between green roofs on buildings and
vegetation on the ground. Analysis of the locations and image
features of the error points (red circles in Figure 7) showed
that on a sunny day, the distinction between grass in the
shadow of trees and green roofs at the same elevation
increased (red circles 6 and 7). In addition, stronger
sunlight increased the reflection intensity of leaves on the
sunny side of trees (red circles 5 and 6), so the distinction
between trees and green roofs also increased. Therefore,
accuracy for green roofs was better on the sunny day than
on the overcast day. On the sunny day, trees shadows had a
strong shading effect on grass (red circle 8), which made it
easy to confuse grass with the shaded side of trees. Similarly,

shadows of tall buildings blocked out trees and grass (red
circles 2 and 3); thus, vegetation in shaded areas could also be
misclassified. Therefore, the accuracy of grass was better on
the overcast day than on the sunny day. Shadows of tall
buildings on the roads were easy to misclassify as water on
the sunny day, but not on the overcast day (red circle 1).
Under strong Sun on the sunny day, some special coatings on
the buildings, such as solar panels, reflected sunlight, which
could easily lead to misclassification (red circle 4). On balance,
these effects meant that the overcast day image data resulted
in better classification results. If the purpose of the flying
mission is to obtain spectral data for classification, we
recommend doing it on an overcast day with plenty of light.

FIGURE 6 | Classification results in subareas of the study area, and the kappa coefficients and OAs.

TABLE 3 | Classification accuracy assessment in different subareas.

Subarea Area (m2) Mean accuracy Kappa OA

Green roofs Grass Trees (shrubs) Bare land Buildings Roads Water

No. 3 117,258 — 0.633 0.928 0.487 0.875 0.458 — 0.592 0.867
No. 5 127,549 — 0.770 0.919 0.680 0.862 0.935 — 0.827 0.884
No. 10 126,857 0.617 0.714 0.883 0.897 0.921 0.894 0.974 0.807 0.849
No. 13 126,330 0.690 0.811 0.897 0.438 0.895 0.911 0.742 0.821 0.867
No. 14 111,530 — 0.871 0.886 0.000 0.891 0.914 0.668 0.835 0.881
No. 17 118,552 0.833 0.924 0.944 0.000 0.964 0.954 0.732 0.919 0.940

TABLE 4 | Comparison of classification accuracy under different weather conditions.

Weather Mean accuracy Kappa OA

Green roofs Grass Trees (shrubs) Bare land Buildings Roads Water

Sunny 0.775 0.734 0.874 0.762 0.936 0.940 0.986 0.852 0.879
Overcast 0.720 0.784 0.871 0.762 0.986 0.961 0.993 0.868 0.892
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3.5 Effect of Seasons on Classification
The kappa coefficients and OAs with RF algorithm in different
months of the year (Figure 8) showed that the best classification
results were in February (winter) and June (summer), and the
kappa coefficient and OA for February were better than those
for June.

Table 5 shows that accuracies for grass, roads, and water for
February were better than those for June. This may be because the
grass was withered or dead in winter, and thus was more easily
distinguished from trees on the spectrum. In addition, the tree
canopies shrank, so that the increased quantity of light made it
easier to identify grass in gaps. As discussed in Section 3.4,

shadows made the classification results worse. The area of
shadows increases in winter, which could decrease the
accuracy. However, grass and trees accounted for a large
proportion of the total area, whereas the area of shadows
was small, leading to a better classification result in winter.
Because the sunlight was weaker in winter, there was a smaller
difference between the roads in shadow and the roads in
sunlight. Therefore, the mean accuracy of roads was better
in winter than in summer. In addition, when the sunlight was
close to direct in summer, water surfaces tended to generate
mirror reflections, which produced noisy points in the UAV
images. Therefore, misclassification of water occurred easily,

FIGURE 7 | Results on a sunny day (left) and an overcast day (right), and the kappa coefficients and OAs. The red circles indicate the main differences between the
two subfigures.

FIGURE 8 | Results for different seasons, and the kappa coefficients and OAs.
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as shown in the center of the subfigures in Figure 8 (April,
June, and August).

Comparing the February and June classification results in
Figure 8 and Table 5, the mean accuracy for green roofs in
June (i.e., 0.699) was better than that in February (i.e., 0.646). This
may be because strong summer sunlight made other vegetation
more distinct from the green roofs, which is consistent with the
discussion in Section 3.4. Campus construction work caused the
change in bare land area that resulted in the difference between
the 2 months.

3.6 Effect of Different Image Layers on
Classification
The combination of seven image layers (B, G, R, RE, NIR, NDVI,
DSM) were used as the benchmark for comparing the results with
RF algorithm. By comparing the classification accuracies after
reducing the number of image layers, the effects of different layers
on the results were analyzed. For convenience, we refer to the
results from different layer combinations as cases I–VIII
(Figure 9).

Case I was the benchmark that included all seven layers.
Except for green roofs, the mean accuracies in case I were the
best. However, the classification result for water was not
significantly affected by the different layers, with the
accuracies in all the cases larger than 0.94. In most cases, the
average accuracies of green roofs and grass were less than 0.8,
which indicated that they were easily confused classes.

Case II (B, G, R, RE, NIR, NDVI) did not include the DSM
layer. Because green roofs and grass, as well as roads and
buildings, have similar features (Boonpook et al., 2021), when
the DSM layer was not included, the accuracies of green roofs,
grass, buildings, and roads were considerably lower. Therefore,
the DSM layer was key information that distinguished green roofs
and grass, as well as buildings and roads. To improve the
classification accuracy further, the method identifying the four
types of infrastructure should be developed in future research.
Because green roofs are located on buildings, it may be effective to
first extract the buildings, and then identify vegetation on
buildings as green roofs. For building recognition, some
researchers have used manual extraction (Shao et al., 2021),
which is time-consuming and laborious. Due to the different
colors and types of building roofs, it is difficult to identify them
effectively with only spectral images (Kim et al., 2011). Demir and
Baltsavias (2012) andWang et al. (2018) combined the slope from
DSM, spectral images, and other information to identify
buildings, and the accuracy was above 0.9. Kim et al. (2011)
analyzed LiDAR data to obtain normalized digital surface model
(nDSM), and then combined it with airborne images to identify

buildings. The nDSM, which is the difference between DSM and
digital elevationmodel, is created from a point cloud (Talebi et al.,
2014; Sun and Lin, 2017; Kodors, 2019). Talebi et al. (2014) also
used nDSM to distinguish roads, building roofs, and pervious
surfaces, and the mean accuracy of building recognition was
above 0.8. In summary, using the slope from DSM or nDSM
combined with spectral images is effective for identifying
buildings, and green roofs, grass, and roads can be accurately
classified further.

Case III (B, G, R, RE, NIR, DSM) did not include the NDVI
layer. Comparing the results of cases I and III, the accuracies of
most classes in case I were higher than those in case III, except for
green roofs. The classification subfigures (Supplementary Figure
S4) showed that green roofs were overclassified in case I,
decreasing the accuracy for green roofs. In case IV (B, G, R,
RE, NDVI, DSM), which did not include the NIR layer, the
accuracy for green roofs was greatly improved, whereas the OA
was still as good as that in case I. The results for case V (B, G, R,
NIR, NDVI, DSM), which did not include the RE layer, were
similar to those for case IV, but the accuracies for bare land and
buildings were lower.

Case VI (B, G, R, NDVI, DSM) did not include the RE andNIR
layers, and the accuracy for green roofs was increased
substantially by 0.2. The accuracies for grass and roads were
decreased, but the other changes were small. The decrease in OA
was small, and the classification results were good in general. Case
VII (NIR, RE, NDVI, DSM) did not include the B, G, and R
bands, and the accuracy for green roofs increased by 0.13. Cases
VI and VII showed that appropriate redundancy removal of
spectral image layers helped to identify green roofs accurately.

In case VIII (B, G, R, DSM), which did not include the NIR,
RE, and NDVI layers, in addition to green roofs and bare land, the
accuracies of the other classes were decreased considerably. For
overall evaluation, the OA was below 0.8. In particular, the
accuracy of grass dropped below 0.6. Case VIII demonstrates
the problem of insufficient data layers.

This analysis demonstrated that the DSM layer is crucial for
distinguishing green roofs and grass, as well as buildings and
roads. Furthermore, appropriate removal of redundant spectral
image layers increased the accuracy for green roofs. Case VI (B, G,
R, NDVI, DSM) used five image layers, and the green roof
accuracy was increased by 0.2 at the cost of decreasing the
accuracy for grass by 0.034. The accuracies for the other
classes were maintained, which indicated that case VI was the
most appropriate combination.

3.7 Limitations
Firstly, although there have been several represented types of
infrastructure considered in this study, some other types of green

TABLE 5 | Comparison of classification accuracy for February and June.

Month Mean accuracy Kappa OA

Green roofs Grass Trees (shrubs) Bare land Buildings Roads Water

February 0.646 0.812 0.903 0.701 0.913 0.944 1.000 0.849 0.881
June 0.699 0.802 0.912 0.748 0.920 0.910 0.914 0.836 0.872
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infrastructure (e.g., rain garden) are still missed. Besides, in gray
infrastructure, roads can be further subdivided into asphalt roads
and porous brick pavements. The porous pavement cannot be

recognized in this study. The algorithms and multispectral data
used in this paper are capable to recognize the green roofs but not
able to distinguish the above finer types effectively.

FIGURE 9 | Accuracies of classification results with different image layers. The abbreviations for the classes on the abscissa are as follows: GR. green roofs, G.
grass, T. trees (shrubs), BL. bare land, B. buildings, R. roads, W. water.
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Secondly, in terms of the sampling method, we only get the
optimal sampling interval for college communities. For different
types of study areas, we need to conduct trial and error tests to get
the optimal sampling interval. This step will still require further
improvement.

Thirdly, the remote sensing data we used is limited. If LiDAR
point cloud data or DEM data are available, in conjunction with
DSM and spectral data, the classification accuracy of green roofs,
grass, trees, buildings and roads will be greatly improved.

4 CONCLUSION

We developed a method to classify blue-green-gray infrastructure
accurately using machine learning algorithms and UAV image
data. Because the resolution of UAV images is on the centimeter
scale, this method could identify all types of infrastructure on a
sub-meter scale.

The chessboard grid sampling method was used to ensure the
randomness and objectivity of samples. Evaluating the accuracies
with different sampling intervals showed that a sampling interval
of 11.6 m ensured that the kappa coefficient and OA were in the
almost perfect range (>0.8) and that the number of samples was
reduced, which increased working efficiency.

There are many machine learning algorithms that can be used
for infrastructure classification. The different principles of the
algorithms cause differences in their applicability. Evaluating the
accuracies of the classification results from six widely used
algorithms showed that the RF, FC, and Bayes algorithms
were suitable for recognizing different infrastructure. RF was
the best algorithm because of its ability to process high-
dimensional data well. In addition, the results in other
subareas, in which the kappa coefficient and OA were
generally greater than 0.8, showed that this method had
universal applicability. For any type of infrastructure, more
than 30 training samples were needed to ensure the reliability
of classification.

Comparing the classification results on a sunny day and an
overcast day showed that overcast day data increased the
recognition of grass, trees, and roads in shadow. The
misclassification of roads in shadow as water was also reduced.
The angle of sunlight changes with seasons, which in turn alters
the shadow area. In winter, the shadow area is larger, which may
reduce the classification accuracy. However, because trees and
grass were the main infrastructure types in the study area,
shriveled grass in winter increased the spectral difference and
classification accuracy. The combination of the two effects
resulted in more accurate classification in winter.

To obtain better classification results, we used seven image
layers. Through trial and error, we showed that appropriate
removal of redundant spectral image layers, such as RE and
NIR, increased the recognition accuracy of green roofs. The DSM
layer was crucial for improving the distinction considerably

between green roofs and grass, and buildings and roads. Using
only five image layers (B, G, R, NDVI, and DSM) increased the
accuracy for green roofs greatly at the cost of a small decrease in
the accuracy for grass.

Our method can identify small facilities on a sub-meter scale,
and can obtain a distribution map of blue-green-gray
infrastructure in urban small catchments (0.1–10 km2)
accurately and quickly. The classification of GI is fundamental
for rational management and planning of GI, and contributes to
sustainable development of urban areas. Combined with the
rainwater use characteristics of various infrastructure, an
accurate GI distribution map can help to simulate stormwater
management and use effectiveness accurately in small urban
catchments.
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